This document discusses trends in data analytics. It begins by defining big data and how it differs from traditional data approaches in terms of size, techniques, and ability to solve new problems. It then provides examples of big data applications across various industries like retail, automotive, healthcare, and insurance. Specifically, it outlines how big data is used for predictive analytics, personalization, fraud detection, and risk adjustment. Finally, it discusses some risks of big data like privacy issues and ensuring the right problems are addressed.