SlideShare a Scribd company logo
1 of 103
Download to read offline
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling the hyperbolic plane - long 
version 
Daniel Czegel 
Eotvos Lorand University, Budapest 
ICPS, Heidelberg 
August 14, 2014 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Definition of Gaussian curvature 
1
nd a normal vector N 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Definition of Gaussian curvature 
1
nd a normal vector N 
2 rotate the normal plane 
containing N 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Definition of Gaussian curvature 
1
nd a normal vector N 
2 rotate the normal plane 
containing N 
3 intersection of the surface 
and the normal plane: a 
plane curve, curvature: 
 = 1R 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Definition of Gaussian curvature 
1
nd a normal vector N 
2 rotate the normal plane 
containing N 
3 intersection of the surface 
and the normal plane: a 
plane curve, curvature: 
 = 1R 
4 Gaussian curvature of the 
surface: 
K(r) = min(r) max (r) 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Definition of Gaussian curvature 
1
nd a normal vector N 
2 rotate the normal plane 
containing N 
3 intersection of the surface 
and the normal plane: a 
plane curve, curvature: 
 = 1R 
4 Gaussian curvature of the 
surface: 
K(r) = min(r) max (r) 
5 sign! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Theorema Egregium 
Does K(r) change if we wrap, bend, twist (i.e. change the 
embedding in the 3 dim space)? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Theorema Egregium 
Does K(r) change if we wrap, bend, twist (i.e. change the 
embedding in the 3 dim space)? 
Theorema Egregium (Great Theorem): No! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Theorema Egregium 
Does K(r) change if we wrap, bend, twist (i.e. change the 
embedding in the 3 dim space)? 
Theorema Egregium (Great Theorem): No! 
Gaussian curvature is an intrinsic measure of the surface! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Theorema Egregium 
Does K(r) change if we wrap, bend, twist (i.e. change the 
embedding in the 3 dim space)? 
Theorema Egregium (Great Theorem): No! 
Gaussian curvature is an intrinsic measure of the surface! 
In a 2 dimensional Universe, K fully determines how 
spacetime curves: GR, Einstein eqs.: 
R  
R 
2 
g + g = 
8G 
c4 T 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Theorema Egregium 
Does K(r) change if we wrap, bend, twist (i.e. change the 
embedding in the 3 dim space)? 
Theorema Egregium (Great Theorem): No! 
Gaussian curvature is an intrinsic measure of the surface! 
In a 2 dimensional Universe, K fully determines how 
spacetime curves: GR, Einstein eqs.: 
R  
R 
2 
g + g = 
8G 
c4 T 
In 2 dim: 
R = f (K; g); R = 2K 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Cylinder, Oloid 
) a surface can be unfolded without distortion , K  0 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Cylinder, Oloid 
) a surface can be unfolded without distortion , K  0 
cylinder: 
max = 
1 
R 
; min = 
1 
1 
= 0 ) K  0 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Cylinder, Oloid 
) a surface can be unfolded without distortion , K  0 
cylinder: 
max = 
1 
R 
; min = 
1 
1 
= 0 ) K  0 
nontrivial example: oloid: convex hull of two perpendicular 
circles 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Cylinder, Oloid 
) a surface can be unfolded without distortion , K  0 
cylinder: 
max = 
1 
R 
; min = 
1 
1 
= 0 ) K  0 
nontrivial example: oloid: convex hull of two perpendicular 
circles 
every point of its surface touches the 
oor during rolling! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
sphere: K =? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
sphere: K =? 
K  1 
R2  0, a model of elliptic geometry; 
straight lines=geodesics: great circles 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
sphere: K =? 
K  1 
R2  0, a model of elliptic geometry; 
straight lines=geodesics: great circles 
What is the sum of angles  in a triangle? 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
sphere: K =? 
K  1 
R2  0, a model of elliptic geometry; 
straight lines=geodesics: great circles 
What is the sum of angles  in a triangle? 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
i)  = 
3 
2 
; A = 
 
2 
R2 ii)  = 3; A = 2R2 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
i)  = 
3 
2 
; A = 
 
2 
R2 ii)  = 3; A = 2R2 
Generally? 
A = (  )R2 ) KA =    
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
i)  = 
3 
2 
; A = 
 
2 
R2 ii)  = 3; A = 2R2 
Generally? 
A = (  )R2 ) KA =    
The sum of angles  is size-independent: only if K = 0 
(euclidean geometry) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Spherical triangles 
i)  = 
3 
2 
; A = 
 
2 
R2 ii)  = 3; A = 2R2 
Generally? 
A = (  )R2 ) KA =    
The sum of angles  is size-independent: only if K = 0 
(euclidean geometry) 
elliptic geometry: 
KA  0 )    
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Stereographic projection 
sphere: K6= 0 ) cannot be unfolded: 
there is no sphere ! plane map that preserves both distance 
and angle! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Stereographic projection 
sphere: K6= 0 ) cannot be unfolded: 
there is no sphere ! plane map that preserves both distance 
and angle! 
We have to choose; e.g.: preserves angle (conformal), but 
does not preserve distance: stereographic projection 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Stereographic projection 
sphere: K6= 0 ) cannot be unfolded: 
there is no sphere ! plane map that preserves both distance 
and angle! 
We have to choose; e.g.: preserves angle (conformal), but 
does not preserve distance: stereographic projection 
unit sphere, equator  plane, project from the north pole Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Properties of stereographic projection 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Properties of stereographic projection 
northern (southern) hemisphere7! outside (inside) of the unit 
circle (north pole7! 1) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Properties of stereographic projection 
northern (southern) hemisphere7! outside (inside) of the unit 
circle (north pole7! 1) 
circle7! circle 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Properties of stereographic projection 
northern (southern) hemisphere7! outside (inside) of the unit 
circle (north pole7! 1) 
circle7! circle 
special case: geodetic (straight line)=great circle7! circle 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Metric induced by stereographic projection 
The spherical geometry can be modeled on a plane 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Metric induced by stereographic projection 
The spherical geometry can be modeled on a plane 
Do not forget: this model does not preserve distance, instead, 
the metric: 
ds2 = (dx2 + dy2) 
 
4 
(1 + x2 + y2)2 
 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Metric induced by stereographic projection 
The spherical geometry can be modeled on a plane 
Do not forget: this model does not preserve distance, instead, 
the metric: 
ds2 = (dx2 + dy2) 
 
4 
(1 + x2 + y2)2 
 
metric tensor: 
g = (x; y) 
 
1 0 
0 1 
 
) isotropic scaling ) conformal (angle-preserving) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Metric induced by stereographic projection 
The spherical geometry can be modeled on a plane 
Do not forget: this model does not preserve distance, instead, 
the metric: 
ds2 = (dx2 + dy2) 
 
4 
(1 + x2 + y2)2 
 
metric tensor: 
g = (x; y) 
 
1 0 
0 1 
 
) isotropic scaling ) conformal (angle-preserving) 
distance on the sphere, if (0; 0) ! 1 on the plane? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Metric induced by stereographic projection 
The spherical geometry can be modeled on a plane 
Do not forget: this model does not preserve distance, instead, 
the metric: 
ds2 = (dx2 + dy2) 
 
4 
(1 + x2 + y2)2 
 
metric tensor: 
g = (x; y) 
 
1 0 
0 1 
 
) isotropic scaling ) conformal (angle-preserving) 
distance on the sphere, if (0; 0) ! 1 on the plane? 
Z 1 
0 
ds = 
Z 1 
0 
2 
1 + x2 dx =  
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
The Earth 
The image of the Earth under stereographic projection from the 
south pole: 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic geometry 
Is K  0 (negative curvature) possible at a point? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic geometry 
Is K  0 (negative curvature) possible at a point? 
Saddle point: min  0; max  0 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic geometry 
Is K  0 (negative curvature) possible at a point? 
Saddle point: min  0; max  0 
Hyperbolic plane: saddle points everywhere! (e.g. K  1) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic geometry 
Is K  0 (negative curvature) possible at a point? 
Saddle point: min  0; max  0 
Hyperbolic plane: saddle points everywhere! (e.g. K  1) 
Can you imagine it? Is it possible to embed it into a 3 dim 
euclidean space? 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic paper 
Cut equilateral triangles 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic paper 
Cut equilateral triangles 
At every vertex, glue 7 (instead of 6) triangles to each other! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic paper 
Cut equilateral triangles 
At every vertex, glue 7 (instead of 6) triangles to each other! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic paper 
Cut equilateral triangles 
At every vertex, glue 7 (instead of 6) triangles to each other! 
What happens, if 5 triangles are glued at a vertex? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic paper 
Cut equilateral triangles 
At every vertex, glue 7 (instead of 6) triangles to each other! 
What happens, if 5 triangles are glued at a vertex? 
Icosahedron! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
elliptic  euclidean case: 
KA =    
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
elliptic  euclidean case: 
KA =    
good news: it is also valid for K  0! 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
elliptic  euclidean case: 
KA =    
good news: it is also valid for K  0! 
A  0 ) KA  0 )    
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
elliptic  euclidean case: 
KA =    
good news: it is also valid for K  0! 
A  0 ) KA  0 )    
special case: K = 1 
A =      
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic triangles 
Sum of angles  in a triangle? 
elliptic  euclidean case: 
KA =    
good news: it is also valid for K  0! 
A  0 ) KA  0 )    
special case: K = 1 
A =      
Despite the hyperbolic plane is in
nite, no triangle can have 
larger area than !! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
Poincare model: angle preserving, but not distance preserving 
(like the stereographic projection) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
Poincare model: angle preserving, but not distance preserving 
(like the stereographic projection) 
in
nite hyperbolic plane ! unit disc 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
Poincare model: angle preserving, but not distance preserving 
(like the stereographic projection) 
in
nite hyperbolic plane ! unit disc 
in
nity7! edge of the unit disk 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
Poincare model: angle preserving, but not distance preserving 
(like the stereographic projection) 
in
nite hyperbolic plane ! unit disc 
in
nity7! edge of the unit disk 
geodesics (straight lines)7! circles that meet the edge of 
the unit disc at 90 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
K6= 0 ) There is no distance-preserving AND 
angle-preserving map to the euclidean plane 
Poincare model: angle preserving, but not distance preserving 
(like the stereographic projection) 
in
nite hyperbolic plane ! unit disc 
in
nity7! edge of the unit disk 
geodesics (straight lines)7! circles that meet the edge of 
the unit disc at 90 
parallel lines7! not intersecting such circles 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Poincare model of the hyperbolic plane 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Ideal triangles 
Triangles with largest area? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Ideal triangles 
Triangles with largest area? 
A =    
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Ideal triangles 
Triangles with largest area? 
A =    
largest: if  = 0 ( ,  =
= 
 = 0): How does it look like? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Ideal triangles 
Triangles with largest area? 
A =    
largest: if  = 0 ( ,  =
= 
 = 0): How does it look like? 
Figure 1 : Ideal triangles having all verices at in
nity. Note that 
these triangles are congruent (having the same area A = )! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic metric 
Metric? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic metric 
Metric? 
ds2 = (dx2 + dy2) 
 
4 
(1(x2 + y2))2 
 
(compare with stereographic projection!) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic metric 
Metric? 
ds2 = (dx2 + dy2) 
 
4 
(1(x2 + y2))2 
 
(compare with stereographic projection!) 
again: isotropic scaling ) angle-preserving 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic metric 
Metric? 
ds2 = (dx2 + dy2) 
 
4 
(1(x2 + y2))2 
 
(compare with stereographic projection!) 
again: isotropic scaling ) angle-preserving 
Near the edge (x2 + y2  1): ds2  dx2 + dy2 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Hyperbolic metric 
Metric? 
ds2 = (dx2 + dy2) 
 
4 
(1(x2 + y2))2 
 
(compare with stereographic projection!) 
again: isotropic scaling ) angle-preserving 
Near the edge (x2 + y2  1): ds2  dx2 + dy2 
center ! edge in the Poincare model: 1 distance in the 
hyperbolic plane! 
Z 1 
0 
ds = 
Z 1 
0 
2 
1  x2 dx = 1 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Figure 2 : Hyperbolic man takes a walk to in
nity 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
Euclidean plane? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
Euclidean plane? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
Euclidean plane? 
Schla
i-symbol: fn;mg 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
Euclidean plane? 
Schla
i-symbol: fn;mg 
Any relationship between these three Schla
i-symbols? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Schlafli-symbol 
Regular tiling: tiling by i) congruent regular poligons (n-gons), 
ii) at every vertex, m poligons meet 
Euclidean plane? 
Schla
i-symbol: fn;mg 
Any relationship between these three Schla
i-symbols? 
1 
n 
+ 
1 
m 
= 
1 
2 
There is no other such n;m 2 N , no other regular 
euclidean tiling 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Regular tilings on the sphere? (assume n;m  3, i.e. 
nondegenrate cases) 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Regular tilings on the sphere? (assume n;m  3, i.e. 
nondegenrate cases) 
n = 3; m = 3 ? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Regular tilings on the sphere? (assume n;m  3, i.e. 
nondegenrate cases) 
n = 3; m = 3 ? 
A blown tetrahedron! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Regular tilings on the sphere? (assume n;m  3, i.e. 
nondegenrate cases) 
n = 3; m = 3 ? 
A blown tetrahedron! 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
f4; 3g ? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
f4; 3g ? 
A cube: 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
f4; 3g ? 
A cube: 
f3; 4g; f3; 5g; f5; 3g ? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
f4; 3g ? 
A cube: 
f3; 4g; f3; 5g; f5; 3g ? 
Octahedron, icosahedron, dodecahedron. 
Daniel Czegel Tiling the hyperbolic plane - long version
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Any more? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Any more? 
No. Why? 
aniel Czegel Tiling the hyperbolic plane - long version 
D
Gaussian curvature 
Elliptic geometry 
Hyperbolic geometry 
Tiling 
M.C. Escher's work 
Tiling on the sphere 
Any more? 
No. Why? 
1 
n 
+ 
1 
m 
 
1 
2 
only for these

More Related Content

What's hot

34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesvenkateshp100
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphsmath267
 
Minimal surfaces
Minimal surfacesMinimal surfaces
Minimal surfacesAlex Verzea
 
Vectors - A Basic Study
Vectors - A Basic StudyVectors - A Basic Study
Vectors - A Basic StudyPankaj Bhootra
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs xharbormath240
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1foxtrot jp R
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2kerrynix
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Harish Chandra Rajpoot
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs xmath260
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integrationsagar maniya
 

What's hot (19)

34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
Theory of Vectors 3
Theory of Vectors 3Theory of Vectors 3
Theory of Vectors 3
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
Minimal surfaces
Minimal surfacesMinimal surfaces
Minimal surfaces
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Vectors - A Basic Study
Vectors - A Basic StudyVectors - A Basic Study
Vectors - A Basic Study
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs x
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Section 11 1-notes_2
Section 11 1-notes_2Section 11 1-notes_2
Section 11 1-notes_2
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
Mathematical Analysis of Regular Spherical Polygons (Application of HCR's The...
 
Bruja de Agnesi
Bruja de AgnesiBruja de Agnesi
Bruja de Agnesi
 
07 vectors
07   vectors07   vectors
07 vectors
 
D0343020027
D0343020027D0343020027
D0343020027
 
Archimedes
ArchimedesArchimedes
Archimedes
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs x
 
Calculus Application of Integration
Calculus Application of IntegrationCalculus Application of Integration
Calculus Application of Integration
 

Similar to Tiling the hyperbolic plane - long version

Unidad 3: Pensamiento analítico y geométrico
Unidad 3: Pensamiento analítico y geométricoUnidad 3: Pensamiento analítico y geométrico
Unidad 3: Pensamiento analítico y geométricoSimnGaitn
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volumeazn_punkyfish07
 
Euclidean geometry
Euclidean geometryEuclidean geometry
Euclidean geometryMark Ryder
 
Maths project
Maths projectMaths project
Maths projectArchan
 
Colloquium5816_2016_05_11
Colloquium5816_2016_05_11Colloquium5816_2016_05_11
Colloquium5816_2016_05_11Chelsey Erway
 
Paso4. geometría analítica (1)
Paso4. geometría analítica (1)Paso4. geometría analítica (1)
Paso4. geometría analítica (1)njhernandez19
 
seminar on tessellation
seminar on tessellation seminar on tessellation
seminar on tessellation Ayesha Khokher
 
Math ppt
Math pptMath ppt
Math pptkaruya
 
10.2 Ellipses
10.2 Ellipses10.2 Ellipses
10.2 Ellipsessmiller5
 
8.2 ellipses.ppt worked
8.2 ellipses.ppt worked8.2 ellipses.ppt worked
8.2 ellipses.ppt workedJonna Ramsey
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poopbenchoun
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systemsDennis Almeida
 
EUCLIDEAN GEOMETRY (GR11).pptx
EUCLIDEAN GEOMETRY (GR11).pptxEUCLIDEAN GEOMETRY (GR11).pptx
EUCLIDEAN GEOMETRY (GR11).pptxVukile Xhego
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

Similar to Tiling the hyperbolic plane - long version (20)

Unidad 3: Pensamiento analítico y geométrico
Unidad 3: Pensamiento analítico y geométricoUnidad 3: Pensamiento analítico y geométrico
Unidad 3: Pensamiento analítico y geométrico
 
conics.ppt
conics.pptconics.ppt
conics.ppt
 
Maths project
Maths  projectMaths  project
Maths project
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volume
 
Euclidean geometry
Euclidean geometryEuclidean geometry
Euclidean geometry
 
Maths project
Maths projectMaths project
Maths project
 
Colloquium5816_2016_05_11
Colloquium5816_2016_05_11Colloquium5816_2016_05_11
Colloquium5816_2016_05_11
 
Paso4. geometría analítica (1)
Paso4. geometría analítica (1)Paso4. geometría analítica (1)
Paso4. geometría analítica (1)
 
Ellipse.pptx
Ellipse.pptxEllipse.pptx
Ellipse.pptx
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volume
 
seminar on tessellation
seminar on tessellation seminar on tessellation
seminar on tessellation
 
1-ELLIPSE.pptx
1-ELLIPSE.pptx1-ELLIPSE.pptx
1-ELLIPSE.pptx
 
Math ppt
Math pptMath ppt
Math ppt
 
10.2 Ellipses
10.2 Ellipses10.2 Ellipses
10.2 Ellipses
 
8.2 ellipses.ppt worked
8.2 ellipses.ppt worked8.2 ellipses.ppt worked
8.2 ellipses.ppt worked
 
Circle
CircleCircle
Circle
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systems
 
EUCLIDEAN GEOMETRY (GR11).pptx
EUCLIDEAN GEOMETRY (GR11).pptxEUCLIDEAN GEOMETRY (GR11).pptx
EUCLIDEAN GEOMETRY (GR11).pptx
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

Recently uploaded

Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycleCherry
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsDeepika Singh
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptxCherry
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 

Recently uploaded (20)

Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 

Tiling the hyperbolic plane - long version

  • 1. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling the hyperbolic plane - long version Daniel Czegel Eotvos Lorand University, Budapest ICPS, Heidelberg August 14, 2014 Daniel Czegel Tiling the hyperbolic plane - long version
  • 2. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Daniel Czegel Tiling the hyperbolic plane - long version
  • 3. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Definition of Gaussian curvature 1
  • 4. nd a normal vector N Daniel Czegel Tiling the hyperbolic plane - long version
  • 5. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Definition of Gaussian curvature 1
  • 6. nd a normal vector N 2 rotate the normal plane containing N Daniel Czegel Tiling the hyperbolic plane - long version
  • 7. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Definition of Gaussian curvature 1
  • 8. nd a normal vector N 2 rotate the normal plane containing N 3 intersection of the surface and the normal plane: a plane curve, curvature: = 1R Daniel Czegel Tiling the hyperbolic plane - long version
  • 9. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Definition of Gaussian curvature 1
  • 10. nd a normal vector N 2 rotate the normal plane containing N 3 intersection of the surface and the normal plane: a plane curve, curvature: = 1R 4 Gaussian curvature of the surface: K(r) = min(r) max (r) Daniel Czegel Tiling the hyperbolic plane - long version
  • 11. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Definition of Gaussian curvature 1
  • 12. nd a normal vector N 2 rotate the normal plane containing N 3 intersection of the surface and the normal plane: a plane curve, curvature: = 1R 4 Gaussian curvature of the surface: K(r) = min(r) max (r) 5 sign! Daniel Czegel Tiling the hyperbolic plane - long version
  • 13. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Theorema Egregium Does K(r) change if we wrap, bend, twist (i.e. change the embedding in the 3 dim space)? aniel Czegel Tiling the hyperbolic plane - long version D
  • 14. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Theorema Egregium Does K(r) change if we wrap, bend, twist (i.e. change the embedding in the 3 dim space)? Theorema Egregium (Great Theorem): No! aniel Czegel Tiling the hyperbolic plane - long version D
  • 15. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Theorema Egregium Does K(r) change if we wrap, bend, twist (i.e. change the embedding in the 3 dim space)? Theorema Egregium (Great Theorem): No! Gaussian curvature is an intrinsic measure of the surface! aniel Czegel Tiling the hyperbolic plane - long version D
  • 16. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Theorema Egregium Does K(r) change if we wrap, bend, twist (i.e. change the embedding in the 3 dim space)? Theorema Egregium (Great Theorem): No! Gaussian curvature is an intrinsic measure of the surface! In a 2 dimensional Universe, K fully determines how spacetime curves: GR, Einstein eqs.: R R 2 g + g = 8G c4 T aniel Czegel Tiling the hyperbolic plane - long version D
  • 17. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Theorema Egregium Does K(r) change if we wrap, bend, twist (i.e. change the embedding in the 3 dim space)? Theorema Egregium (Great Theorem): No! Gaussian curvature is an intrinsic measure of the surface! In a 2 dimensional Universe, K fully determines how spacetime curves: GR, Einstein eqs.: R R 2 g + g = 8G c4 T In 2 dim: R = f (K; g); R = 2K Daniel Czegel Tiling the hyperbolic plane - long version
  • 18. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Cylinder, Oloid ) a surface can be unfolded without distortion , K 0 aniel Czegel Tiling the hyperbolic plane - long version D
  • 19. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Cylinder, Oloid ) a surface can be unfolded without distortion , K 0 cylinder: max = 1 R ; min = 1 1 = 0 ) K 0 aniel Czegel Tiling the hyperbolic plane - long version D
  • 20. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Cylinder, Oloid ) a surface can be unfolded without distortion , K 0 cylinder: max = 1 R ; min = 1 1 = 0 ) K 0 nontrivial example: oloid: convex hull of two perpendicular circles aniel Czegel Tiling the hyperbolic plane - long version D
  • 21. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Cylinder, Oloid ) a surface can be unfolded without distortion , K 0 cylinder: max = 1 R ; min = 1 1 = 0 ) K 0 nontrivial example: oloid: convex hull of two perpendicular circles every point of its surface touches the oor during rolling! Daniel Czegel Tiling the hyperbolic plane - long version
  • 22. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles sphere: K =? aniel Czegel Tiling the hyperbolic plane - long version D
  • 23. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles sphere: K =? K 1 R2 0, a model of elliptic geometry; straight lines=geodesics: great circles aniel Czegel Tiling the hyperbolic plane - long version D
  • 24. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles sphere: K =? K 1 R2 0, a model of elliptic geometry; straight lines=geodesics: great circles What is the sum of angles in a triangle? Daniel Czegel Tiling the hyperbolic plane - long version
  • 25. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles sphere: K =? K 1 R2 0, a model of elliptic geometry; straight lines=geodesics: great circles What is the sum of angles in a triangle? Daniel Czegel Tiling the hyperbolic plane - long version
  • 26. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles i) = 3 2 ; A = 2 R2 ii) = 3; A = 2R2 aniel Czegel Tiling the hyperbolic plane - long version D
  • 27. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles i) = 3 2 ; A = 2 R2 ii) = 3; A = 2R2 Generally? A = ( )R2 ) KA = aniel Czegel Tiling the hyperbolic plane - long version D
  • 28. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles i) = 3 2 ; A = 2 R2 ii) = 3; A = 2R2 Generally? A = ( )R2 ) KA = The sum of angles is size-independent: only if K = 0 (euclidean geometry) aniel Czegel Tiling the hyperbolic plane - long version D
  • 29. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Spherical triangles i) = 3 2 ; A = 2 R2 ii) = 3; A = 2R2 Generally? A = ( )R2 ) KA = The sum of angles is size-independent: only if K = 0 (euclidean geometry) elliptic geometry: KA 0 ) Daniel Czegel Tiling the hyperbolic plane - long version
  • 30. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Stereographic projection sphere: K6= 0 ) cannot be unfolded: there is no sphere ! plane map that preserves both distance and angle! aniel Czegel Tiling the hyperbolic plane - long version D
  • 31. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Stereographic projection sphere: K6= 0 ) cannot be unfolded: there is no sphere ! plane map that preserves both distance and angle! We have to choose; e.g.: preserves angle (conformal), but does not preserve distance: stereographic projection aniel Czegel Tiling the hyperbolic plane - long version D
  • 32. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Stereographic projection sphere: K6= 0 ) cannot be unfolded: there is no sphere ! plane map that preserves both distance and angle! We have to choose; e.g.: preserves angle (conformal), but does not preserve distance: stereographic projection unit sphere, equator plane, project from the north pole Daniel Czegel Tiling the hyperbolic plane - long version
  • 33. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Properties of stereographic projection aniel Czegel Tiling the hyperbolic plane - long version D
  • 34. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Properties of stereographic projection northern (southern) hemisphere7! outside (inside) of the unit circle (north pole7! 1) aniel Czegel Tiling the hyperbolic plane - long version D
  • 35. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Properties of stereographic projection northern (southern) hemisphere7! outside (inside) of the unit circle (north pole7! 1) circle7! circle aniel Czegel Tiling the hyperbolic plane - long version D
  • 36. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Properties of stereographic projection northern (southern) hemisphere7! outside (inside) of the unit circle (north pole7! 1) circle7! circle special case: geodetic (straight line)=great circle7! circle Daniel Czegel Tiling the hyperbolic plane - long version
  • 37. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Metric induced by stereographic projection The spherical geometry can be modeled on a plane aniel Czegel Tiling the hyperbolic plane - long version D
  • 38. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Metric induced by stereographic projection The spherical geometry can be modeled on a plane Do not forget: this model does not preserve distance, instead, the metric: ds2 = (dx2 + dy2) 4 (1 + x2 + y2)2 aniel Czegel Tiling the hyperbolic plane - long version D
  • 39. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Metric induced by stereographic projection The spherical geometry can be modeled on a plane Do not forget: this model does not preserve distance, instead, the metric: ds2 = (dx2 + dy2) 4 (1 + x2 + y2)2 metric tensor: g = (x; y) 1 0 0 1 ) isotropic scaling ) conformal (angle-preserving) aniel Czegel Tiling the hyperbolic plane - long version D
  • 40. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Metric induced by stereographic projection The spherical geometry can be modeled on a plane Do not forget: this model does not preserve distance, instead, the metric: ds2 = (dx2 + dy2) 4 (1 + x2 + y2)2 metric tensor: g = (x; y) 1 0 0 1 ) isotropic scaling ) conformal (angle-preserving) distance on the sphere, if (0; 0) ! 1 on the plane? aniel Czegel Tiling the hyperbolic plane - long version D
  • 41. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Metric induced by stereographic projection The spherical geometry can be modeled on a plane Do not forget: this model does not preserve distance, instead, the metric: ds2 = (dx2 + dy2) 4 (1 + x2 + y2)2 metric tensor: g = (x; y) 1 0 0 1 ) isotropic scaling ) conformal (angle-preserving) distance on the sphere, if (0; 0) ! 1 on the plane? Z 1 0 ds = Z 1 0 2 1 + x2 dx = Daniel Czegel Tiling the hyperbolic plane - long version
  • 42. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work The Earth The image of the Earth under stereographic projection from the south pole: Daniel Czegel Tiling the hyperbolic plane - long version
  • 43. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic geometry Is K 0 (negative curvature) possible at a point? aniel Czegel Tiling the hyperbolic plane - long version D
  • 44. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic geometry Is K 0 (negative curvature) possible at a point? Saddle point: min 0; max 0 aniel Czegel Tiling the hyperbolic plane - long version D
  • 45. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic geometry Is K 0 (negative curvature) possible at a point? Saddle point: min 0; max 0 Hyperbolic plane: saddle points everywhere! (e.g. K 1) aniel Czegel Tiling the hyperbolic plane - long version D
  • 46. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic geometry Is K 0 (negative curvature) possible at a point? Saddle point: min 0; max 0 Hyperbolic plane: saddle points everywhere! (e.g. K 1) Can you imagine it? Is it possible to embed it into a 3 dim euclidean space? Daniel Czegel Tiling the hyperbolic plane - long version
  • 47. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic paper Cut equilateral triangles aniel Czegel Tiling the hyperbolic plane - long version D
  • 48. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic paper Cut equilateral triangles At every vertex, glue 7 (instead of 6) triangles to each other! aniel Czegel Tiling the hyperbolic plane - long version D
  • 49. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic paper Cut equilateral triangles At every vertex, glue 7 (instead of 6) triangles to each other! aniel Czegel Tiling the hyperbolic plane - long version D
  • 50. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic paper Cut equilateral triangles At every vertex, glue 7 (instead of 6) triangles to each other! What happens, if 5 triangles are glued at a vertex? aniel Czegel Tiling the hyperbolic plane - long version D
  • 51. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic paper Cut equilateral triangles At every vertex, glue 7 (instead of 6) triangles to each other! What happens, if 5 triangles are glued at a vertex? Icosahedron! Daniel Czegel Tiling the hyperbolic plane - long version
  • 52. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? aniel Czegel Tiling the hyperbolic plane - long version D
  • 53. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? elliptic euclidean case: KA = aniel Czegel Tiling the hyperbolic plane - long version D
  • 54. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? elliptic euclidean case: KA = good news: it is also valid for K 0! aniel Czegel Tiling the hyperbolic plane - long version D
  • 55. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? elliptic euclidean case: KA = good news: it is also valid for K 0! A 0 ) KA 0 ) aniel Czegel Tiling the hyperbolic plane - long version D
  • 56. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? elliptic euclidean case: KA = good news: it is also valid for K 0! A 0 ) KA 0 ) special case: K = 1 A = aniel Czegel Tiling the hyperbolic plane - long version D
  • 57. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic triangles Sum of angles in a triangle? elliptic euclidean case: KA = good news: it is also valid for K 0! A 0 ) KA 0 ) special case: K = 1 A = Despite the hyperbolic plane is in
  • 58. nite, no triangle can have larger area than !! Daniel Czegel Tiling the hyperbolic plane - long version
  • 59. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane aniel Czegel Tiling the hyperbolic plane - long version D
  • 60. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane Poincare model: angle preserving, but not distance preserving (like the stereographic projection) aniel Czegel Tiling the hyperbolic plane - long version D
  • 61. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane Poincare model: angle preserving, but not distance preserving (like the stereographic projection) in
  • 62. nite hyperbolic plane ! unit disc aniel Czegel Tiling the hyperbolic plane - long version D
  • 63. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane Poincare model: angle preserving, but not distance preserving (like the stereographic projection) in
  • 64. nite hyperbolic plane ! unit disc in
  • 65. nity7! edge of the unit disk aniel Czegel Tiling the hyperbolic plane - long version D
  • 66. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane Poincare model: angle preserving, but not distance preserving (like the stereographic projection) in
  • 67. nite hyperbolic plane ! unit disc in
  • 68. nity7! edge of the unit disk geodesics (straight lines)7! circles that meet the edge of the unit disc at 90 aniel Czegel Tiling the hyperbolic plane - long version D
  • 69. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane K6= 0 ) There is no distance-preserving AND angle-preserving map to the euclidean plane Poincare model: angle preserving, but not distance preserving (like the stereographic projection) in
  • 70. nite hyperbolic plane ! unit disc in
  • 71. nity7! edge of the unit disk geodesics (straight lines)7! circles that meet the edge of the unit disc at 90 parallel lines7! not intersecting such circles Daniel Czegel Tiling the hyperbolic plane - long version
  • 72. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Poincare model of the hyperbolic plane Daniel Czegel Tiling the hyperbolic plane - long version
  • 73. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Ideal triangles Triangles with largest area? aniel Czegel Tiling the hyperbolic plane - long version D
  • 74. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Ideal triangles Triangles with largest area? A = aniel Czegel Tiling the hyperbolic plane - long version D
  • 75. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Ideal triangles Triangles with largest area? A = largest: if = 0 ( , =
  • 76. = = 0): How does it look like? aniel Czegel Tiling the hyperbolic plane - long version D
  • 77. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Ideal triangles Triangles with largest area? A = largest: if = 0 ( , =
  • 78. = = 0): How does it look like? Figure 1 : Ideal triangles having all verices at in
  • 79. nity. Note that these triangles are congruent (having the same area A = )! Daniel Czegel Tiling the hyperbolic plane - long version
  • 80. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic metric Metric? aniel Czegel Tiling the hyperbolic plane - long version D
  • 81. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic metric Metric? ds2 = (dx2 + dy2) 4 (1(x2 + y2))2 (compare with stereographic projection!) aniel Czegel Tiling the hyperbolic plane - long version D
  • 82. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic metric Metric? ds2 = (dx2 + dy2) 4 (1(x2 + y2))2 (compare with stereographic projection!) again: isotropic scaling ) angle-preserving aniel Czegel Tiling the hyperbolic plane - long version D
  • 83. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic metric Metric? ds2 = (dx2 + dy2) 4 (1(x2 + y2))2 (compare with stereographic projection!) again: isotropic scaling ) angle-preserving Near the edge (x2 + y2 1): ds2 dx2 + dy2 aniel Czegel Tiling the hyperbolic plane - long version D
  • 84. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic metric Metric? ds2 = (dx2 + dy2) 4 (1(x2 + y2))2 (compare with stereographic projection!) again: isotropic scaling ) angle-preserving Near the edge (x2 + y2 1): ds2 dx2 + dy2 center ! edge in the Poincare model: 1 distance in the hyperbolic plane! Z 1 0 ds = Z 1 0 2 1 x2 dx = 1 Daniel Czegel Tiling the hyperbolic plane - long version
  • 85. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Figure 2 : Hyperbolic man takes a walk to in
  • 86. nity Daniel Czegel Tiling the hyperbolic plane - long version
  • 87. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet aniel Czegel Tiling the hyperbolic plane - long version D
  • 88. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet Euclidean plane? aniel Czegel Tiling the hyperbolic plane - long version D
  • 89. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet Euclidean plane? aniel Czegel Tiling the hyperbolic plane - long version D
  • 90. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet Euclidean plane? Schla i-symbol: fn;mg aniel Czegel Tiling the hyperbolic plane - long version D
  • 91. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet Euclidean plane? Schla i-symbol: fn;mg Any relationship between these three Schla i-symbols? aniel Czegel Tiling the hyperbolic plane - long version D
  • 92. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Schlafli-symbol Regular tiling: tiling by i) congruent regular poligons (n-gons), ii) at every vertex, m poligons meet Euclidean plane? Schla i-symbol: fn;mg Any relationship between these three Schla i-symbols? 1 n + 1 m = 1 2 There is no other such n;m 2 N , no other regular euclidean tiling Daniel Czegel Tiling the hyperbolic plane - long version
  • 93. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Regular tilings on the sphere? (assume n;m 3, i.e. nondegenrate cases) aniel Czegel Tiling the hyperbolic plane - long version D
  • 94. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Regular tilings on the sphere? (assume n;m 3, i.e. nondegenrate cases) n = 3; m = 3 ? aniel Czegel Tiling the hyperbolic plane - long version D
  • 95. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Regular tilings on the sphere? (assume n;m 3, i.e. nondegenrate cases) n = 3; m = 3 ? A blown tetrahedron! Daniel Czegel Tiling the hyperbolic plane - long version
  • 96. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Regular tilings on the sphere? (assume n;m 3, i.e. nondegenrate cases) n = 3; m = 3 ? A blown tetrahedron! Daniel Czegel Tiling the hyperbolic plane - long version
  • 97. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere f4; 3g ? aniel Czegel Tiling the hyperbolic plane - long version D
  • 98. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere f4; 3g ? A cube: aniel Czegel Tiling the hyperbolic plane - long version D
  • 99. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere f4; 3g ? A cube: f3; 4g; f3; 5g; f5; 3g ? aniel Czegel Tiling the hyperbolic plane - long version D
  • 100. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere f4; 3g ? A cube: f3; 4g; f3; 5g; f5; 3g ? Octahedron, icosahedron, dodecahedron. Daniel Czegel Tiling the hyperbolic plane - long version
  • 101. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Any more? aniel Czegel Tiling the hyperbolic plane - long version D
  • 102. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Any more? No. Why? aniel Czegel Tiling the hyperbolic plane - long version D
  • 103. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Tiling on the sphere Any more? No. Why? 1 n + 1 m 1 2 only for these
  • 104. ve! Figure 3 : The
  • 105. ve Platonic solids Daniel Czegel Tiling the hyperbolic plane - long version
  • 106. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling Hyperbolic tiling? aniel Czegel Tiling the hyperbolic plane - long version D
  • 107. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling m n Hyperbolic tiling? If 1+ 1 2 1aniel Czegel Tiling the hyperbolic plane - long version D
  • 108. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling m n Hyperbolic tiling? If 1+ 1 2 1How many such tilings? aniel Czegel Tiling the hyperbolic plane - long version D
  • 109. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling m n Hyperbolic tiling? If 1+ 1 2 1How many such tilings? In
  • 110. nite! aniel Czegel Tiling the hyperbolic plane - long version D
  • 111. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling m n Hyperbolic tiling? If 1+ 1 2 1How many such tilings? In
  • 112. nite! Figure 4 : f3; 7g Figure 5 : f7; 3g Daniel Czegel Tiling the hyperbolic plane - long version
  • 113. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling n or m can even be in
  • 114. nite! aniel Czegel Tiling the hyperbolic plane - long version D
  • 115. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling n or m can even be in
  • 116. nite! Figure 6 : f3;1g, for every triangle: =
  • 117. = = 0 ) A = Figure 7 : f1; 3g, aperiogon Daniel Czegel Tiling the hyperbolic plane - long version
  • 118. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Hyperbolic tiling Or both! Figure 8 : f1;1g Daniel Czegel Tiling the hyperbolic plane - long version
  • 119. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Classification of regular tilings Figure 9 : Classi
  • 120. cation of regular tilings Daniel Czegel Tiling the hyperbolic plane - long version
  • 121. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Figure 10 : M.C. Escher Figure 11 : H.S.M. Coxeter Daniel Czegel Tiling the hyperbolic plane - long version
  • 122. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Figure 12 : Escher's Circle Limit I. (1958) Daniel Czegel Tiling the hyperbolic plane - long version
  • 123. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Figure 13 : Circle Limit I.: nonregular tiling of the hyperbolic plane (m = 4 and 6) Daniel Czegel Tiling the hyperbolic plane - long version
  • 124. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Any regular tiling? aniel Czegel Tiling the hyperbolic plane - long version D
  • 125. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Any regular tiling? Figure 14 : Escher's Circle Limit III. (1959). aniel Czegel Tiling the hyperbolic plane - long version D
  • 126. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Any regular tiling? Figure 14 : Escher's Circle Limit III. (1959). Schla i symbol? Daniel Czegel Tiling the hyperbolic plane - long version
  • 127. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work Figure 15 : Schla i symbol of Circle Limit III.: f8; 3g! Daniel Czegel Tiling the hyperbolic plane - long version
  • 128. Gaussian curvature Elliptic geometry Hyperbolic geometry Tiling M.C. Escher's work References Weeks, J. R. (2001). The shape of space. CRC press. Dirnbock, H., Stachel, H. (1997). The development of the oloid. Journal for Geometry and Graphics, 1(2), 105-118. http://aleph0.clarku.edu/ ~djoyce/poincare/poincare.html http://en.wikipedia.org/wiki/ Uniform_tilings_in_hyperbolic_plane http://euler.slu.edu/escher/index.php/ Math_and_the_Art_of_M._C._Escher http://www.reed.edu/reed_magazine/march2010/ features/capturing_infinity/3.html Thank You! Daniel Czegel Tiling the hyperbolic plane - long version