SlideShare a Scribd company logo
1 of 60
Download to read offline
Tapejara wellnhoferi
for the Peirópolis Museum in Uberaba,MG,Brazil
Ultra-light polystyrene reconstruction of a pterosaur skeleton
Helder da Rocha
August 2013
Contents
Dimensions, components, materials 3
Specimens used as sources 6
Design, scaling and construction of individual bones 10
Construction details and techniques 48
Assembly and installation 51
About the museum & the artist 55
Acknowledgements 57
Publications used as sources 58
2
Dimensions
This replica is 25% larger than the specimen used as a size reference,
IMCF 1061 (Iwaki Museum, Japan), which is a juvenile specimen.
Dimensions of assembled pterosaur in flight position
Width (assembled wingspan): 180 cm
Length (beak to toetip): 100 cm
Height (skull height): 25 cm
Other dimensions
Wingspan (wing bones and carpals stacked in line): 200 cm
Length of body (beak to tail): 70 cm
Length of spine (atlas to tail): 50 cm
3
Components and weight
All the parts were made from Extruded Polystyrene (XPS): 2mm sheets
for most of the bones, and 20mm blocks for small bones and bone ends
Parts
Total number of individual parts created and used: 184
Fused with epoxy: 6 (quadratojugal, 

lacrimal, postorbital)
Total number of separate pieces used 

for assembly of final skeleton (attached 

with silicone rubber): 178
Total weight
Individual bones: 300 g
After assembly (with silicone rubber): 350 g (estimated)
4
Materials used
1. XPS – Extruded Polystyrene. Mostly 2 mm and 30 mm sheets with densities of 25
to 45 g/m3
for constructing the bones (Depron, Pluma)
2. Foam glue (Polyvinyl acetate diluted in alcohol) (Acrilex, Corfix, Scotch)
3. Acrylic polymer emulsion (Modeling paste) (Acrilex or Corfix)
4. Used coffee powder for staining
5. Liquid epoxy resin (Bisfenol A) for protective coating (Sicomin, ACE or Redelease)
6. Quick dry transparent epoxy glue (Bisfenol F) for pasting (Loctite, Scotch or
Araldite)
7. 5mm rubber tube for the medulla.
8. Nylon fishing line (35kg resistance) (0.8mm) 

for hanging.
9. General purpose transparent acetic silicone 

rubber (Polystic)
10. Metal pins (for connecting bones).
XPS
XPS densities
5
Sources: specimens
1. SMNK PAL 1137 Tapejara wellnhoferi (Germany)
Used as a source for the metatarsals, tibiotarsi, 

femora, radii, ulnae, humeri, carpals, finger nails, 

sternum, pelvic girdle, neurocranium, and as a 

first prototype of the cervical and dorsal 

vertebrae (later improved with data from IMCF 1061).
!
2. AMNH 24440 Tapejara wellnhoferi (United States)
Used for the first skull prototype, the lacrimal 

bone, post-orbital, rostrum and crest, and 

for scaling the cervical vertebrae.
tion of a small portion of the lateral semicircular canal
suggests that this structure would have completely sur-
rounded the flocculus.
Quadrate
The right quadrate is complete but lies unfused to the other
elements of the skull. The bone is formed by two branches,
orientated dorsoventrally and mediolaterally, and con-
nected by a thin diagonal laminae of bone to give the
element an L-shaped appearance in its posterior aspect
(Fig. 2; plate 3). The dorsoventrally directed branch is 2.4
times the length of the horizontal branch; the dorsal ter-
mination of the former being smooth and well rounded in
posterior view and preserving an oval shaped cross section.
The ventrolateral margin of the bone forms the articular
facet for the mandible where a pronounced sulcus runs in
an anteromedial direction. A left quadrate of a comparable
size to that described above is also present in the concretion
but the vertical branch is broken only just dorsal to its base.
The mandible is edentulous and preserves a short sym-
physis only 44 mm in length, formed by the completely
co-ossified contralateral rami. The dorsal face of the
symphysis is transversely concave and is directed antero-
ventrally at an angle of 18°, starting at a point 45 mm
posterior of the rostral tip (Fig. 2; plate 4B). The ventral
margin is almost straight but forms a sagittal crest reaching
its maximum depth at the symphysis. In its dorsal aspect
the bone appears as an elongate triangle, three times as
long as it is wide (Fig. 2; plate 4) while the posterior
section containing the articular facet is missing.
Cervical vertebrae
Four procoelous vertebra, identified as elements of the
cervical series, are observed in various states of preserva-
tion (Fig. 4). Two of these are attributed to the middle
cervical column (Fig. 4f–o) while a third is identified as the
7th cervical. The remaining element represents the isolated
axis (Fig. 4a–e).
Fig. 4 Cervical elements of Tapejara wellnhoferi, SMNK PAL 1137,
where: A–E axis in lateral (A), anterior (B), posterior (C), dorsal
(D) and ventral view (E); F–J cervical vertebra in lateral (F), anterior
(G), posterior (H), dorsal (I) and ventral view (J); K–O, cervical
vertebra in lateral (K), anterior (L), posterior (M), dorsal (N) and
ventral view (O); P–T, 7th cervical vertebra in lateral (P), anterior
(Q), posterior (R), dorsal (S) and ventral view (T). f foramen, nc
neural canal, ns neural spine, pe postexapophysis, pre preexapoph-
ysis, pz postzygapophysis, prz prezygapophysis, vc vertebral condyle
6
Sources: specimens
3. IMCF 1061 Tapejara wellnhoferi
Used as the main source for the rostrum,
mandible, quadrate, wing phalanges 1 to 3,
humeri, pteroids, occipital bone, neurocranium,
cervical vertebrae (second prototype), dorsal
vertebrae (second prototype).
!
4. MN 6595-V Tapejara wellnhoferi (holotype)
Used for reviewing the skull proportions.
(These images are protected by
copyright and I do not have
authorization to show them in
this presentation)
7
Sources: specimens
5. SMNK PAL 3986 Tapejara wellnhoferi.
Used for scaling wing bones against 

the mandible.
!
6. MCT-1500-R Tapejara wellnhoferi.
Used for a first attempt at making the internal cranium and
occipital bone (I later replaced it with data from IMCF 1061).
!
7. SMNK PAL 3985 Tapejara wellnhoferi.
Used for scaling the size of the 

sternum agains the humerus.
!
8. MN 6588-V Tapejaridae.
Used as a source for the pre-pubis.
8
Sources: specimens
9. IMCF 1502 Tupuxuara leonardii
Used as a source for the fourth wing phalanx and as a guide for the
scapulocoracoid (later replaced with better data from IMCF 1061); this
specimen was also used as an initial guide to the palate.
!
10. NSM-PV 19892 Anhanguera piscator
Used a source for the caudal vertebrae.
!
11.YPM 2546 Pteranodon longiceps
Used as a source for the shape of the sternal ribs, and as a guide to the
general aspect of the sacrum, fingers and toes.
!
12. Undescribed thalassodromid.
Images which were used to make the pelvic girdle in Tupuxuara were used
as a source to for the general aspect of the sacrum.
9
Scaling
Replica is 25% larger
than reference size of
young individual
10
Bone construction
Fully documented at 

http://imaginosaurus.wordpress.com/2013/08/28/imaginary-pterosaur-7-finished/
11
SMNK PAL 1137 limestone slab
Contains bones of two (or more) pterosaurs (from Eck et al 2011)
Also used as one of the sources to scale the bones proportionally
12
SMNK PAL 1137 limestone slab
Approximate reconstruction (using bones of one pterosaur)
13
Skull (5 parts, 90g)
1. Frontal skull (1 part - rostrum/palate/occipital + 6 fused bones)
fused with epoxy: 2 quadratojugal + 2 lacrimal + 2 postorbital
2. Neurocranium (1 part)
3. Mandible (1 part)
4. Quadrates (2 parts)
14
Initial work
on the skull
2mm sheets of XPS
Prototype based on incomplete photos of Iwaki specimen
Projections based on drawings of the AMNH specimen (from
Wellnhofer & Kellner 1991, The skull ofTapejara wellnhoferi…)
15
Rostrum, crest, palate
Mostly based on AMNH 24440
16
Frontal skull: final
32.5 x 18.5 x 6.5 cm & 42 g
http://imaginosaurus.wordpress.com/2013/07/05/tapejara-skull-part-3-neurocranium-quadrate-lacrimal/
17
Mandible
http://imaginosaurus.wordpress.com/2013/07/04/tapejara-skull-part-2-mandible-and-crest/
18
Mandible: final
19 x 6 x 4.5 cm &10 g
19
Neurocranium version 1

replica of SMNK PAL 1137
http://imaginosaurus.wordpress.com/2013/07/06/unfinished-tapejara-skull/
20
Neurocranium version 2

beyond SMNK PAL 1137
http://imaginosaurus.wordpress.com/2013/08/24/tapejaras-neurocranium-revisited/
Improved with ICMF 1061 sources
21
Neurocranium: final
15.5 x 7 x 6 cm & 35 g
22
Quadrates
7 x 2.5 cm & < 3 g (both)
23
Skull assembly
24
Spine (31 parts, 85g)
1. Atlas/axis cervical (1 part) 2.3 x 2.5 x 2.9 cm, 3 g
2. Cervicals 3 to 7 (5 parts) 4.7 x 2.9 x 2.7 cm (avg), 5 g (each), 25 g (all)
3. Cervicals 8 and 9 (2 parts) 2.3 x 3.6 x 2.9 cm (avg), 3 g (each), 6 g (both)
4. Dorsal vertebrae (12 parts) 1.5 x 4.2 x 3.5 cm (avg), 3 g (each), 35 g (all)
5. Sacrum (1 part) 9 x 4.6 x 3.5 cm, 12 g
6. Caudal vertebrae (10 parts) 9 cm (full tail), < 3 g (all)
25
Cervical vertebrae
Sources: 4 specimens (SMNK, IMCF
Tapejara and Tupuxuara, AMNH)
26
Cervical vertebrae
http://imaginosaurus.wordpress.com/2013/07/15/tapejara-cervical-vertebrae/
27
Dorsal vertebrae
28
Dorsal vertebrae
http://imaginosaurus.wordpress.com/2013/07/18/tapejara-the-notarium-thoracic-vertebrae/
29
Sacrum http://imaginosaurus.wordpress.com/2013/08/19/tapejara-pelvic-girdle/
Based on Thalassodromid sources (no Tapejara source available)
30
Tail
From Anhanguera piscator (Kellner & Tomida 2000)
http://imaginosaurus.wordpress.com/2013/08/22/tapejara-caudal-vertebrae/
31
Wings and fingers (48 parts, 60g)
Humerus (2 parts), 11 cm, 10 g (both)
Radius (2 parts), 15 cm, 7 g (both)
Ulna (2 parts), 15 cm, 6 g (both)
Wing metacarpal (2 parts), 14 cm, 8 g (both)
Carpals and syncarpals (8 parts)
Prox. syncarpal (2), 2.3 x 1.8 x 1 cm, < 2 g (both)
Distal syncarpal (2), 2.3 x 1.8 x 1 cm, < 2 g (both)
Medial carpal (2), 1.3 x 1 x 0.8 cm, < 2 g (both)
Pteroid (2), 7 cm, < 2 g (both)
Wing (8 parts)
Phalanx 1 (2) 21 cm 6 g (both)
Phalanx 2 (2) 17 cm 4 g (both)
Phalanx 3 (2) 14 cm 3 g (both)
Phalanx 4 (2) 9 cm 2 g (both)
Fingers (24 parts)
Metacarpals (6), 13.5 cm, < 3 g (all)
Phalanges (12), 2.5, 2/1.8, 2.1/0.8/1.6 cm, 5 g (all)
Fingernails (6), 1.8 x 1.1 x 0.3 cm (avg), < 3 g (all)
32
Humeri
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-arm-bones-humeri-radii-ulnae/
33
Radii & ulnae
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-arm-bones-humeri-radii-ulnae/
34
Wing metacarpal
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-wings/
35
Wing phalanges
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-wings/
36
Carpals and pteroid
http://imaginosaurus.wordpress.com/2013/08/01/tapejara-carpals-and-pteroid/
37
Fingers
http://imaginosaurus.wordpress.com/2013/08/01/tapejaras-hands-and-feet/
38
Pelvic girdle (15 parts, 15 g)
Ilium & preacetabular process (2 parts), 8 cm, 2 g (both)
Ischium (2 parts), 2.8 x 2.5 cm, 3 g (both)
Pubis (2 parts), 3 x 2.5 cm, 2 g (both)
Postacetabular process (2 parts), 3.5 x 2.3 cm, 3 g (both)
Pre-pubis (2 parts), 4.5 x 2.2 cm, 2 g (both)
Gastralia (5 parts), 4.2 x 2.5 cm, 5 g (all) - 4 not used
39
Pelvic bones
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-pelvis-and-legs/
http://imaginosaurus.wordpress.com/2013/08/22/tapejara-abdominal-bones/
40
Pelvic girdle
http://imaginosaurus.wordpress.com/2013/08/19/tapejara-pelvic-girdle/
41
Pectoral girdle (45 parts, 35g)
Sternum (1 part), 8.3 x 6.2 x 2 cm, 5 g
Scapula (2 parts), 8 cm, 3 g (both)
Coracoid (2 parts), 6.7 cm, 3 g (both)
Ribs (22 parts), 3.5 to 6.5 cm (curved), 20 g (all)
Sternal ribs (10 parts), 1.7 to 4.5 cm, 5 g (all)
42
Shoulders and chest
http://imaginosaurus.wordpress.com/2013/08/14/tapejara-shoulders-and-chest/
43
Pectoral girdle
http://imaginosaurus.wordpress.com/2013/08/19/tapejara-pectoral-girdle/
44
Legs and feet (46 parts, 15g)
Femur (2 parts) 12.5 cm 5 g (both)
Tibiotarsus (2 parts) 1 x 7.5 cm 5 g (both)
Distal tarsals (4 parts) 1 x 0.5 x 0.5 cm 1 g (all)
Metatarsals (8 parts) 4.2, 4.4, 3.8, 3.5 (cm) < 2 g (all)
Fifth toe (2 parts) 1.2 cm < 1 g (both)
Toe phalanges (20 parts) 2, 1.3/1.8, 1.7/0.6/1.6, 2/0.5/0.5/1.3(cm) < 3 g (all)
Toenails (8 parts) 1.7 x 0,7 x 0.2 cm < 2 g (all)
45
Legs
http://imaginosaurus.wordpress.com/2013/07/27/tapejara-pelvis-and-legs/
46
Feet
http://imaginosaurus.wordpress.com/2013/08/01/tapejaras-hands-and-feet/
47
Working with XPS
Folding
!
!
!
Melting, adding texture and shaping with fire
Tupandactylus imperator
Tupuxuara leonardii
48
Texture and stains
Acrylic polymer emulsion adheres
to coarse XPS (treated with fire)
!
!
!
!
Used coffee powder stains
Tupuxuara leonardii
49
Protective coating
Liquid epoxy and matte varnish
Neurocranium after coating with liquid
epoxy and matte varnish
Parts drying after
coating with
liquid epoxy
"Shiny" parts after liquid epoxy is dry
50
Assembly
51
Assembly: lateral view
Flying position
Wings slightly curved
Flying downwards
Skeleton could be suspended with only four points of
support: head(1), back(2) and first wing phalanges(3,4).
I used 3 more points to improve distribution of weight,
lift the back(5) and control the shape of the wings(6,7).
1
2
3
4
5
6
7
52
Assembly: ventral view Flying position
Support is made of
aluminum antenna
cylinders 2m x 1m
More than 80% of the
weight is distributed
among points 1, 2 and 5
1
2
3 4
5
6
7
53
Installation
54
Peirópolis Museum
(Complexo Científico Cultural de Peirópolis)
Uberaba, MG, Brazil
Jose Gustavo Abreu Murta
55
Other pterosaurs by Helder da Rocha
Tupuxuara
Anhanguera
Guidraco
Tupandactylus
Caupedactylus
Anhanguera
56
Acknowledgements
This project was commissioned by the Peirópolis Cultural and Scientific Complex, which includes
the museum where this replica is currently in display. I would like to thank professor Vicente
Antunes, the director of the institution, for this opportunity, the staff at the museum, and the
researchers Thiago Marinho and Agustin Martinelli who first contacted me, as well as the
paleoartist Rodolfo Nogueira for introducing me to professor Vicente (who told him about his
wish to have a pterosaur in the museum.)
Although I made all the bones by myself, I had help from many people who kindly provided
me with photographic sources, articles and paleontological advice: Felipe Pinheiro, Hebert
Bruno Campos, and specially Brian Andres who gave me access to many high-resolution
photographs and shared his data and scientific advice that were critical to the accuracy of this
replica.
Installing the pterosaur was a challenging and dangerous task, but paleontologist Agustin
Martinelli bravely climbed and crawled under the thin aluminum ceiling of the museum six
metres above to install the structure which currently suspends the pterosaur in a flying
position.
Finally I must thank the family who hosted me in Uberaba: Alípio, Regis, Ludmila and Lucia
(and their many cats) for their fantastic hospitality, for dedicating time and effort to make my
stay as comfortable as possible, for driving me to Peiropolis and back (40km!) and even letting
me occupy their kitchen table during three days, turning it into a pterosaur assembly lab!
57
Sources: publications
1. Kellner, A.W. A. (1989). A new edentate pterosaur of the Lower Cretaceous from the
Araripe Basin, Northeast Brazil. Anais de Academia Brasileira de Ciencias, 61, 439–446.
2. Eck, K., Elgin, R.A. and Frey, E. (2011). On the osteology ofTapejara wellnhoferi
KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the
Santana Formation,Araripe Basin, NE-Brazil. Swiss Journal of Palaeontology
3.Wellnhofer P, Kellner A.W. A (1991) The skull ofTapejara wellnhoferi Kellner (Reptilia,
Pterosauria) from the Lower Cretaceous Santana Formation of the Araripe Basin,
northeastern Brazil. Mitt. Bayer. Staatsslg Paläont hist Geol 31: 89–106.
4. Elgin R. and Campos H. B. N. (2011). A new specimen of the azhdarchoid pterosaur
Tapejara wellnhoferi. Hist Biol DOI: 10.1080/08912963.2011.613467.
5. Kellner, A.W.A. (1996) . Description of the braincase of two Early Cretaceous pterosaurs
(Pterodactyloidea) from Brazil. American Museum Novitates vol. 3168 , p. 1 – 34
6. Kellner, A.W. A. (2004). The ankle structure of two pterodactyloid pterosaurs from the
Santana Formation (Lower Cretaceous), Brazil. Bulletin AMNH 285: 25-35.
7.Witton. M. (2013). Pterosaurs. Princeton University Press.
8.Wellnhofer, P. (1991) Illustrated Encyclopedia of Pterosaurs. Crescent Press.
58
Sources: publications
9. Sayão J. M., Kellner A.W. A. (2006) Novo esqueleto parcial de pterossauro
(Pterodactyloidea,Tapejaridae) do Membro Crato (Aptiano), Formação Santana, Bacia do
Araripe, nordeste do Brasil. Estudos Geológicos 16, 16–40.
10. Kellner A.W. A. (2004) New information on theTapejaridae (Pterosauria,
Pterodactyloidea) and discussion of the relationships of this clade. Ameghiniana 41: 521–534.
11. Kellner A.W. A. and Tomida Y. (2000). Description of a new species of Anhangueridae
(Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation
(Aptian-Albian), northeastern Brazil. National Science Museum Monograph 17:1-135
12. O. Kuhn and P.Wellnhofer. (1978). Handbuch der Palaoherpetologie.Teil 19:
Pterosauria
13. Claessens LPAM, O’Connor PM, Unwin DM (2009) Respiratory Evolution Facilitated
the Origin of Pterosaur Flight and Aerial Gigantism. PLoS ONE 4(2): e4497. doi:10.1371/
journal.pone.0004497
14. Frey, E. Buchy, M-C., Martill, D. (2003) Middle- and bottom-decker Cretaceous
pterosaurs: unique designs in active flying vertebrates. In Buffetaut, E. & Mazin, J- M,
Evolution and Paleobiology of Pterosaurs. Geological Society, London.
59
helder.darocha@gmail.com	
  
+55	
  11	
  992	
  910	
  567
60

More Related Content

Viewers also liked

Serve inc day of service 20122003
Serve inc day of service 20122003Serve inc day of service 20122003
Serve inc day of service 20122003Brian Salisbury
 
Affable Compression through Lossless Column-Oriented Huffman Coding Technique
Affable Compression through Lossless Column-Oriented Huffman Coding TechniqueAffable Compression through Lossless Column-Oriented Huffman Coding Technique
Affable Compression through Lossless Column-Oriented Huffman Coding TechniqueIOSR Journals
 
ECO 095 - Aula 04 - BMG Canvas - Front End
ECO 095 - Aula 04 - BMG Canvas - Front EndECO 095 - Aula 04 - BMG Canvas - Front End
ECO 095 - Aula 04 - BMG Canvas - Front EndThiago Ribeiro
 
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTION
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTIONLATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTION
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTIONASHOKKUMAR RAMAR
 
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02SocialNuggets
 
Walking with god ezra nehemiah
Walking with god  ezra nehemiahWalking with god  ezra nehemiah
Walking with god ezra nehemiahBrian Salisbury
 

Viewers also liked (6)

Serve inc day of service 20122003
Serve inc day of service 20122003Serve inc day of service 20122003
Serve inc day of service 20122003
 
Affable Compression through Lossless Column-Oriented Huffman Coding Technique
Affable Compression through Lossless Column-Oriented Huffman Coding TechniqueAffable Compression through Lossless Column-Oriented Huffman Coding Technique
Affable Compression through Lossless Column-Oriented Huffman Coding Technique
 
ECO 095 - Aula 04 - BMG Canvas - Front End
ECO 095 - Aula 04 - BMG Canvas - Front EndECO 095 - Aula 04 - BMG Canvas - Front End
ECO 095 - Aula 04 - BMG Canvas - Front End
 
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTION
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTIONLATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTION
LATEST ECE PROJECT ABSTRACT FOR COMMUNICATION-WIRELESS ENCRYPTION&DECRYPTION
 
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02
Serendio academyawards-feb27-2011-11amedt-110227190859-phpapp02
 
Walking with god ezra nehemiah
Walking with god  ezra nehemiahWalking with god  ezra nehemiah
Walking with god ezra nehemiah
 

Similar to The Imaginary Pterosaur: making of Tapejara wellnhoferi

E X E R C I S E9 The Axial Skeleton121Materials●
E X E R C I S E9 The Axial Skeleton121Materials●E X E R C I S E9 The Axial Skeleton121Materials●
E X E R C I S E9 The Axial Skeleton121Materials●AlyciaGold776
 
Week 03 - Osteology (Forelimb Bones).ppt
Week 03 - Osteology (Forelimb Bones).pptWeek 03 - Osteology (Forelimb Bones).ppt
Week 03 - Osteology (Forelimb Bones).pptMuhammadAliMakkee
 
Sutdent's Guide to the Anatomy of Camel
Sutdent's Guide to the  Anatomy of CamelSutdent's Guide to the  Anatomy of Camel
Sutdent's Guide to the Anatomy of CamelSamerPaser
 
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdf
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdfLecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdf
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdfssuser12055d
 
head-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentshead-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentsShahram35
 
head-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentshead-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentsShahram35
 
SKELETAL SYSTEM.pptx
SKELETAL SYSTEM.pptxSKELETAL SYSTEM.pptx
SKELETAL SYSTEM.pptxJainabaKandeh
 
Axial skeleton parts 3 5
Axial skeleton parts 3   5Axial skeleton parts 3   5
Axial skeleton parts 3 5Michael Wrock
 
The Axial Skeleton & Appendicular Skeleton
The Axial Skeleton & Appendicular SkeletonThe Axial Skeleton & Appendicular Skeleton
The Axial Skeleton & Appendicular SkeletonLinda Langevoort
 
A z-bones-of-the-skull
A z-bones-of-the-skullA z-bones-of-the-skull
A z-bones-of-the-skullKevinMungasia
 
Descripción anatómica del cráneo del puma concolor
Descripción anatómica del cráneo del puma concolorDescripción anatómica del cráneo del puma concolor
Descripción anatómica del cráneo del puma concolorManuel Saldivia
 
Human Physiology & Pathophysiology UNIT 3.pdf
Human Physiology & Pathophysiology  UNIT 3.pdfHuman Physiology & Pathophysiology  UNIT 3.pdf
Human Physiology & Pathophysiology UNIT 3.pdfMarieEtheneVanLlaren
 
Humanskeletalsystem 091101004224-phpapp02
Humanskeletalsystem 091101004224-phpapp02Humanskeletalsystem 091101004224-phpapp02
Humanskeletalsystem 091101004224-phpapp02Mital Patel
 
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBES
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBESTaxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBES
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBESInnspub Net
 
LHSP Anatomical Models Catalog
LHSP Anatomical Models CatalogLHSP Anatomical Models Catalog
LHSP Anatomical Models CatalogEmily Johnson
 
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opg
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opgSkull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opg
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opgLalit Chandrawanshi
 

Similar to The Imaginary Pterosaur: making of Tapejara wellnhoferi (20)

E X E R C I S E9 The Axial Skeleton121Materials●
E X E R C I S E9 The Axial Skeleton121Materials●E X E R C I S E9 The Axial Skeleton121Materials●
E X E R C I S E9 The Axial Skeleton121Materials●
 
Week 03 - Osteology (Forelimb Bones).ppt
Week 03 - Osteology (Forelimb Bones).pptWeek 03 - Osteology (Forelimb Bones).ppt
Week 03 - Osteology (Forelimb Bones).ppt
 
Sutdent's Guide to the Anatomy of Camel
Sutdent's Guide to the  Anatomy of CamelSutdent's Guide to the  Anatomy of Camel
Sutdent's Guide to the Anatomy of Camel
 
The human skeleton
The human skeleton The human skeleton
The human skeleton
 
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdf
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdfLecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdf
Lecture (1) INTRODUCTION TO ANATOMY SKELETAL SYSTEM_ BONE .pdf
 
head-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentshead-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residents
 
head-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residentshead-and-neck-radiographs.ppt for Ent residents
head-and-neck-radiographs.ppt for Ent residents
 
SKELETAL SYSTEM.pptx
SKELETAL SYSTEM.pptxSKELETAL SYSTEM.pptx
SKELETAL SYSTEM.pptx
 
Axial skeleton parts 3 5
Axial skeleton parts 3   5Axial skeleton parts 3   5
Axial skeleton parts 3 5
 
The Axial Skeleton & Appendicular Skeleton
The Axial Skeleton & Appendicular SkeletonThe Axial Skeleton & Appendicular Skeleton
The Axial Skeleton & Appendicular Skeleton
 
A z-bones-of-the-skull
A z-bones-of-the-skullA z-bones-of-the-skull
A z-bones-of-the-skull
 
COMPARATIVE ANATOMY
COMPARATIVE ANATOMY COMPARATIVE ANATOMY
COMPARATIVE ANATOMY
 
Descripción anatómica del cráneo del puma concolor
Descripción anatómica del cráneo del puma concolorDescripción anatómica del cráneo del puma concolor
Descripción anatómica del cráneo del puma concolor
 
Human Physiology & Pathophysiology UNIT 3.pdf
Human Physiology & Pathophysiology  UNIT 3.pdfHuman Physiology & Pathophysiology  UNIT 3.pdf
Human Physiology & Pathophysiology UNIT 3.pdf
 
Humanskeletalsystem 091101004224-phpapp02
Humanskeletalsystem 091101004224-phpapp02Humanskeletalsystem 091101004224-phpapp02
Humanskeletalsystem 091101004224-phpapp02
 
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBES
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBESTaxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBES
Taxonomic study of the family Scoliidae (Hymenoptera; Aculeata) in Iraq - JBES
 
LHSP Anatomical Models Catalog
LHSP Anatomical Models CatalogLHSP Anatomical Models Catalog
LHSP Anatomical Models Catalog
 
N3889.pdf
N3889.pdfN3889.pdf
N3889.pdf
 
short notes in dog skeleton
short notes in dog skeleton short notes in dog skeleton
short notes in dog skeleton
 
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opg
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opgSkull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opg
Skull,orbit temporal bones,facial bones,paranasal sinuses,mandible and opg
 

More from Helder da Rocha

Como criar um mapa temático interativo com dados abertos e D3.js
Como criar um mapa temático interativo com dados abertos e D3.jsComo criar um mapa temático interativo com dados abertos e D3.js
Como criar um mapa temático interativo com dados abertos e D3.jsHelder da Rocha
 
Transforming public data into thematic maps (TDC2019 presentation)
Transforming public data into thematic maps (TDC2019 presentation)Transforming public data into thematic maps (TDC2019 presentation)
Transforming public data into thematic maps (TDC2019 presentation)Helder da Rocha
 
TDC 2019: transformando 
dados
públicos
em mapas interativos
TDC 2019: transformando 
dados
públicos
em mapas interativosTDC 2019: transformando 
dados
públicos
em mapas interativos
TDC 2019: transformando 
dados
públicos
em mapas interativosHelder da Rocha
 
Padrões essenciais de mensageria para integração de sistemas
Padrões essenciais de mensageria para integração de sistemasPadrões essenciais de mensageria para integração de sistemas
Padrões essenciais de mensageria para integração de sistemasHelder da Rocha
 
Visualização de dados e a Web
Visualização de dados e a WebVisualização de dados e a Web
Visualização de dados e a WebHelder da Rocha
 
Eletrônica Criativa: criando circuitos com materiais alternativos
Eletrônica Criativa: criando circuitos com materiais alternativosEletrônica Criativa: criando circuitos com materiais alternativos
Eletrônica Criativa: criando circuitos com materiais alternativosHelder da Rocha
 
Introdução à Visualização de Dados (2015)
Introdução à Visualização de Dados (2015)Introdução à Visualização de Dados (2015)
Introdução à Visualização de Dados (2015)Helder da Rocha
 
API de segurança do Java EE 8
API de segurança do Java EE 8API de segurança do Java EE 8
API de segurança do Java EE 8Helder da Rocha
 
Curso de Java Persistence API (JPA) (Java EE 7)
Curso de Java Persistence API (JPA) (Java EE 7)Curso de Java Persistence API (JPA) (Java EE 7)
Curso de Java Persistence API (JPA) (Java EE 7)Helder da Rocha
 
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)Curso de Enterprise JavaBeans (EJB) (JavaEE 7)
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)Helder da Rocha
 
Introdução a JPA (2010)
Introdução a JPA (2010)Introdução a JPA (2010)
Introdução a JPA (2010)Helder da Rocha
 
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)Helder da Rocha
 
Minicurso de Segurança em Java EE 7
Minicurso de Segurança em Java EE 7Minicurso de Segurança em Java EE 7
Minicurso de Segurança em Java EE 7Helder da Rocha
 
Curso de WebServlets (Java EE 7)
Curso de WebServlets (Java EE 7)Curso de WebServlets (Java EE 7)
Curso de WebServlets (Java EE 7)Helder da Rocha
 
Atualização Java 8 (2014)
Atualização Java 8 (2014)Atualização Java 8 (2014)
Atualização Java 8 (2014)Helder da Rocha
 
Curso de Java: Introdução a lambda e Streams
Curso de Java: Introdução a lambda e StreamsCurso de Java: Introdução a lambda e Streams
Curso de Java: Introdução a lambda e StreamsHelder da Rocha
 
Threads 07: Sincronizadores
Threads 07: SincronizadoresThreads 07: Sincronizadores
Threads 07: SincronizadoresHelder da Rocha
 

More from Helder da Rocha (20)

Como criar um mapa temático interativo com dados abertos e D3.js
Como criar um mapa temático interativo com dados abertos e D3.jsComo criar um mapa temático interativo com dados abertos e D3.js
Como criar um mapa temático interativo com dados abertos e D3.js
 
Transforming public data into thematic maps (TDC2019 presentation)
Transforming public data into thematic maps (TDC2019 presentation)Transforming public data into thematic maps (TDC2019 presentation)
Transforming public data into thematic maps (TDC2019 presentation)
 
TDC 2019: transformando 
dados
públicos
em mapas interativos
TDC 2019: transformando 
dados
públicos
em mapas interativosTDC 2019: transformando 
dados
públicos
em mapas interativos
TDC 2019: transformando 
dados
públicos
em mapas interativos
 
Padrões essenciais de mensageria para integração de sistemas
Padrões essenciais de mensageria para integração de sistemasPadrões essenciais de mensageria para integração de sistemas
Padrões essenciais de mensageria para integração de sistemas
 
Visualização de dados e a Web
Visualização de dados e a WebVisualização de dados e a Web
Visualização de dados e a Web
 
Eletrônica Criativa: criando circuitos com materiais alternativos
Eletrônica Criativa: criando circuitos com materiais alternativosEletrônica Criativa: criando circuitos com materiais alternativos
Eletrônica Criativa: criando circuitos com materiais alternativos
 
Introdução à Visualização de Dados (2015)
Introdução à Visualização de Dados (2015)Introdução à Visualização de Dados (2015)
Introdução à Visualização de Dados (2015)
 
API de segurança do Java EE 8
API de segurança do Java EE 8API de segurança do Java EE 8
API de segurança do Java EE 8
 
Java 9, 10, 11
Java 9, 10, 11Java 9, 10, 11
Java 9, 10, 11
 
Curso de Java Persistence API (JPA) (Java EE 7)
Curso de Java Persistence API (JPA) (Java EE 7)Curso de Java Persistence API (JPA) (Java EE 7)
Curso de Java Persistence API (JPA) (Java EE 7)
 
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)Curso de Enterprise JavaBeans (EJB) (JavaEE 7)
Curso de Enterprise JavaBeans (EJB) (JavaEE 7)
 
Introdução a JPA (2010)
Introdução a JPA (2010)Introdução a JPA (2010)
Introdução a JPA (2010)
 
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)
Curso de RESTful WebServices em Java com JAX-RS (Java EE 7)
 
Minicurso de Segurança em Java EE 7
Minicurso de Segurança em Java EE 7Minicurso de Segurança em Java EE 7
Minicurso de Segurança em Java EE 7
 
Curso de WebServlets (Java EE 7)
Curso de WebServlets (Java EE 7)Curso de WebServlets (Java EE 7)
Curso de WebServlets (Java EE 7)
 
Curso de Java: Threads
Curso de Java: ThreadsCurso de Java: Threads
Curso de Java: Threads
 
Atualização Java 8 (2014)
Atualização Java 8 (2014)Atualização Java 8 (2014)
Atualização Java 8 (2014)
 
Curso de Java: Introdução a lambda e Streams
Curso de Java: Introdução a lambda e StreamsCurso de Java: Introdução a lambda e Streams
Curso de Java: Introdução a lambda e Streams
 
Threads 07: Sincronizadores
Threads 07: SincronizadoresThreads 07: Sincronizadores
Threads 07: Sincronizadores
 
Threads 09: Paralelismo
Threads 09: ParalelismoThreads 09: Paralelismo
Threads 09: Paralelismo
 

Recently uploaded

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 

Recently uploaded (20)

Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 

The Imaginary Pterosaur: making of Tapejara wellnhoferi

  • 1. Tapejara wellnhoferi for the Peirópolis Museum in Uberaba,MG,Brazil Ultra-light polystyrene reconstruction of a pterosaur skeleton Helder da Rocha August 2013
  • 2. Contents Dimensions, components, materials 3 Specimens used as sources 6 Design, scaling and construction of individual bones 10 Construction details and techniques 48 Assembly and installation 51 About the museum & the artist 55 Acknowledgements 57 Publications used as sources 58 2
  • 3. Dimensions This replica is 25% larger than the specimen used as a size reference, IMCF 1061 (Iwaki Museum, Japan), which is a juvenile specimen. Dimensions of assembled pterosaur in flight position Width (assembled wingspan): 180 cm Length (beak to toetip): 100 cm Height (skull height): 25 cm Other dimensions Wingspan (wing bones and carpals stacked in line): 200 cm Length of body (beak to tail): 70 cm Length of spine (atlas to tail): 50 cm 3
  • 4. Components and weight All the parts were made from Extruded Polystyrene (XPS): 2mm sheets for most of the bones, and 20mm blocks for small bones and bone ends Parts Total number of individual parts created and used: 184 Fused with epoxy: 6 (quadratojugal, 
 lacrimal, postorbital) Total number of separate pieces used 
 for assembly of final skeleton (attached 
 with silicone rubber): 178 Total weight Individual bones: 300 g After assembly (with silicone rubber): 350 g (estimated) 4
  • 5. Materials used 1. XPS – Extruded Polystyrene. Mostly 2 mm and 30 mm sheets with densities of 25 to 45 g/m3 for constructing the bones (Depron, Pluma) 2. Foam glue (Polyvinyl acetate diluted in alcohol) (Acrilex, Corfix, Scotch) 3. Acrylic polymer emulsion (Modeling paste) (Acrilex or Corfix) 4. Used coffee powder for staining 5. Liquid epoxy resin (Bisfenol A) for protective coating (Sicomin, ACE or Redelease) 6. Quick dry transparent epoxy glue (Bisfenol F) for pasting (Loctite, Scotch or Araldite) 7. 5mm rubber tube for the medulla. 8. Nylon fishing line (35kg resistance) (0.8mm) 
 for hanging. 9. General purpose transparent acetic silicone 
 rubber (Polystic) 10. Metal pins (for connecting bones). XPS XPS densities 5
  • 6. Sources: specimens 1. SMNK PAL 1137 Tapejara wellnhoferi (Germany) Used as a source for the metatarsals, tibiotarsi, 
 femora, radii, ulnae, humeri, carpals, finger nails, 
 sternum, pelvic girdle, neurocranium, and as a 
 first prototype of the cervical and dorsal 
 vertebrae (later improved with data from IMCF 1061). ! 2. AMNH 24440 Tapejara wellnhoferi (United States) Used for the first skull prototype, the lacrimal 
 bone, post-orbital, rostrum and crest, and 
 for scaling the cervical vertebrae. tion of a small portion of the lateral semicircular canal suggests that this structure would have completely sur- rounded the flocculus. Quadrate The right quadrate is complete but lies unfused to the other elements of the skull. The bone is formed by two branches, orientated dorsoventrally and mediolaterally, and con- nected by a thin diagonal laminae of bone to give the element an L-shaped appearance in its posterior aspect (Fig. 2; plate 3). The dorsoventrally directed branch is 2.4 times the length of the horizontal branch; the dorsal ter- mination of the former being smooth and well rounded in posterior view and preserving an oval shaped cross section. The ventrolateral margin of the bone forms the articular facet for the mandible where a pronounced sulcus runs in an anteromedial direction. A left quadrate of a comparable size to that described above is also present in the concretion but the vertical branch is broken only just dorsal to its base. The mandible is edentulous and preserves a short sym- physis only 44 mm in length, formed by the completely co-ossified contralateral rami. The dorsal face of the symphysis is transversely concave and is directed antero- ventrally at an angle of 18°, starting at a point 45 mm posterior of the rostral tip (Fig. 2; plate 4B). The ventral margin is almost straight but forms a sagittal crest reaching its maximum depth at the symphysis. In its dorsal aspect the bone appears as an elongate triangle, three times as long as it is wide (Fig. 2; plate 4) while the posterior section containing the articular facet is missing. Cervical vertebrae Four procoelous vertebra, identified as elements of the cervical series, are observed in various states of preserva- tion (Fig. 4). Two of these are attributed to the middle cervical column (Fig. 4f–o) while a third is identified as the 7th cervical. The remaining element represents the isolated axis (Fig. 4a–e). Fig. 4 Cervical elements of Tapejara wellnhoferi, SMNK PAL 1137, where: A–E axis in lateral (A), anterior (B), posterior (C), dorsal (D) and ventral view (E); F–J cervical vertebra in lateral (F), anterior (G), posterior (H), dorsal (I) and ventral view (J); K–O, cervical vertebra in lateral (K), anterior (L), posterior (M), dorsal (N) and ventral view (O); P–T, 7th cervical vertebra in lateral (P), anterior (Q), posterior (R), dorsal (S) and ventral view (T). f foramen, nc neural canal, ns neural spine, pe postexapophysis, pre preexapoph- ysis, pz postzygapophysis, prz prezygapophysis, vc vertebral condyle 6
  • 7. Sources: specimens 3. IMCF 1061 Tapejara wellnhoferi Used as the main source for the rostrum, mandible, quadrate, wing phalanges 1 to 3, humeri, pteroids, occipital bone, neurocranium, cervical vertebrae (second prototype), dorsal vertebrae (second prototype). ! 4. MN 6595-V Tapejara wellnhoferi (holotype) Used for reviewing the skull proportions. (These images are protected by copyright and I do not have authorization to show them in this presentation) 7
  • 8. Sources: specimens 5. SMNK PAL 3986 Tapejara wellnhoferi. Used for scaling wing bones against 
 the mandible. ! 6. MCT-1500-R Tapejara wellnhoferi. Used for a first attempt at making the internal cranium and occipital bone (I later replaced it with data from IMCF 1061). ! 7. SMNK PAL 3985 Tapejara wellnhoferi. Used for scaling the size of the 
 sternum agains the humerus. ! 8. MN 6588-V Tapejaridae. Used as a source for the pre-pubis. 8
  • 9. Sources: specimens 9. IMCF 1502 Tupuxuara leonardii Used as a source for the fourth wing phalanx and as a guide for the scapulocoracoid (later replaced with better data from IMCF 1061); this specimen was also used as an initial guide to the palate. ! 10. NSM-PV 19892 Anhanguera piscator Used a source for the caudal vertebrae. ! 11.YPM 2546 Pteranodon longiceps Used as a source for the shape of the sternal ribs, and as a guide to the general aspect of the sacrum, fingers and toes. ! 12. Undescribed thalassodromid. Images which were used to make the pelvic girdle in Tupuxuara were used as a source to for the general aspect of the sacrum. 9
  • 10. Scaling Replica is 25% larger than reference size of young individual 10
  • 11. Bone construction Fully documented at 
 http://imaginosaurus.wordpress.com/2013/08/28/imaginary-pterosaur-7-finished/ 11
  • 12. SMNK PAL 1137 limestone slab Contains bones of two (or more) pterosaurs (from Eck et al 2011) Also used as one of the sources to scale the bones proportionally 12
  • 13. SMNK PAL 1137 limestone slab Approximate reconstruction (using bones of one pterosaur) 13
  • 14. Skull (5 parts, 90g) 1. Frontal skull (1 part - rostrum/palate/occipital + 6 fused bones) fused with epoxy: 2 quadratojugal + 2 lacrimal + 2 postorbital 2. Neurocranium (1 part) 3. Mandible (1 part) 4. Quadrates (2 parts) 14
  • 15. Initial work on the skull 2mm sheets of XPS Prototype based on incomplete photos of Iwaki specimen Projections based on drawings of the AMNH specimen (from Wellnhofer & Kellner 1991, The skull ofTapejara wellnhoferi…) 15
  • 16. Rostrum, crest, palate Mostly based on AMNH 24440 16
  • 17. Frontal skull: final 32.5 x 18.5 x 6.5 cm & 42 g http://imaginosaurus.wordpress.com/2013/07/05/tapejara-skull-part-3-neurocranium-quadrate-lacrimal/ 17
  • 19. Mandible: final 19 x 6 x 4.5 cm &10 g 19
  • 20. Neurocranium version 1
 replica of SMNK PAL 1137 http://imaginosaurus.wordpress.com/2013/07/06/unfinished-tapejara-skull/ 20
  • 21. Neurocranium version 2
 beyond SMNK PAL 1137 http://imaginosaurus.wordpress.com/2013/08/24/tapejaras-neurocranium-revisited/ Improved with ICMF 1061 sources 21
  • 22. Neurocranium: final 15.5 x 7 x 6 cm & 35 g 22
  • 23. Quadrates 7 x 2.5 cm & < 3 g (both) 23
  • 25. Spine (31 parts, 85g) 1. Atlas/axis cervical (1 part) 2.3 x 2.5 x 2.9 cm, 3 g 2. Cervicals 3 to 7 (5 parts) 4.7 x 2.9 x 2.7 cm (avg), 5 g (each), 25 g (all) 3. Cervicals 8 and 9 (2 parts) 2.3 x 3.6 x 2.9 cm (avg), 3 g (each), 6 g (both) 4. Dorsal vertebrae (12 parts) 1.5 x 4.2 x 3.5 cm (avg), 3 g (each), 35 g (all) 5. Sacrum (1 part) 9 x 4.6 x 3.5 cm, 12 g 6. Caudal vertebrae (10 parts) 9 cm (full tail), < 3 g (all) 25
  • 26. Cervical vertebrae Sources: 4 specimens (SMNK, IMCF Tapejara and Tupuxuara, AMNH) 26
  • 30. Sacrum http://imaginosaurus.wordpress.com/2013/08/19/tapejara-pelvic-girdle/ Based on Thalassodromid sources (no Tapejara source available) 30
  • 31. Tail From Anhanguera piscator (Kellner & Tomida 2000) http://imaginosaurus.wordpress.com/2013/08/22/tapejara-caudal-vertebrae/ 31
  • 32. Wings and fingers (48 parts, 60g) Humerus (2 parts), 11 cm, 10 g (both) Radius (2 parts), 15 cm, 7 g (both) Ulna (2 parts), 15 cm, 6 g (both) Wing metacarpal (2 parts), 14 cm, 8 g (both) Carpals and syncarpals (8 parts) Prox. syncarpal (2), 2.3 x 1.8 x 1 cm, < 2 g (both) Distal syncarpal (2), 2.3 x 1.8 x 1 cm, < 2 g (both) Medial carpal (2), 1.3 x 1 x 0.8 cm, < 2 g (both) Pteroid (2), 7 cm, < 2 g (both) Wing (8 parts) Phalanx 1 (2) 21 cm 6 g (both) Phalanx 2 (2) 17 cm 4 g (both) Phalanx 3 (2) 14 cm 3 g (both) Phalanx 4 (2) 9 cm 2 g (both) Fingers (24 parts) Metacarpals (6), 13.5 cm, < 3 g (all) Phalanges (12), 2.5, 2/1.8, 2.1/0.8/1.6 cm, 5 g (all) Fingernails (6), 1.8 x 1.1 x 0.3 cm (avg), < 3 g (all) 32
  • 39. Pelvic girdle (15 parts, 15 g) Ilium & preacetabular process (2 parts), 8 cm, 2 g (both) Ischium (2 parts), 2.8 x 2.5 cm, 3 g (both) Pubis (2 parts), 3 x 2.5 cm, 2 g (both) Postacetabular process (2 parts), 3.5 x 2.3 cm, 3 g (both) Pre-pubis (2 parts), 4.5 x 2.2 cm, 2 g (both) Gastralia (5 parts), 4.2 x 2.5 cm, 5 g (all) - 4 not used 39
  • 42. Pectoral girdle (45 parts, 35g) Sternum (1 part), 8.3 x 6.2 x 2 cm, 5 g Scapula (2 parts), 8 cm, 3 g (both) Coracoid (2 parts), 6.7 cm, 3 g (both) Ribs (22 parts), 3.5 to 6.5 cm (curved), 20 g (all) Sternal ribs (10 parts), 1.7 to 4.5 cm, 5 g (all) 42
  • 45. Legs and feet (46 parts, 15g) Femur (2 parts) 12.5 cm 5 g (both) Tibiotarsus (2 parts) 1 x 7.5 cm 5 g (both) Distal tarsals (4 parts) 1 x 0.5 x 0.5 cm 1 g (all) Metatarsals (8 parts) 4.2, 4.4, 3.8, 3.5 (cm) < 2 g (all) Fifth toe (2 parts) 1.2 cm < 1 g (both) Toe phalanges (20 parts) 2, 1.3/1.8, 1.7/0.6/1.6, 2/0.5/0.5/1.3(cm) < 3 g (all) Toenails (8 parts) 1.7 x 0,7 x 0.2 cm < 2 g (all) 45
  • 48. Working with XPS Folding ! ! ! Melting, adding texture and shaping with fire Tupandactylus imperator Tupuxuara leonardii 48
  • 49. Texture and stains Acrylic polymer emulsion adheres to coarse XPS (treated with fire) ! ! ! ! Used coffee powder stains Tupuxuara leonardii 49
  • 50. Protective coating Liquid epoxy and matte varnish Neurocranium after coating with liquid epoxy and matte varnish Parts drying after coating with liquid epoxy "Shiny" parts after liquid epoxy is dry 50
  • 52. Assembly: lateral view Flying position Wings slightly curved Flying downwards Skeleton could be suspended with only four points of support: head(1), back(2) and first wing phalanges(3,4). I used 3 more points to improve distribution of weight, lift the back(5) and control the shape of the wings(6,7). 1 2 3 4 5 6 7 52
  • 53. Assembly: ventral view Flying position Support is made of aluminum antenna cylinders 2m x 1m More than 80% of the weight is distributed among points 1, 2 and 5 1 2 3 4 5 6 7 53
  • 55. Peirópolis Museum (Complexo Científico Cultural de Peirópolis) Uberaba, MG, Brazil Jose Gustavo Abreu Murta 55
  • 56. Other pterosaurs by Helder da Rocha Tupuxuara Anhanguera Guidraco Tupandactylus Caupedactylus Anhanguera 56
  • 57. Acknowledgements This project was commissioned by the Peirópolis Cultural and Scientific Complex, which includes the museum where this replica is currently in display. I would like to thank professor Vicente Antunes, the director of the institution, for this opportunity, the staff at the museum, and the researchers Thiago Marinho and Agustin Martinelli who first contacted me, as well as the paleoartist Rodolfo Nogueira for introducing me to professor Vicente (who told him about his wish to have a pterosaur in the museum.) Although I made all the bones by myself, I had help from many people who kindly provided me with photographic sources, articles and paleontological advice: Felipe Pinheiro, Hebert Bruno Campos, and specially Brian Andres who gave me access to many high-resolution photographs and shared his data and scientific advice that were critical to the accuracy of this replica. Installing the pterosaur was a challenging and dangerous task, but paleontologist Agustin Martinelli bravely climbed and crawled under the thin aluminum ceiling of the museum six metres above to install the structure which currently suspends the pterosaur in a flying position. Finally I must thank the family who hosted me in Uberaba: Alípio, Regis, Ludmila and Lucia (and their many cats) for their fantastic hospitality, for dedicating time and effort to make my stay as comfortable as possible, for driving me to Peiropolis and back (40km!) and even letting me occupy their kitchen table during three days, turning it into a pterosaur assembly lab! 57
  • 58. Sources: publications 1. Kellner, A.W. A. (1989). A new edentate pterosaur of the Lower Cretaceous from the Araripe Basin, Northeast Brazil. Anais de Academia Brasileira de Ciencias, 61, 439–446. 2. Eck, K., Elgin, R.A. and Frey, E. (2011). On the osteology ofTapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation,Araripe Basin, NE-Brazil. Swiss Journal of Palaeontology 3.Wellnhofer P, Kellner A.W. A (1991) The skull ofTapejara wellnhoferi Kellner (Reptilia, Pterosauria) from the Lower Cretaceous Santana Formation of the Araripe Basin, northeastern Brazil. Mitt. Bayer. Staatsslg Paläont hist Geol 31: 89–106. 4. Elgin R. and Campos H. B. N. (2011). A new specimen of the azhdarchoid pterosaur Tapejara wellnhoferi. Hist Biol DOI: 10.1080/08912963.2011.613467. 5. Kellner, A.W.A. (1996) . Description of the braincase of two Early Cretaceous pterosaurs (Pterodactyloidea) from Brazil. American Museum Novitates vol. 3168 , p. 1 – 34 6. Kellner, A.W. A. (2004). The ankle structure of two pterodactyloid pterosaurs from the Santana Formation (Lower Cretaceous), Brazil. Bulletin AMNH 285: 25-35. 7.Witton. M. (2013). Pterosaurs. Princeton University Press. 8.Wellnhofer, P. (1991) Illustrated Encyclopedia of Pterosaurs. Crescent Press. 58
  • 59. Sources: publications 9. Sayão J. M., Kellner A.W. A. (2006) Novo esqueleto parcial de pterossauro (Pterodactyloidea,Tapejaridae) do Membro Crato (Aptiano), Formação Santana, Bacia do Araripe, nordeste do Brasil. Estudos Geológicos 16, 16–40. 10. Kellner A.W. A. (2004) New information on theTapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade. Ameghiniana 41: 521–534. 11. Kellner A.W. A. and Tomida Y. (2000). Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian-Albian), northeastern Brazil. National Science Museum Monograph 17:1-135 12. O. Kuhn and P.Wellnhofer. (1978). Handbuch der Palaoherpetologie.Teil 19: Pterosauria 13. Claessens LPAM, O’Connor PM, Unwin DM (2009) Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism. PLoS ONE 4(2): e4497. doi:10.1371/ journal.pone.0004497 14. Frey, E. Buchy, M-C., Martill, D. (2003) Middle- and bottom-decker Cretaceous pterosaurs: unique designs in active flying vertebrates. In Buffetaut, E. & Mazin, J- M, Evolution and Paleobiology of Pterosaurs. Geological Society, London. 59
  • 60. helder.darocha@gmail.com   +55  11  992  910  567 60