This document discusses using machine learning techniques and sentiment analysis of Twitter data to predict stock prices and recommend buying or selling stocks. It evaluates ARIMA, LSTM, and linear regression models for stock price prediction and uses TextBlob to analyze the sentiment of recent tweets about a company and provide recommendations based on the overall sentiment polarity. For Apple stock, ARIMA had the lowest RMSE of 3.54, while LSTM achieved an RMSE of 5.64 after 30 epochs. Sentiment analysis of Apple tweets found an overall positive polarity. The models were also tested on Yes Bank stock.