SlideShare a Scribd company logo
1 of 33
© 2010 IBM Corporation
IBM University Programs World Wide (IBM UP)
SSME+D (for Design) Evolving:
Update on Service Science Progress & Directions
Dr. James (“Jim”) C. Spohrer
spohrer@us.ibm.com
Director, IBM University Programs World Wide
Event, Place, Date
Working Together to Build a Smarter Planet
2 © 2010 IBM CorporationIBM UP (University Programs) WW
Outline
 Stimulus: Service Growth
– The World
– IBM
 Response: Service Science Priorities
– Cambridge University Report
– Arizona State University Report
 Evolution: SSME+D (for Design) for a Smarter Planet
– What is Smarter Planet?
– What improves Quality-of-Life?
– What is a Service System? Service Science?
– How to visualize Service Science?
– What’s the Skills Goal?
– Where are the Opportunities?
– Where is the “Real Science” in SSME+D?
3 © 2010 IBM CorporationIBM UP (University Programs) WW
42%643331.4Germany
37%2611632.1Bangladesh
19%2010701.6Nigeria
45%672852.2Japan
64%6921102.4Russia
61%6614203.0Brazil
34%3916453.5Indonesia
23%762315.1U.S.
35%23176014.4India
142%29224925.7China
40yr Service
Growth
S
%
G
%
A
%
Labor
% WW
Nation
World’s Large Labor Forces
A = Agriculture, G = Goods, S = Service
2010
2010
CIA Handbook, International Labor Organization
Note: Pakistan, Vietnam, and Mexico now larger LF than Germany
US shift to service jobs
(A) Agriculture:
Value from
harvesting nature
(G) Goods:
Value from
making products
(S) Service:
Value from
IT augmented workers in smarter systems
that create benefits for customers
and sustainably improve quality of life.
Service Growth: The World
4 © 2010 IBM CorporationIBM UP (University Programs) WW
0
20
40
60
80
100
1982
1988
1994
1998
2004
2006
2007
2008
2009
Year
Revenue($B)
Services
Software
Systems
Financing
Service Growth: IBM
B2B Service Projects: IT (data center, call centers) & business process outsourcing/reengineering, systems integration, organizational change, etc.
What do IBM Service Professionals Do? Run things on behalf of customers,
help Transform customers to adopt best practices, and Innovate with customers.
Revenue Growth by Segment
© 2010 IBM Corporation
IBM University Programs World Wide (IBM UP)
Stakeholder
Priorities
Education
Research
Business
Government
Stakeholder
Priorities
Education
Research
Business
Government
Service
Systems
Customer-provider
interactions that
enable value
cocreation
Dynamic
configurations of
resources: people,
technologies,
organisations and
information
Increasing scale,
complexity and
connectedness of
service systems
B2B, B2C, C2C,
B2G, G2C, G2G
service networks
Service
Systems
Customer-provider
interactions that
enable value
cocreation
Dynamic
configurations of
resources: people,
technologies,
organisations and
information
Increasing scale,
complexity and
connectedness of
service systems
B2B, B2C, C2C,
B2G, G2C, G2G
service networks
Service
Science
To discover the
underlying
principles of
complex service
systems
Systematically
create, scale and
improve systems
Foundations laid
by existing
disciplines
Progress in
academic studies
and practical tools
Gaps in knowledge
and skills
Service
Science
To discover the
underlying
principles of
complex service
systems
Systematically
create, scale and
improve systems
Foundations laid
by existing
disciplines
Progress in
academic studies
and practical tools
Gaps in knowledge
and skills
Develop programmes
& qualifications
Develop programmes
& qualifications
Service
Innovation
Growth in service
GDP and jobs
Service quality
& productivity
Environmental
friendly &
sustainable
Urbanisation &
aging population
Globalisation &
technology drivers
Opportunities for
businesses,
governments and
individuals
Service
Innovation
Growth in service
GDP and jobs
Service quality
& productivity
Environmental
friendly &
sustainable
Urbanisation &
aging population
Globalisation &
technology drivers
Opportunities for
businesses,
governments and
individuals
Skills
& Mindset
Skills
& Mindset
Knowledge
& Tools
Knowledge
& Tools
Employment
& Collaboration
Employment
& Collaboration
Policies
& Investment
Policies
& Investment
Develop and improve
service innovation
roadmaps, leading to a
doubling of investment
in service education
and research by 2015
Develop and improve
service innovation
roadmaps, leading to a
doubling of investment
in service education
and research by 2015
Encourage an
interdisciplinary
approach
Encourage an
interdisciplinary
approach
The white paper offers
a starting point to -
The white paper offers
a starting point to -
Priorities: Succeeding through Service Innovation - A Framework for Progress
(http://www.ifm.eng.cam.ac.uk/ssme/)
Source: Workshop and Global Survey of Service Research Leaders (IfM & IBM 2008)
Glossary of definitions, history and outlook of service research, global trends, and ongoing debate
1. Emerging demand 2. Define the domain 3. Vision and gaps 4. Bridge the gaps 5. Call for actions
6 © 2010 IBM CorporationIBM UP (University Programs) WW
Priorities: Research FrameworkPriorities: Research Framework
for the Science of Servicefor the Science of Service
Pervasive Force: Leveraging Technology to Advance Service
Strategy
Priorities
Execution
Priorities
Fostering Service
Infusion and Growth
Improving Well-Being
through
Transformative Service
Creating and Maintaining
a Service Culture
Stimulating
Service Innovation
Enhancing
Service Design
Optimizing
Service Networks
and Value Chains
Effectively Branding
and Selling Services
Enhancing the Service
Experience through
Cocreation
Measuring and
Optimizing the Value of
Service
Development
Priorities
Source: Global Survey of Service Research Leaders (Ostrom et al 2010)
7 © 2010 IBM CorporationIBM UP (University Programs) WW
Evolution: SSME+D (for Design) for a Smarter Planet
What is Smarter Planet? Harmonized smarter systems.
INSTRUMENTED
We now have the ability
to measure, sense and
see the exact condition
of practically everything.
INTERCONNECTED
People, systems and
objects can communicate
and interact with each
other in entirely new
ways.
INTELLIGENT
We can respond to changes
quickly and accurately,
and get better results
by predicting and optimizing
for future events.
WORKFORCE
PRODUCTS
SUPPLY CHAIN
COMMUNICATIONS
TRANSPORTATION BUILDINGS
IT NETWORKS
8 © 2010 IBM CorporationIBM UP (University Programs) WW
What improves Quality-of-Life? Service System Innovations
A. Systems that focus on flow of things that humans need (~15%*)
1. Transportation & supply chain
2. Water & waste recycling/Climate & Environment
3. Food & products manufacturing
4. Energy & electricity grid/Clean Tech
5. Information and Communication Technologies (ICT access)
B. Systems that focus on human activity and development (~70%*)
6. Buildings & construction (smart spaces) (5%*)
7. Retail & hospitality/Media & entertainment/Tourism & sports (23%*)
8. Banking & finance/Business & consulting (wealthy) (21%*)
9. Healthcare & family life (healthy) (10%*)
10. Education & work life/Professions & entrepreneurship (wise) (9%*)
C. Systems that focus on human governance - security and opportunity (~15%*)
11. Cities & security for families and professionals (property tax)
12. States/regions & commercial development opportunities/investments (sales tax)
13. Nations/NGOs & citizens rights/rules/incentives/policies/laws (income tax)
20/10
0/19?
2/7
2/1
7/6
1/1
5/17
1/0
24/24
2/20
7/10
5/2
3/3
0/0
1/2
Quality of Life = Quality of Service + Quality of Jobs + Quality of Investment-Opportunities
* = US Labor % in 2009.
“61 papers Service Design Conference 2010 (Japan) / 75 papers Service Marketing Conference 2010 (Portugal)”
9 © 2010 IBM CorporationIBM UP (University Programs) WW
What is a Service System? What is Service Science?
…customers just name <your favorite provider> …researchers just name <your favorite discipline>
Economics & Law
Design/
Cognitive Science Systems
Engineering
Operations
Computer Science/
Artificial Intelligence
Marketing
“a service system is a human-made system
to improve customer-provider interactions,
or value-cocreation”
“service science is
the interdisciplinary study of
service systems &
value-cocreation”
10 © 2010 IBM CorporationIBM UP (University Programs) WW
How to visualize service science? The Systems-Disciplines Matrix
Systems that focus on flows of things Systems that governSystems that support people’s activities
transportation &
supply chain water &
waste
food &
products
energy
& electricity
building &
construction
healthcare
& family
retail &
hospitality banking
& finance
ICT &
cloud
education
&work
city
secure
state
scale
nation
laws
social sciences
behavioral sciences
management sciences
political sciences
learning sciences
cognitive sciences
system sciences
information sciences
organization sciences
decision sciences
run professions
transform professions
innovate professions
e.g., econ & law
e.g., marketing
e.g., operations
e.g., public policy
e.g., game theory
and strategy
e.g., psychology
e.g., industrial eng.
e.g., computer sci
e.g., knowledge mgmt
e.g., stats & design
e.g., knowledge worker
e.g., consultant
e.g., entrepreneur
stakeholders
Customer
Provider
Authority
Competitors
resources
People
Technology
Information
Organizations
change
History
(Data Analytics)
Future
(Roadmap)
value
Run
Transform
(Copy)
Innovate
(Invent)
Starting Point 1: The Stakeholders (As-Is)
Starting Point 2: Their Resources (As-Is)
Change Potential: Thinking (Has-Been & Might-Become)
Value Realization: Doing (To-Be)
disciplines
systems
11 © 2010 IBM CorporationIBM UP (University Programs) WW
What is the skills goal? T-Shaped professionals, ready for T-eamwork!
Many disciplines
(understanding & communications)
Many systems
(understanding & communications)
Deepinonediscipline
(analyticthinking&problemsolving)
Deepinonesystem
(analyticthinking&problemsolving)
Many team-oriented service projects completed
(resume: outcomes, accomplishments & awards)
SSME+D = Service Science, Management, Engineering + Design
12 © 2010 IBM CorporationIBM UP (University Programs) WW
Where are the opportunities? Everywhere!
13
Time
ECOLOGY
14B
Big Bang
(Natural
World)
10K
Cities
(Human-Made
World)
Sun
writing
(symbols and scribes)
Earth
written laws
bacteria
(uni-cell life)
sponges
(multi-cell life)
money
(coins)
universities
clams (neurons)
trilobites (brains)
printing press (books
steam engine200M
bees (social
division-of-labor)
60
transistor
Where is the “Real Science” in SSME+D?
In the interdisciplinary sciences that study the natural and human-made worlds…
Unraveling the mystery of evolving hierarchical-complexity in new populations…
To discover the world’s structures and mechanisms for computing non-zero-sum
14 © 2010 IBM CorporationIBM UP (University Programs) WW
Thank-You! Questions?
Dr. James (“Jim”) C. Spohrer
Director, IBM University Programs (IBM UP) WW
spohrer@us.ibm.com
“Instrumented, Interconnected, Intelligent – Let’s build a Smarter Planet.” – IBM
“If we are going to build a smarter planet, let’s start by building smarter cities” – CityForward.org
“Universities are major employers in cities and key to urban sustainability.” – Coalition of USU
“Cities learning from cities learning from cities.” – Fundacion Metropoli
“The future is already here… It is just not evenly distributed.” – Gibson
“The best way to predict the future is to create it/invent it.” – Moliere/Kay
“Real-world problems may not/refuse to respect discipline boundaries.” – Popper/Spohrer
“Today’s problems may come from yesterday’s solutions.” – Senge
“History is a race between education and catastrophe.” – H.G. Wells
“The future is born in universities.” – Kurilov
“Think global, act local.” – Geddes
15 © 2010 IBM CorporationIBM UP (University Programs) WW
Understanding the Human-Made World
See Paul Romer’s Charter Cities Video: http://www.ted.com/talks/paul_romer.html
Also see:
Symbolic Species, Deacon
Company of Strangers, Seabright
Sciences of the Artificial, Simon
16 © 2010 IBM CorporationIBM UP (University Programs) WW
World Population & Service System Scaling
17 © 2010 IBM CorporationIBM UP (University Programs) WW
Service System Ecology: Conceptual Framework
 Resources: People, Technology, Information, Organizations
 Stakeholders: Customers, Providers, Authorities, Competitors
 Measures: Quality, Productivity, Compliance, Sustainable Innovation
 Access Rights: Own, Lease, Shared, Privileged
Ecology
(Populations & Diversity)
Entities
(Service Systems)
Interactions
(Service Networks)
Outcomes
(Value Changes)
Value Proposition
(Offers/Risks/Incentives)
Governance Mechanism
(Rules/Constraints/Penalties)
Access Rights
(Relationships)
Measures
(Rankings of Entities)
Resources
(Roles in Processes)
Stakeholders
(Valuation Perspectives)
win-win
lose-lose win-lose
lose-win
Identity
(Aspirations/Lifecycle)
Reputation
(Opportunities/Variety)
prefer sustainable
non-zero-sum
outcomes
18 © 2010 IBM CorporationIBM UP (University Programs) WW
How many service system entities are there? ~10B
 Nations (~100)
– States/Provinces (~1000)
• Cities/Regions (~10,000)
– Educational Institutions (~100,000)
– Healthcare Institutions (~100,000)
– Other Enterprises (~10,000,000)
• Largest 2000
• >50% GDP WW
– Families/Households (~1B)
– Persons (~10B)
 Balance/Improve
– Quality of Life, generation after generation
• GDP/Capita
– Quality of Service
• Customer Experience
– Quality of Jobs
• Employee Experience
– Quality of Investment-Opportunities
• Owner Experience
• Entrepreneurial Experience
– Sustainability
• GDP/Energy-Unit
– % Fossil
– % Renewable
• GDP/Mass-Unit
– % New Inputs
– % Recycled Inputs
Nation
State/Province
City/Region
Educational
Institution
Healthcare
Institution
Other
Enterprises
(job roles)
Family
(household)
Person
(professional)
19 © 2010 IBM CorporationIBM UP (University Programs) WW19
Vision for the Educational Continuum: Individuals & Institutions Learning
Any Device Learning
TECHNOLOGY IMMERSION
PERSONAL LEARNING PATHS
Student-Centered Processes
KNOWLEDGE SKILLS
Learning Communities
GLOBAL INTEGRATION
Services Specialization
ECONOMIC ALIGNMENT
Systemic View of Education
Intelligent
• Aligned Data
• Outcomes Insight
Instrumented
• Student-centric
• Integrated Assessment
Interconnected
• Shared Services
• Interoperable Processes
Continuing
Education
Higher
Education
Secondary
School
Primary
School
Workforce
Skills
Individuals Learning
Continuum The
Educational
Continuum
Institutions
Learning
Continuum
Economic
Sustainability
http://www-935.ibm.com/services/us/gbs/bus/html/education-for-a-smarter-planet.html
20 © 2010 IBM CorporationIBM UP (University Programs) WW
Fun: CityOne Game to Learn “CityInvesting”
Serious Game to teach problem solving for real issues in key industries, helping companies
to learn how to work smarter. Energy, Water, Banking, Retail
http://www.ibm.com/cityone
21 © 2010 IBM CorporationIBM UP (University Programs) WW
Priority 1: Urban Sustainability & Service Innovation Centers
A. Research: Holistic Modeling & Analytics of Service Systems
Modeling and simulating cities will push state-of-the-art capabilities for planning interventions in
complex system of service systems
Includes maturity models of cities, their analytics capabilities, and city-university interactions
Provides an interdisciplinary integration point for many other university research centers that
study one specialized type of system
Real-world data and advanced analytic tools are increasingly available
B. Education: STEM (Science Tech Engineering Math) Pipeline & LLL
City simulation and intervention planning tools can engage high school students and build STEM
skills of the human-made world (service systems)
Role-playing games can prepare students for real-world projects
LLL = Life Long Learning
C. Entrepreneurship: Job Creation
City modeling and intervention planning tools can engage university
students and build entrepreneurial skills
Grand challenge competitions can lead to new enterprises
22 © 2010 IBM CorporationIBM University Programs (IBM UP) WW
A. Flow of things
1. Transportation: Traffic congestion; accidents and injury
2. Water: Access to clean water; waste disposal costs
3. Food: Safety of food supply; toxins in toys, products, etc.
4. Energy: Energy shortage, pollution
5. Information: Equitable access to info and comm resources
B. Human activity & development
6. Buildings: Inefficient buildings, environmental stress (noise, etc.)
7. Retail: Access to recreational resources
8. Banking: Boom and bust business cycles, investment bubbles
9. Healthcare: Pandemic threats; cost of healthcare
10. Education: High school drop out rate; cost of education
C. Governing
11. Cities: Security and tax burden
12. States: Infrastructure maintenance and tax burden
13. Nations: Justice system overburdened and tax burden
Cities as Holistic Service Systems: All the systems
Example: Singapore
23 © 2010 IBM CorporationIBM UP (University Programs) WW
Universities as Holistic Service Systems: All the systems
A. Flow of things
1. Transportation: Traffic congestion; parking shortages.
2. Water: Access costs; reduce waste
3. Food: Safety; reduce waste.
4. Energy: Access costs; reduce waste
5. Information: Cost of keeping up best practices.
B. Human activity & development
6. Buildings: Housing shortages; Inefficient buildings
7. Retail: Access and boundaries. Marketing.
8. Banking: Endowment growth; Cost controls
9. Healthcare: Pandemic threat. Operations.
10. Education: Cost of keeping up best practices..
C. Governing
11. Cities: Town & gown relationship.
12. States: Development partnerships..
13. Nations: Compliance and alignment.
24 © 2010 IBM CorporationIBM UP (University Programs) WW
Why Universities Matter: % GDP and % Top 500
Japan
China
Germany
France
United KingdomItaly
Russia SpainBrazil
Canada
India
Mexico AustraliaSouth Korea
NetherlandsTurkey
Sweden
y = 0,7489x+ 0,3534
R² = 0,719
0
1
2
3
4
5
6
7
8
9
0 1 2 3 4 5 6 7 8 9
%globalGDP
% top 500 universities
Strong Correlation (2009 Data): National GDP and University Rankings
25 © 2010 IBM CorporationIBM UP (University Programs) WW
Teaching SSME+D
 Fitzsimmons & Fitzsimmons
– Graduate Students
– Schools of Engineering & Businesses
 Teboul
– Undergraduates
– Schools of Business & Social Sciences
– Busy execs (4 hour read)
 Ricketts
– Practitioners
– Manufacturers In Transition
 And 200 other books…
– Zeithaml, Bitner, Gremler; Gronross, Chase, Jacobs,
Aquilano; Davis, Heineke; Heskett, Sasser,
Schlesingher; Sampson; Lovelock, Wirtz, Chew; Alter;
Baldwin, Clark; Beinhocker; Berry; Bryson, Daniels,
Warf; Checkland, Holwell; Cooper,Edgett; Hopp,
Spearman; Womack, Jones; Johnston; Heizer, Render;
Milgrom, Roberts; Norman; Pine, Gilmore; Sterman;
Weinberg; Woods, Degramo; Wooldridge; Wright; etc.
 URL: http://www.cob.sjsu.edu/ssme/refmenu.asp
Reaching the Goal:
How Managers Improve
a Services Business
Using Goldratt’s
Theory of Constraints
By John Ricketts, IBM
Service Management:
Operations, Strategy,
and Information
Technology
By Fitzsimmons and
Fitzsimmons, UTexas
Service Is Front Stage:
Positioning services for
value advantage
By James Teboul, INSEAD
26 © 2010 IBM CorporationIBM UP (University Programs) WW
Reality: “Product-Service-System” Networks
F
B
Service
System Entity
Product-Service-System
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
SSE
B
F
F F
B B
Service
Business
Product
Business
Front-Stage Marketing/Customer Focus
Back-Stage Operations/Provider Focus
BasedonLevi
e.g., IBM
e.g., Citibank
“Everybodyisin
Theindustrial
© 2005 IBM Corporation
27 © 2010 IBM Corporation
Service-dominant logic
 Service is the application of
competences for the benefit of
another entity
 Service is exchanged for
service
 Value is always co-created
 Goods are appliances for delivery
 All economies are service
economies
 All businesses are service
businesses
Vargo, S. L. & Lusch, R. F. (2004). Evolving to a new
dominant logic for marketing. Journal of Marketing, 68, 1 –
17.
Resource
Integrator/
Beneficiary
(“Firm”)
Resource
Integrator/
Beneficiary
(“Customer”)
Value
C
o-creation
Value Configuration
Density
© 2005 IBM Corporation
28 © 2010 IBM Corporation
What is value?
Value depends on the capabilities a system
has to survive and create beneficial change
in its environment.
Taking advantage of the service another
system offers means incorporating improved
capabilities.
Value can be defined as system
improvement in an environment.
All ways that systems work together to
improve or enhance one another’s
capabilities can be seen as being value
creating.
Vargo, S. L., Maglio, P. P., and Akaka, M. A. (2008). On value and value co-creation: A service
systems and service logic perspective. European Management Journal, 26(3), 145-152.
© 2005 IBM Corporation
29 © 2010 IBM Corporation
What is a service system?
Service involves at
least two entities
applying competences
and making use of
individual and shared
resources for mutual
benefit.
We call such
interacting entities
service systems.
A. Service Provider
• Individual
• Organization
• Public or Private
C. Service Target: The reality to be
transformed or operated on by A,
for the sake of B
• People, dimensions of
• Business, dimensions of
• Products, goods and material systems
• Information, codified knowledge
B. Service Client
• Individual
• Organization
• Public or Private
Forms of
Ownership Relationship
(B on C)
Forms of
Service Relationship
(A & B co-create value)
Forms of
Responsibility Relationship
(A on C)
Forms of
Service Interventions
(A on C, B on C)
Gadrey, J. (2002). The misuse of productivity concepts in services: Lessons from a comparison between
France and the United States. In J. Gadrey & F. Gallouj (Eds). Productivity, Innovation, and Knowledge in
Services: New Economic and Socio-economic Approaches. Cheltenham UK: Edward Elgar, pp. 26 – 53.
Spohrer, J., Maglio, P. P., Bailey, J. & Gruhl, D. (2007). Steps toward a
science of service systems. Computer, 40, 71-77.
© 2005 IBM Corporation
30 © 2010 IBM Corporation
Resources are the building blocks of service systems
Formal service systems can contract
Informal service systems can promise/commit
Trends & Countertrends (Evolve and Balance):
Informal <> Formal
Social <> Economic
Political <> Legal
Routine Cognitive Labor <> Computation
Routine Physical Labor <> Technology
Transportation (Atoms) <> Communication (Bits)
Qualitative (Tacit) <> Quantitative (Explicit)
First foundational premise
of service science
Service system entities
dynamically configure
four types of resources
The named resource is
Physical
or
Not-Physical
(physicists resolve disputes)
The named resource has
Rights
or
No-Rights
(judges resolve disputes
within their jurisdictions)
Physical
Not-Physical
Rights No-Rights
2. Technology
4.. Shared
Information
1. People
3. Organizations
Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet.
In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley.
Hoboken, NJ..
© 2005 IBM Corporation
31 © 2010 IBM Corporation
Value propositions are the building blocks of service system networks
Second foundational premise
of service science
Service system entities
calculate value from multiple
stakeholder perspectives
A value propositions can
be viewed as a request from
one service system to another
to run an algorithm
(the value proposition)
from the perspectives of
multiple stakeholders according
to culturally determined
value principles.
The four primary stakeholder
perspectives are: customer,
provider, authority, and competitor
Stakeholder
Perspective
(the players)
Measure
Impacted
Pricing
Decision
Basic
Questions
Value
Proposition
Reasoning
1.Customer Quality
(Revenue)
Value
Based
Should we?
(offer it)
Model of customer: Do
customers want it? Is
there a market? How
large? Growth rate?
2.Provider Productivity
(Profit)
Cost
Plus
Can we?
(deliver it)
Model of self: Does it play
to our strengths? Can we
deliver it profitably to
customers? Can we
continue to improve?
3.Authority Compliance
(Taxes and
Fines)
Regulated May we?
(offer and
deliver it)
Model of authority: Is it
legal? Does it compromise
our integrity in any way?
Does it create a moral
hazard?
4.Competitor
(Substitute)
Sustainable
Innovation
(Market
share)
Strategic Will we?
(invest to
make it so)
Model of competitor: Does
it put us ahead? Can we
stay ahead? Does it
differentiate us from the
competition?
Value propositions coordinate & motivate resource access
Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet.
In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley.
Hoboken, NJ..
© 2005 IBM Corporation
32 © 2010 IBM Corporation
Access rights are the building blocks of service system ecology
(culture and shared information)
service = value-cocreation
B2B
B2C
B2G
G2C
G2B
G2G
C2C
C2B
C2G
***
provider resources
Owned Outright
Leased/Contract
Shared Access
Privileged Access
customer resources
Owned Outright
Leased/Contract
Shared Access
Privileged Access
OO
SA
PA
LC
OO
LC
SA
PA
S AP C
Competitor Provider Customer Authority
value-proposition
change-experience
dynamic-configurations
(substitute)
time
Third foundational premise
of service science
Service system entities
reconfigure access rights to
resources by mutually agreed to
value propositions
 Access rights
 Access to resources that are owned
outright (i.e., property)
 Access to resource that are
leased/contracted for (i.e., rental car,
home ownership via mortgage,
insurance policies, etc.)
 Shared access (i.e., roads, web
information, air, etc.)
 Privileged access (i.e., personal
thoughts, inalienable kinship
relationships, etc.)
Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet.
In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley.
Hoboken, NJ..
© 2005 IBM Corporation
33 © 2010 IBM Corporation
Premises of service science: What service systems do
Service system entities
dynamically configure (transform)
four types of resources
Service system entities
calculate value from multiple
stakeholder perspectives
Service system entities
reconfigure access rights
to resources by mutually agreed
to value propositions
S AP C
Physical
Not-Physical
Rights No-Rights
2. Technology
4.. Shared
Information
1. People
3. Organizations
Stakeholder
Perspective
Measure
Impacted
Pricing Questions Reasoning
1.Customer Quality Value
Based
Should we? Model of customer:
Do customers want
it?
2.Provider Productivity Cost
Plus
Can we? Model of self: Does
it play to our
strengths?
3.Authority Compliance Regulated May we? Model of authority:
Is it legal?
4.Competitor Sustainable
Innovation
Strategic Will we? Model of
competitor: Does it
put us ahead?
Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet.
In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley.
Hoboken, NJ..

More Related Content

What's hot

Nordic trip 20120909 v2
Nordic trip 20120909 v2Nordic trip 20120909 v2
Nordic trip 20120909 v2ISSIP
 
Service science and policymaking 20111203 v1
Service science and policymaking 20111203 v1Service science and policymaking 20111203 v1
Service science and policymaking 20111203 v1ISSIP
 
Cisco service innovation 20110418 v2
Cisco service innovation 20110418 v2Cisco service innovation 20110418 v2
Cisco service innovation 20110418 v2ISSIP
 
Holistic service engineering 20110915 v1
Holistic service engineering 20110915 v1Holistic service engineering 20110915 v1
Holistic service engineering 20110915 v1ISSIP
 
Competing in a service economy 20120913 v1
Competing in a service economy 20120913 v1Competing in a service economy 20120913 v1
Competing in a service economy 20120913 v1ISSIP
 
Aspen forum 20140619 v5
Aspen forum 20140619 v5Aspen forum 20140619 v5
Aspen forum 20140619 v5ISSIP
 
University and industry interactions for a smarter planet 20110830 v4
University and industry interactions for a smarter planet 20110830 v4University and industry interactions for a smarter planet 20110830 v4
University and industry interactions for a smarter planet 20110830 v4ISSIP
 
China ibm 20110522 v1
China ibm 20110522 v1China ibm 20110522 v1
China ibm 20110522 v1ISSIP
 
Smarter planet sweden us bridge 20120914 v1
Smarter planet sweden us bridge 20120914 v1Smarter planet sweden us bridge 20120914 v1
Smarter planet sweden us bridge 20120914 v1ISSIP
 
Colombia 20140326 v1
Colombia 20140326 v1Colombia 20140326 v1
Colombia 20140326 v1ISSIP
 
Issip 2014028 v3
Issip 2014028 v3Issip 2014028 v3
Issip 2014028 v3ISSIP
 
Portugal iess 20130207 v3
Portugal iess 20130207 v3Portugal iess 20130207 v3
Portugal iess 20130207 v3ISSIP
 
Ten reasons 20130621 v3
Ten reasons 20130621 v3Ten reasons 20130621 v3
Ten reasons 20130621 v3ISSIP
 
Zermatt summit t shapes 20131205 v1
Zermatt summit t shapes 20131205 v1Zermatt summit t shapes 20131205 v1
Zermatt summit t shapes 20131205 v1ISSIP
 
Icss 20130411 v2
Icss 20130411 v2Icss 20130411 v2
Icss 20130411 v2ISSIP
 
Cts csl phoenix 20131104 v1
Cts csl phoenix 20131104 v1Cts csl phoenix 20131104 v1
Cts csl phoenix 20131104 v1ISSIP
 
Ic serv japan 20131016 v2
Ic serv japan 20131016 v2Ic serv japan 20131016 v2
Ic serv japan 20131016 v2ISSIP
 
Smarter planet asee glf 20120920 v2
Smarter planet asee glf 20120920 v2Smarter planet asee glf 20120920 v2
Smarter planet asee glf 20120920 v2ISSIP
 
Strategies for psm funding 20121109 v1
Strategies for psm funding 20121109 v1Strategies for psm funding 20121109 v1
Strategies for psm funding 20121109 v1ISSIP
 
Aascu 20131022 v1
Aascu 20131022 v1Aascu 20131022 v1
Aascu 20131022 v1ISSIP
 

What's hot (20)

Nordic trip 20120909 v2
Nordic trip 20120909 v2Nordic trip 20120909 v2
Nordic trip 20120909 v2
 
Service science and policymaking 20111203 v1
Service science and policymaking 20111203 v1Service science and policymaking 20111203 v1
Service science and policymaking 20111203 v1
 
Cisco service innovation 20110418 v2
Cisco service innovation 20110418 v2Cisco service innovation 20110418 v2
Cisco service innovation 20110418 v2
 
Holistic service engineering 20110915 v1
Holistic service engineering 20110915 v1Holistic service engineering 20110915 v1
Holistic service engineering 20110915 v1
 
Competing in a service economy 20120913 v1
Competing in a service economy 20120913 v1Competing in a service economy 20120913 v1
Competing in a service economy 20120913 v1
 
Aspen forum 20140619 v5
Aspen forum 20140619 v5Aspen forum 20140619 v5
Aspen forum 20140619 v5
 
University and industry interactions for a smarter planet 20110830 v4
University and industry interactions for a smarter planet 20110830 v4University and industry interactions for a smarter planet 20110830 v4
University and industry interactions for a smarter planet 20110830 v4
 
China ibm 20110522 v1
China ibm 20110522 v1China ibm 20110522 v1
China ibm 20110522 v1
 
Smarter planet sweden us bridge 20120914 v1
Smarter planet sweden us bridge 20120914 v1Smarter planet sweden us bridge 20120914 v1
Smarter planet sweden us bridge 20120914 v1
 
Colombia 20140326 v1
Colombia 20140326 v1Colombia 20140326 v1
Colombia 20140326 v1
 
Issip 2014028 v3
Issip 2014028 v3Issip 2014028 v3
Issip 2014028 v3
 
Portugal iess 20130207 v3
Portugal iess 20130207 v3Portugal iess 20130207 v3
Portugal iess 20130207 v3
 
Ten reasons 20130621 v3
Ten reasons 20130621 v3Ten reasons 20130621 v3
Ten reasons 20130621 v3
 
Zermatt summit t shapes 20131205 v1
Zermatt summit t shapes 20131205 v1Zermatt summit t shapes 20131205 v1
Zermatt summit t shapes 20131205 v1
 
Icss 20130411 v2
Icss 20130411 v2Icss 20130411 v2
Icss 20130411 v2
 
Cts csl phoenix 20131104 v1
Cts csl phoenix 20131104 v1Cts csl phoenix 20131104 v1
Cts csl phoenix 20131104 v1
 
Ic serv japan 20131016 v2
Ic serv japan 20131016 v2Ic serv japan 20131016 v2
Ic serv japan 20131016 v2
 
Smarter planet asee glf 20120920 v2
Smarter planet asee glf 20120920 v2Smarter planet asee glf 20120920 v2
Smarter planet asee glf 20120920 v2
 
Strategies for psm funding 20121109 v1
Strategies for psm funding 20121109 v1Strategies for psm funding 20121109 v1
Strategies for psm funding 20121109 v1
 
Aascu 20131022 v1
Aascu 20131022 v1Aascu 20131022 v1
Aascu 20131022 v1
 

Similar to Ssmed short 20101118 v8

Ssmed short 20110810 v15
Ssmed short 20110810 v15Ssmed short 20110810 v15
Ssmed short 20110810 v15ISSIP
 
Service science intro 20110606 v1
Service science intro 20110606 v1Service science intro 20110606 v1
Service science intro 20110606 v1ISSIP
 
Ijcss taiwan 20110526 v3
Ijcss taiwan 20110526 v3Ijcss taiwan 20110526 v3
Ijcss taiwan 20110526 v3ISSIP
 
Thefutureofcitiesandregions 20200724 v5
Thefutureofcitiesandregions 20200724 v5Thefutureofcitiesandregions 20200724 v5
Thefutureofcitiesandregions 20200724 v5ISSIP
 
Brno-IESS 20240207 v11 service-science ai.pptx
Brno-IESS 20240207 v11 service-science ai.pptxBrno-IESS 20240207 v11 service-science ai.pptx
Brno-IESS 20240207 v11 service-science ai.pptxISSIP
 
Brno-IESS 20240207 service-science ai-era v12.pptx
Brno-IESS 20240207 service-science ai-era v12.pptxBrno-IESS 20240207 service-science ai-era v12.pptx
Brno-IESS 20240207 service-science ai-era v12.pptxISSIP
 
T shaped people discipline depth 20090828
T shaped people discipline depth 20090828T shaped people discipline depth 20090828
T shaped people discipline depth 20090828ISSIP
 
Frontiers scope of service science 2011072 v1
Frontiers scope of service science 2011072 v1Frontiers scope of service science 2011072 v1
Frontiers scope of service science 2011072 v1ISSIP
 
Ahfe hsse 20140722 v3
Ahfe hsse 20140722 v3Ahfe hsse 20140722 v3
Ahfe hsse 20140722 v3ISSIP
 
DigitLab 20220511 v8.pptx
DigitLab 20220511 v8.pptxDigitLab 20220511 v8.pptx
DigitLab 20220511 v8.pptxISSIP
 
Service innovation 20130611 v1
Service innovation 20130611 v1Service innovation 20130611 v1
Service innovation 20130611 v1ISSIP
 
Brno-IESS 20240206 v10 service science ai.pptx
Brno-IESS 20240206 v10 service science ai.pptxBrno-IESS 20240206 v10 service science ai.pptx
Brno-IESS 20240206 v10 service science ai.pptxISSIP
 
Matters more than ever 20130618 v3
Matters more than ever 20130618 v3Matters more than ever 20130618 v3
Matters more than ever 20130618 v3ISSIP
 
Service science t shaped for smarter planet 20110727 v1
Service science t shaped for smarter planet 20110727 v1Service science t shaped for smarter planet 20110727 v1
Service science t shaped for smarter planet 20110727 v1ISSIP
 
K tech santa clara 20131114 v1
K tech santa clara 20131114 v1K tech santa clara 20131114 v1
K tech santa clara 20131114 v1ISSIP
 
T shaped people 20130628 v5
T shaped people 20130628 v5T shaped people 20130628 v5
T shaped people 20130628 v5ISSIP
 
T6 20220713 v11.pptx
T6 20220713 v11.pptxT6 20220713 v11.pptx
T6 20220713 v11.pptxISSIP
 
2021004 jim spohrer alan hartman_retirement v3
2021004 jim spohrer alan hartman_retirement v32021004 jim spohrer alan hartman_retirement v3
2021004 jim spohrer alan hartman_retirement v3ISSIP
 
2030 inspire students to build it better 20141230 v1
2030 inspire students to build it better 20141230 v12030 inspire students to build it better 20141230 v1
2030 inspire students to build it better 20141230 v1ISSIP
 
Sts rt 20190913 v6
Sts rt 20190913 v6Sts rt 20190913 v6
Sts rt 20190913 v6ISSIP
 

Similar to Ssmed short 20101118 v8 (20)

Ssmed short 20110810 v15
Ssmed short 20110810 v15Ssmed short 20110810 v15
Ssmed short 20110810 v15
 
Service science intro 20110606 v1
Service science intro 20110606 v1Service science intro 20110606 v1
Service science intro 20110606 v1
 
Ijcss taiwan 20110526 v3
Ijcss taiwan 20110526 v3Ijcss taiwan 20110526 v3
Ijcss taiwan 20110526 v3
 
Thefutureofcitiesandregions 20200724 v5
Thefutureofcitiesandregions 20200724 v5Thefutureofcitiesandregions 20200724 v5
Thefutureofcitiesandregions 20200724 v5
 
Brno-IESS 20240207 v11 service-science ai.pptx
Brno-IESS 20240207 v11 service-science ai.pptxBrno-IESS 20240207 v11 service-science ai.pptx
Brno-IESS 20240207 v11 service-science ai.pptx
 
Brno-IESS 20240207 service-science ai-era v12.pptx
Brno-IESS 20240207 service-science ai-era v12.pptxBrno-IESS 20240207 service-science ai-era v12.pptx
Brno-IESS 20240207 service-science ai-era v12.pptx
 
T shaped people discipline depth 20090828
T shaped people discipline depth 20090828T shaped people discipline depth 20090828
T shaped people discipline depth 20090828
 
Frontiers scope of service science 2011072 v1
Frontiers scope of service science 2011072 v1Frontiers scope of service science 2011072 v1
Frontiers scope of service science 2011072 v1
 
Ahfe hsse 20140722 v3
Ahfe hsse 20140722 v3Ahfe hsse 20140722 v3
Ahfe hsse 20140722 v3
 
DigitLab 20220511 v8.pptx
DigitLab 20220511 v8.pptxDigitLab 20220511 v8.pptx
DigitLab 20220511 v8.pptx
 
Service innovation 20130611 v1
Service innovation 20130611 v1Service innovation 20130611 v1
Service innovation 20130611 v1
 
Brno-IESS 20240206 v10 service science ai.pptx
Brno-IESS 20240206 v10 service science ai.pptxBrno-IESS 20240206 v10 service science ai.pptx
Brno-IESS 20240206 v10 service science ai.pptx
 
Matters more than ever 20130618 v3
Matters more than ever 20130618 v3Matters more than ever 20130618 v3
Matters more than ever 20130618 v3
 
Service science t shaped for smarter planet 20110727 v1
Service science t shaped for smarter planet 20110727 v1Service science t shaped for smarter planet 20110727 v1
Service science t shaped for smarter planet 20110727 v1
 
K tech santa clara 20131114 v1
K tech santa clara 20131114 v1K tech santa clara 20131114 v1
K tech santa clara 20131114 v1
 
T shaped people 20130628 v5
T shaped people 20130628 v5T shaped people 20130628 v5
T shaped people 20130628 v5
 
T6 20220713 v11.pptx
T6 20220713 v11.pptxT6 20220713 v11.pptx
T6 20220713 v11.pptx
 
2021004 jim spohrer alan hartman_retirement v3
2021004 jim spohrer alan hartman_retirement v32021004 jim spohrer alan hartman_retirement v3
2021004 jim spohrer alan hartman_retirement v3
 
2030 inspire students to build it better 20141230 v1
2030 inspire students to build it better 20141230 v12030 inspire students to build it better 20141230 v1
2030 inspire students to build it better 20141230 v1
 
Sts rt 20190913 v6
Sts rt 20190913 v6Sts rt 20190913 v6
Sts rt 20190913 v6
 

More from ISSIP

AI and Education 20240327 v16 for Northeastern.pptx
AI and Education 20240327 v16 for Northeastern.pptxAI and Education 20240327 v16 for Northeastern.pptx
AI and Education 20240327 v16 for Northeastern.pptxISSIP
 
Semiconductors 20240320 v14 corrected slides.pptx
Semiconductors 20240320 v14 corrected slides.pptxSemiconductors 20240320 v14 corrected slides.pptx
Semiconductors 20240320 v14 corrected slides.pptxISSIP
 
Semiconductors 20240320 v14 Narayanasamy event.pptx
Semiconductors 20240320 v14 Narayanasamy event.pptxSemiconductors 20240320 v14 Narayanasamy event.pptx
Semiconductors 20240320 v14 Narayanasamy event.pptxISSIP
 
UCSC-SV HCI_Masters 20240308 v13 AI.pptx
UCSC-SV HCI_Masters 20240308 v13 AI.pptxUCSC-SV HCI_Masters 20240308 v13 AI.pptx
UCSC-SV HCI_Masters 20240308 v13 AI.pptxISSIP
 
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_Career
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_CareerUCSC Tech4Good 20240306 v12 David_Lee Leadership_and_Career
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_CareerISSIP
 
Brno-IESS 20240205 v9 service-science ai.pptx
Brno-IESS 20240205 v9 service-science ai.pptxBrno-IESS 20240205 v9 service-science ai.pptx
Brno-IESS 20240205 v9 service-science ai.pptxISSIP
 
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptx
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptxNordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptx
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptxISSIP
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptxISSIP
 
Bayesian_40Years_Celebration 20231217 v2.pptx
Bayesian_40Years_Celebration 20231217 v2.pptxBayesian_40Years_Celebration 20231217 v2.pptx
Bayesian_40Years_Celebration 20231217 v2.pptxISSIP
 
NextCollab Hallucinations 202311280 v1.pptx
NextCollab Hallucinations 202311280 v1.pptxNextCollab Hallucinations 202311280 v1.pptx
NextCollab Hallucinations 202311280 v1.pptxISSIP
 
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxISSIP
 
Ntegra 20231003 v3.pptx
Ntegra 20231003 v3.pptxNtegra 20231003 v3.pptx
Ntegra 20231003 v3.pptxISSIP
 
ICServ2023 20230914 v8.pptx
ICServ2023 20230914 v8.pptxICServ2023 20230914 v8.pptx
ICServ2023 20230914 v8.pptxISSIP
 
Spohrer Open Innovation Reflections 20230911 v2.pptx
Spohrer Open Innovation Reflections 20230911 v2.pptxSpohrer Open Innovation Reflections 20230911 v2.pptx
Spohrer Open Innovation Reflections 20230911 v2.pptxISSIP
 
Spohrer Terraces 20230711 v17.pptx
Spohrer Terraces 20230711 v17.pptxSpohrer Terraces 20230711 v17.pptx
Spohrer Terraces 20230711 v17.pptxISSIP
 
Worker Productivity 20230628 v1.pptx
Worker Productivity 20230628 v1.pptxWorker Productivity 20230628 v1.pptx
Worker Productivity 20230628 v1.pptxISSIP
 
Spohrer GAMP 20230628 v17.pptx
Spohrer GAMP 20230628 v17.pptxSpohrer GAMP 20230628 v17.pptx
Spohrer GAMP 20230628 v17.pptxISSIP
 
Spohrer SIRs 20230511 v16.pptx
Spohrer SIRs 20230511 v16.pptxSpohrer SIRs 20230511 v16.pptx
Spohrer SIRs 20230511 v16.pptxISSIP
 
Spohrer EMAC 20230509 v14.pptx
Spohrer EMAC 20230509 v14.pptxSpohrer EMAC 20230509 v14.pptx
Spohrer EMAC 20230509 v14.pptxISSIP
 
Spohrer UCSC-SV 20230418 v14.pptx
Spohrer UCSC-SV 20230418 v14.pptxSpohrer UCSC-SV 20230418 v14.pptx
Spohrer UCSC-SV 20230418 v14.pptxISSIP
 

More from ISSIP (20)

AI and Education 20240327 v16 for Northeastern.pptx
AI and Education 20240327 v16 for Northeastern.pptxAI and Education 20240327 v16 for Northeastern.pptx
AI and Education 20240327 v16 for Northeastern.pptx
 
Semiconductors 20240320 v14 corrected slides.pptx
Semiconductors 20240320 v14 corrected slides.pptxSemiconductors 20240320 v14 corrected slides.pptx
Semiconductors 20240320 v14 corrected slides.pptx
 
Semiconductors 20240320 v14 Narayanasamy event.pptx
Semiconductors 20240320 v14 Narayanasamy event.pptxSemiconductors 20240320 v14 Narayanasamy event.pptx
Semiconductors 20240320 v14 Narayanasamy event.pptx
 
UCSC-SV HCI_Masters 20240308 v13 AI.pptx
UCSC-SV HCI_Masters 20240308 v13 AI.pptxUCSC-SV HCI_Masters 20240308 v13 AI.pptx
UCSC-SV HCI_Masters 20240308 v13 AI.pptx
 
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_Career
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_CareerUCSC Tech4Good 20240306 v12 David_Lee Leadership_and_Career
UCSC Tech4Good 20240306 v12 David_Lee Leadership_and_Career
 
Brno-IESS 20240205 v9 service-science ai.pptx
Brno-IESS 20240205 v9 service-science ai.pptxBrno-IESS 20240205 v9 service-science ai.pptx
Brno-IESS 20240205 v9 service-science ai.pptx
 
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptx
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptxNordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptx
NordicHouse 20240116 AI Quantum IFTF dfiscussionv7.pptx
 
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx20240104 HICSS  Panel on AI and Legal Ethical 20240103 v7.pptx
20240104 HICSS Panel on AI and Legal Ethical 20240103 v7.pptx
 
Bayesian_40Years_Celebration 20231217 v2.pptx
Bayesian_40Years_Celebration 20231217 v2.pptxBayesian_40Years_Celebration 20231217 v2.pptx
Bayesian_40Years_Celebration 20231217 v2.pptx
 
NextCollab Hallucinations 202311280 v1.pptx
NextCollab Hallucinations 202311280 v1.pptxNextCollab Hallucinations 202311280 v1.pptx
NextCollab Hallucinations 202311280 v1.pptx
 
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
 
Ntegra 20231003 v3.pptx
Ntegra 20231003 v3.pptxNtegra 20231003 v3.pptx
Ntegra 20231003 v3.pptx
 
ICServ2023 20230914 v8.pptx
ICServ2023 20230914 v8.pptxICServ2023 20230914 v8.pptx
ICServ2023 20230914 v8.pptx
 
Spohrer Open Innovation Reflections 20230911 v2.pptx
Spohrer Open Innovation Reflections 20230911 v2.pptxSpohrer Open Innovation Reflections 20230911 v2.pptx
Spohrer Open Innovation Reflections 20230911 v2.pptx
 
Spohrer Terraces 20230711 v17.pptx
Spohrer Terraces 20230711 v17.pptxSpohrer Terraces 20230711 v17.pptx
Spohrer Terraces 20230711 v17.pptx
 
Worker Productivity 20230628 v1.pptx
Worker Productivity 20230628 v1.pptxWorker Productivity 20230628 v1.pptx
Worker Productivity 20230628 v1.pptx
 
Spohrer GAMP 20230628 v17.pptx
Spohrer GAMP 20230628 v17.pptxSpohrer GAMP 20230628 v17.pptx
Spohrer GAMP 20230628 v17.pptx
 
Spohrer SIRs 20230511 v16.pptx
Spohrer SIRs 20230511 v16.pptxSpohrer SIRs 20230511 v16.pptx
Spohrer SIRs 20230511 v16.pptx
 
Spohrer EMAC 20230509 v14.pptx
Spohrer EMAC 20230509 v14.pptxSpohrer EMAC 20230509 v14.pptx
Spohrer EMAC 20230509 v14.pptx
 
Spohrer UCSC-SV 20230418 v14.pptx
Spohrer UCSC-SV 20230418 v14.pptxSpohrer UCSC-SV 20230418 v14.pptx
Spohrer UCSC-SV 20230418 v14.pptx
 

Ssmed short 20101118 v8

  • 1. © 2010 IBM Corporation IBM University Programs World Wide (IBM UP) SSME+D (for Design) Evolving: Update on Service Science Progress & Directions Dr. James (“Jim”) C. Spohrer spohrer@us.ibm.com Director, IBM University Programs World Wide Event, Place, Date Working Together to Build a Smarter Planet
  • 2. 2 © 2010 IBM CorporationIBM UP (University Programs) WW Outline  Stimulus: Service Growth – The World – IBM  Response: Service Science Priorities – Cambridge University Report – Arizona State University Report  Evolution: SSME+D (for Design) for a Smarter Planet – What is Smarter Planet? – What improves Quality-of-Life? – What is a Service System? Service Science? – How to visualize Service Science? – What’s the Skills Goal? – Where are the Opportunities? – Where is the “Real Science” in SSME+D?
  • 3. 3 © 2010 IBM CorporationIBM UP (University Programs) WW 42%643331.4Germany 37%2611632.1Bangladesh 19%2010701.6Nigeria 45%672852.2Japan 64%6921102.4Russia 61%6614203.0Brazil 34%3916453.5Indonesia 23%762315.1U.S. 35%23176014.4India 142%29224925.7China 40yr Service Growth S % G % A % Labor % WW Nation World’s Large Labor Forces A = Agriculture, G = Goods, S = Service 2010 2010 CIA Handbook, International Labor Organization Note: Pakistan, Vietnam, and Mexico now larger LF than Germany US shift to service jobs (A) Agriculture: Value from harvesting nature (G) Goods: Value from making products (S) Service: Value from IT augmented workers in smarter systems that create benefits for customers and sustainably improve quality of life. Service Growth: The World
  • 4. 4 © 2010 IBM CorporationIBM UP (University Programs) WW 0 20 40 60 80 100 1982 1988 1994 1998 2004 2006 2007 2008 2009 Year Revenue($B) Services Software Systems Financing Service Growth: IBM B2B Service Projects: IT (data center, call centers) & business process outsourcing/reengineering, systems integration, organizational change, etc. What do IBM Service Professionals Do? Run things on behalf of customers, help Transform customers to adopt best practices, and Innovate with customers. Revenue Growth by Segment
  • 5. © 2010 IBM Corporation IBM University Programs World Wide (IBM UP) Stakeholder Priorities Education Research Business Government Stakeholder Priorities Education Research Business Government Service Systems Customer-provider interactions that enable value cocreation Dynamic configurations of resources: people, technologies, organisations and information Increasing scale, complexity and connectedness of service systems B2B, B2C, C2C, B2G, G2C, G2G service networks Service Systems Customer-provider interactions that enable value cocreation Dynamic configurations of resources: people, technologies, organisations and information Increasing scale, complexity and connectedness of service systems B2B, B2C, C2C, B2G, G2C, G2G service networks Service Science To discover the underlying principles of complex service systems Systematically create, scale and improve systems Foundations laid by existing disciplines Progress in academic studies and practical tools Gaps in knowledge and skills Service Science To discover the underlying principles of complex service systems Systematically create, scale and improve systems Foundations laid by existing disciplines Progress in academic studies and practical tools Gaps in knowledge and skills Develop programmes & qualifications Develop programmes & qualifications Service Innovation Growth in service GDP and jobs Service quality & productivity Environmental friendly & sustainable Urbanisation & aging population Globalisation & technology drivers Opportunities for businesses, governments and individuals Service Innovation Growth in service GDP and jobs Service quality & productivity Environmental friendly & sustainable Urbanisation & aging population Globalisation & technology drivers Opportunities for businesses, governments and individuals Skills & Mindset Skills & Mindset Knowledge & Tools Knowledge & Tools Employment & Collaboration Employment & Collaboration Policies & Investment Policies & Investment Develop and improve service innovation roadmaps, leading to a doubling of investment in service education and research by 2015 Develop and improve service innovation roadmaps, leading to a doubling of investment in service education and research by 2015 Encourage an interdisciplinary approach Encourage an interdisciplinary approach The white paper offers a starting point to - The white paper offers a starting point to - Priorities: Succeeding through Service Innovation - A Framework for Progress (http://www.ifm.eng.cam.ac.uk/ssme/) Source: Workshop and Global Survey of Service Research Leaders (IfM & IBM 2008) Glossary of definitions, history and outlook of service research, global trends, and ongoing debate 1. Emerging demand 2. Define the domain 3. Vision and gaps 4. Bridge the gaps 5. Call for actions
  • 6. 6 © 2010 IBM CorporationIBM UP (University Programs) WW Priorities: Research FrameworkPriorities: Research Framework for the Science of Servicefor the Science of Service Pervasive Force: Leveraging Technology to Advance Service Strategy Priorities Execution Priorities Fostering Service Infusion and Growth Improving Well-Being through Transformative Service Creating and Maintaining a Service Culture Stimulating Service Innovation Enhancing Service Design Optimizing Service Networks and Value Chains Effectively Branding and Selling Services Enhancing the Service Experience through Cocreation Measuring and Optimizing the Value of Service Development Priorities Source: Global Survey of Service Research Leaders (Ostrom et al 2010)
  • 7. 7 © 2010 IBM CorporationIBM UP (University Programs) WW Evolution: SSME+D (for Design) for a Smarter Planet What is Smarter Planet? Harmonized smarter systems. INSTRUMENTED We now have the ability to measure, sense and see the exact condition of practically everything. INTERCONNECTED People, systems and objects can communicate and interact with each other in entirely new ways. INTELLIGENT We can respond to changes quickly and accurately, and get better results by predicting and optimizing for future events. WORKFORCE PRODUCTS SUPPLY CHAIN COMMUNICATIONS TRANSPORTATION BUILDINGS IT NETWORKS
  • 8. 8 © 2010 IBM CorporationIBM UP (University Programs) WW What improves Quality-of-Life? Service System Innovations A. Systems that focus on flow of things that humans need (~15%*) 1. Transportation & supply chain 2. Water & waste recycling/Climate & Environment 3. Food & products manufacturing 4. Energy & electricity grid/Clean Tech 5. Information and Communication Technologies (ICT access) B. Systems that focus on human activity and development (~70%*) 6. Buildings & construction (smart spaces) (5%*) 7. Retail & hospitality/Media & entertainment/Tourism & sports (23%*) 8. Banking & finance/Business & consulting (wealthy) (21%*) 9. Healthcare & family life (healthy) (10%*) 10. Education & work life/Professions & entrepreneurship (wise) (9%*) C. Systems that focus on human governance - security and opportunity (~15%*) 11. Cities & security for families and professionals (property tax) 12. States/regions & commercial development opportunities/investments (sales tax) 13. Nations/NGOs & citizens rights/rules/incentives/policies/laws (income tax) 20/10 0/19? 2/7 2/1 7/6 1/1 5/17 1/0 24/24 2/20 7/10 5/2 3/3 0/0 1/2 Quality of Life = Quality of Service + Quality of Jobs + Quality of Investment-Opportunities * = US Labor % in 2009. “61 papers Service Design Conference 2010 (Japan) / 75 papers Service Marketing Conference 2010 (Portugal)”
  • 9. 9 © 2010 IBM CorporationIBM UP (University Programs) WW What is a Service System? What is Service Science? …customers just name <your favorite provider> …researchers just name <your favorite discipline> Economics & Law Design/ Cognitive Science Systems Engineering Operations Computer Science/ Artificial Intelligence Marketing “a service system is a human-made system to improve customer-provider interactions, or value-cocreation” “service science is the interdisciplinary study of service systems & value-cocreation”
  • 10. 10 © 2010 IBM CorporationIBM UP (University Programs) WW How to visualize service science? The Systems-Disciplines Matrix Systems that focus on flows of things Systems that governSystems that support people’s activities transportation & supply chain water & waste food & products energy & electricity building & construction healthcare & family retail & hospitality banking & finance ICT & cloud education &work city secure state scale nation laws social sciences behavioral sciences management sciences political sciences learning sciences cognitive sciences system sciences information sciences organization sciences decision sciences run professions transform professions innovate professions e.g., econ & law e.g., marketing e.g., operations e.g., public policy e.g., game theory and strategy e.g., psychology e.g., industrial eng. e.g., computer sci e.g., knowledge mgmt e.g., stats & design e.g., knowledge worker e.g., consultant e.g., entrepreneur stakeholders Customer Provider Authority Competitors resources People Technology Information Organizations change History (Data Analytics) Future (Roadmap) value Run Transform (Copy) Innovate (Invent) Starting Point 1: The Stakeholders (As-Is) Starting Point 2: Their Resources (As-Is) Change Potential: Thinking (Has-Been & Might-Become) Value Realization: Doing (To-Be) disciplines systems
  • 11. 11 © 2010 IBM CorporationIBM UP (University Programs) WW What is the skills goal? T-Shaped professionals, ready for T-eamwork! Many disciplines (understanding & communications) Many systems (understanding & communications) Deepinonediscipline (analyticthinking&problemsolving) Deepinonesystem (analyticthinking&problemsolving) Many team-oriented service projects completed (resume: outcomes, accomplishments & awards) SSME+D = Service Science, Management, Engineering + Design
  • 12. 12 © 2010 IBM CorporationIBM UP (University Programs) WW Where are the opportunities? Everywhere!
  • 13. 13 Time ECOLOGY 14B Big Bang (Natural World) 10K Cities (Human-Made World) Sun writing (symbols and scribes) Earth written laws bacteria (uni-cell life) sponges (multi-cell life) money (coins) universities clams (neurons) trilobites (brains) printing press (books steam engine200M bees (social division-of-labor) 60 transistor Where is the “Real Science” in SSME+D? In the interdisciplinary sciences that study the natural and human-made worlds… Unraveling the mystery of evolving hierarchical-complexity in new populations… To discover the world’s structures and mechanisms for computing non-zero-sum
  • 14. 14 © 2010 IBM CorporationIBM UP (University Programs) WW Thank-You! Questions? Dr. James (“Jim”) C. Spohrer Director, IBM University Programs (IBM UP) WW spohrer@us.ibm.com “Instrumented, Interconnected, Intelligent – Let’s build a Smarter Planet.” – IBM “If we are going to build a smarter planet, let’s start by building smarter cities” – CityForward.org “Universities are major employers in cities and key to urban sustainability.” – Coalition of USU “Cities learning from cities learning from cities.” – Fundacion Metropoli “The future is already here… It is just not evenly distributed.” – Gibson “The best way to predict the future is to create it/invent it.” – Moliere/Kay “Real-world problems may not/refuse to respect discipline boundaries.” – Popper/Spohrer “Today’s problems may come from yesterday’s solutions.” – Senge “History is a race between education and catastrophe.” – H.G. Wells “The future is born in universities.” – Kurilov “Think global, act local.” – Geddes
  • 15. 15 © 2010 IBM CorporationIBM UP (University Programs) WW Understanding the Human-Made World See Paul Romer’s Charter Cities Video: http://www.ted.com/talks/paul_romer.html Also see: Symbolic Species, Deacon Company of Strangers, Seabright Sciences of the Artificial, Simon
  • 16. 16 © 2010 IBM CorporationIBM UP (University Programs) WW World Population & Service System Scaling
  • 17. 17 © 2010 IBM CorporationIBM UP (University Programs) WW Service System Ecology: Conceptual Framework  Resources: People, Technology, Information, Organizations  Stakeholders: Customers, Providers, Authorities, Competitors  Measures: Quality, Productivity, Compliance, Sustainable Innovation  Access Rights: Own, Lease, Shared, Privileged Ecology (Populations & Diversity) Entities (Service Systems) Interactions (Service Networks) Outcomes (Value Changes) Value Proposition (Offers/Risks/Incentives) Governance Mechanism (Rules/Constraints/Penalties) Access Rights (Relationships) Measures (Rankings of Entities) Resources (Roles in Processes) Stakeholders (Valuation Perspectives) win-win lose-lose win-lose lose-win Identity (Aspirations/Lifecycle) Reputation (Opportunities/Variety) prefer sustainable non-zero-sum outcomes
  • 18. 18 © 2010 IBM CorporationIBM UP (University Programs) WW How many service system entities are there? ~10B  Nations (~100) – States/Provinces (~1000) • Cities/Regions (~10,000) – Educational Institutions (~100,000) – Healthcare Institutions (~100,000) – Other Enterprises (~10,000,000) • Largest 2000 • >50% GDP WW – Families/Households (~1B) – Persons (~10B)  Balance/Improve – Quality of Life, generation after generation • GDP/Capita – Quality of Service • Customer Experience – Quality of Jobs • Employee Experience – Quality of Investment-Opportunities • Owner Experience • Entrepreneurial Experience – Sustainability • GDP/Energy-Unit – % Fossil – % Renewable • GDP/Mass-Unit – % New Inputs – % Recycled Inputs Nation State/Province City/Region Educational Institution Healthcare Institution Other Enterprises (job roles) Family (household) Person (professional)
  • 19. 19 © 2010 IBM CorporationIBM UP (University Programs) WW19 Vision for the Educational Continuum: Individuals & Institutions Learning Any Device Learning TECHNOLOGY IMMERSION PERSONAL LEARNING PATHS Student-Centered Processes KNOWLEDGE SKILLS Learning Communities GLOBAL INTEGRATION Services Specialization ECONOMIC ALIGNMENT Systemic View of Education Intelligent • Aligned Data • Outcomes Insight Instrumented • Student-centric • Integrated Assessment Interconnected • Shared Services • Interoperable Processes Continuing Education Higher Education Secondary School Primary School Workforce Skills Individuals Learning Continuum The Educational Continuum Institutions Learning Continuum Economic Sustainability http://www-935.ibm.com/services/us/gbs/bus/html/education-for-a-smarter-planet.html
  • 20. 20 © 2010 IBM CorporationIBM UP (University Programs) WW Fun: CityOne Game to Learn “CityInvesting” Serious Game to teach problem solving for real issues in key industries, helping companies to learn how to work smarter. Energy, Water, Banking, Retail http://www.ibm.com/cityone
  • 21. 21 © 2010 IBM CorporationIBM UP (University Programs) WW Priority 1: Urban Sustainability & Service Innovation Centers A. Research: Holistic Modeling & Analytics of Service Systems Modeling and simulating cities will push state-of-the-art capabilities for planning interventions in complex system of service systems Includes maturity models of cities, their analytics capabilities, and city-university interactions Provides an interdisciplinary integration point for many other university research centers that study one specialized type of system Real-world data and advanced analytic tools are increasingly available B. Education: STEM (Science Tech Engineering Math) Pipeline & LLL City simulation and intervention planning tools can engage high school students and build STEM skills of the human-made world (service systems) Role-playing games can prepare students for real-world projects LLL = Life Long Learning C. Entrepreneurship: Job Creation City modeling and intervention planning tools can engage university students and build entrepreneurial skills Grand challenge competitions can lead to new enterprises
  • 22. 22 © 2010 IBM CorporationIBM University Programs (IBM UP) WW A. Flow of things 1. Transportation: Traffic congestion; accidents and injury 2. Water: Access to clean water; waste disposal costs 3. Food: Safety of food supply; toxins in toys, products, etc. 4. Energy: Energy shortage, pollution 5. Information: Equitable access to info and comm resources B. Human activity & development 6. Buildings: Inefficient buildings, environmental stress (noise, etc.) 7. Retail: Access to recreational resources 8. Banking: Boom and bust business cycles, investment bubbles 9. Healthcare: Pandemic threats; cost of healthcare 10. Education: High school drop out rate; cost of education C. Governing 11. Cities: Security and tax burden 12. States: Infrastructure maintenance and tax burden 13. Nations: Justice system overburdened and tax burden Cities as Holistic Service Systems: All the systems Example: Singapore
  • 23. 23 © 2010 IBM CorporationIBM UP (University Programs) WW Universities as Holistic Service Systems: All the systems A. Flow of things 1. Transportation: Traffic congestion; parking shortages. 2. Water: Access costs; reduce waste 3. Food: Safety; reduce waste. 4. Energy: Access costs; reduce waste 5. Information: Cost of keeping up best practices. B. Human activity & development 6. Buildings: Housing shortages; Inefficient buildings 7. Retail: Access and boundaries. Marketing. 8. Banking: Endowment growth; Cost controls 9. Healthcare: Pandemic threat. Operations. 10. Education: Cost of keeping up best practices.. C. Governing 11. Cities: Town & gown relationship. 12. States: Development partnerships.. 13. Nations: Compliance and alignment.
  • 24. 24 © 2010 IBM CorporationIBM UP (University Programs) WW Why Universities Matter: % GDP and % Top 500 Japan China Germany France United KingdomItaly Russia SpainBrazil Canada India Mexico AustraliaSouth Korea NetherlandsTurkey Sweden y = 0,7489x+ 0,3534 R² = 0,719 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 %globalGDP % top 500 universities Strong Correlation (2009 Data): National GDP and University Rankings
  • 25. 25 © 2010 IBM CorporationIBM UP (University Programs) WW Teaching SSME+D  Fitzsimmons & Fitzsimmons – Graduate Students – Schools of Engineering & Businesses  Teboul – Undergraduates – Schools of Business & Social Sciences – Busy execs (4 hour read)  Ricketts – Practitioners – Manufacturers In Transition  And 200 other books… – Zeithaml, Bitner, Gremler; Gronross, Chase, Jacobs, Aquilano; Davis, Heineke; Heskett, Sasser, Schlesingher; Sampson; Lovelock, Wirtz, Chew; Alter; Baldwin, Clark; Beinhocker; Berry; Bryson, Daniels, Warf; Checkland, Holwell; Cooper,Edgett; Hopp, Spearman; Womack, Jones; Johnston; Heizer, Render; Milgrom, Roberts; Norman; Pine, Gilmore; Sterman; Weinberg; Woods, Degramo; Wooldridge; Wright; etc.  URL: http://www.cob.sjsu.edu/ssme/refmenu.asp Reaching the Goal: How Managers Improve a Services Business Using Goldratt’s Theory of Constraints By John Ricketts, IBM Service Management: Operations, Strategy, and Information Technology By Fitzsimmons and Fitzsimmons, UTexas Service Is Front Stage: Positioning services for value advantage By James Teboul, INSEAD
  • 26. 26 © 2010 IBM CorporationIBM UP (University Programs) WW Reality: “Product-Service-System” Networks F B Service System Entity Product-Service-System B F SSE B F SSE B F SSE B F SSE B F SSE B F SSE B F SSE B F SSE B F SSE B F SSE B F F F B B Service Business Product Business Front-Stage Marketing/Customer Focus Back-Stage Operations/Provider Focus BasedonLevi e.g., IBM e.g., Citibank “Everybodyisin Theindustrial
  • 27. © 2005 IBM Corporation 27 © 2010 IBM Corporation Service-dominant logic  Service is the application of competences for the benefit of another entity  Service is exchanged for service  Value is always co-created  Goods are appliances for delivery  All economies are service economies  All businesses are service businesses Vargo, S. L. & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of Marketing, 68, 1 – 17. Resource Integrator/ Beneficiary (“Firm”) Resource Integrator/ Beneficiary (“Customer”) Value C o-creation Value Configuration Density
  • 28. © 2005 IBM Corporation 28 © 2010 IBM Corporation What is value? Value depends on the capabilities a system has to survive and create beneficial change in its environment. Taking advantage of the service another system offers means incorporating improved capabilities. Value can be defined as system improvement in an environment. All ways that systems work together to improve or enhance one another’s capabilities can be seen as being value creating. Vargo, S. L., Maglio, P. P., and Akaka, M. A. (2008). On value and value co-creation: A service systems and service logic perspective. European Management Journal, 26(3), 145-152.
  • 29. © 2005 IBM Corporation 29 © 2010 IBM Corporation What is a service system? Service involves at least two entities applying competences and making use of individual and shared resources for mutual benefit. We call such interacting entities service systems. A. Service Provider • Individual • Organization • Public or Private C. Service Target: The reality to be transformed or operated on by A, for the sake of B • People, dimensions of • Business, dimensions of • Products, goods and material systems • Information, codified knowledge B. Service Client • Individual • Organization • Public or Private Forms of Ownership Relationship (B on C) Forms of Service Relationship (A & B co-create value) Forms of Responsibility Relationship (A on C) Forms of Service Interventions (A on C, B on C) Gadrey, J. (2002). The misuse of productivity concepts in services: Lessons from a comparison between France and the United States. In J. Gadrey & F. Gallouj (Eds). Productivity, Innovation, and Knowledge in Services: New Economic and Socio-economic Approaches. Cheltenham UK: Edward Elgar, pp. 26 – 53. Spohrer, J., Maglio, P. P., Bailey, J. & Gruhl, D. (2007). Steps toward a science of service systems. Computer, 40, 71-77.
  • 30. © 2005 IBM Corporation 30 © 2010 IBM Corporation Resources are the building blocks of service systems Formal service systems can contract Informal service systems can promise/commit Trends & Countertrends (Evolve and Balance): Informal <> Formal Social <> Economic Political <> Legal Routine Cognitive Labor <> Computation Routine Physical Labor <> Technology Transportation (Atoms) <> Communication (Bits) Qualitative (Tacit) <> Quantitative (Explicit) First foundational premise of service science Service system entities dynamically configure four types of resources The named resource is Physical or Not-Physical (physicists resolve disputes) The named resource has Rights or No-Rights (judges resolve disputes within their jurisdictions) Physical Not-Physical Rights No-Rights 2. Technology 4.. Shared Information 1. People 3. Organizations Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet. In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley. Hoboken, NJ..
  • 31. © 2005 IBM Corporation 31 © 2010 IBM Corporation Value propositions are the building blocks of service system networks Second foundational premise of service science Service system entities calculate value from multiple stakeholder perspectives A value propositions can be viewed as a request from one service system to another to run an algorithm (the value proposition) from the perspectives of multiple stakeholders according to culturally determined value principles. The four primary stakeholder perspectives are: customer, provider, authority, and competitor Stakeholder Perspective (the players) Measure Impacted Pricing Decision Basic Questions Value Proposition Reasoning 1.Customer Quality (Revenue) Value Based Should we? (offer it) Model of customer: Do customers want it? Is there a market? How large? Growth rate? 2.Provider Productivity (Profit) Cost Plus Can we? (deliver it) Model of self: Does it play to our strengths? Can we deliver it profitably to customers? Can we continue to improve? 3.Authority Compliance (Taxes and Fines) Regulated May we? (offer and deliver it) Model of authority: Is it legal? Does it compromise our integrity in any way? Does it create a moral hazard? 4.Competitor (Substitute) Sustainable Innovation (Market share) Strategic Will we? (invest to make it so) Model of competitor: Does it put us ahead? Can we stay ahead? Does it differentiate us from the competition? Value propositions coordinate & motivate resource access Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet. In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley. Hoboken, NJ..
  • 32. © 2005 IBM Corporation 32 © 2010 IBM Corporation Access rights are the building blocks of service system ecology (culture and shared information) service = value-cocreation B2B B2C B2G G2C G2B G2G C2C C2B C2G *** provider resources Owned Outright Leased/Contract Shared Access Privileged Access customer resources Owned Outright Leased/Contract Shared Access Privileged Access OO SA PA LC OO LC SA PA S AP C Competitor Provider Customer Authority value-proposition change-experience dynamic-configurations (substitute) time Third foundational premise of service science Service system entities reconfigure access rights to resources by mutually agreed to value propositions  Access rights  Access to resources that are owned outright (i.e., property)  Access to resource that are leased/contracted for (i.e., rental car, home ownership via mortgage, insurance policies, etc.)  Shared access (i.e., roads, web information, air, etc.)  Privileged access (i.e., personal thoughts, inalienable kinship relationships, etc.) Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet. In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley. Hoboken, NJ..
  • 33. © 2005 IBM Corporation 33 © 2010 IBM Corporation Premises of service science: What service systems do Service system entities dynamically configure (transform) four types of resources Service system entities calculate value from multiple stakeholder perspectives Service system entities reconfigure access rights to resources by mutually agreed to value propositions S AP C Physical Not-Physical Rights No-Rights 2. Technology 4.. Shared Information 1. People 3. Organizations Stakeholder Perspective Measure Impacted Pricing Questions Reasoning 1.Customer Quality Value Based Should we? Model of customer: Do customers want it? 2.Provider Productivity Cost Plus Can we? Model of self: Does it play to our strengths? 3.Authority Compliance Regulated May we? Model of authority: Is it legal? 4.Competitor Sustainable Innovation Strategic Will we? Model of competitor: Does it put us ahead? Spohrer, J & Maglio, P. P. (2009) Service Science: Toward a Smarter Planet. In Introduction to Service Engineering. Editors Karwowski & Salvendy. Wiley. Hoboken, NJ..

Editor's Notes

  1. SSME+D (for Design) has been evolving. IBM launched SSME (Service Science Management Engineering) in 2004, working with university, industry, and government partners around the world – this talk presents a service science update. Reference content from this presentation as: Spohrer, JC (2010) Presentation: SSME+D (for Design) Evolving: Update on Service Science Progress &amp; Directions. Event. Place. Date. Permission to redistribute granted upon request to spohrer@us.ibm.com
  2. This talk will covers three topics: A stimulus, a response, and an evolution Stimulus: Service Growth (for the World and IBM) Response: Service Science Priorities (from the Cambridge University report and the Arizona State University report) Evolution: Service science for a Smarter Planet – tries to answer a series of questions - What is smarter planet - What improves quality-of-life - What is a service system? What is service science? - What’s the skills goal? - Where are projects happening? - Where is the science? Today, at IBM we are applying service science to help build a Smarter Planet, one that is instrumented, interconnected, and intelligent through better decision-making from improved analytics and models of complex service system networks. We are working together with government, academics, and industry partners to build Smarter Cities in a growing number of developed and emerging nations around the world.
  3. Over the last two hundred years, the US has shifted from agriculture to manufacturing to service jobs, as dominant. The growth in service jobs parallels the growth of the information economy, and many of the jobs are knowledge-intensive, including finance, health, education, government, B2B, etc. Developed and emerging markets are seeing the same shift – this is a global trend. What was clear was that all developed and emerging market nations where shifting to service economies due to increasing use of technology in manufacturing and agriculture (productivity increases), and increasing use of information technology in traditional service areas, including utilities, building maintenance, retail &amp; hospitality, finance, health, education, and government – making the service sector more knowledge-intensive and requiring more technical skills. As well as more outsourcing, leading to more B2B service. In the back-up slides we introduce the concept of product-service-systems to better understand the way the global economies are evolving… ServicesOLD= Not Natural or Manufactured Products (Negative) ServiceNEW = Applying Knowledge/Resources to Benefit Customers/Stakeholders (Positive) Why does outsourcing the jobs or changing the business model (e.g., leasing, mass-customizaton) cause the category to change? It shouldn’t, modern farms and factories are service systems too… See the following papers… Vargo &amp; Lusch (2004) Evolving to a New Dominant Logic for Marketing. Journal of Marketing. Tien &amp; Berg (2006) On Services Research and Education. Journal of Systems Science and Systems Engineering. Two ways the Firm can think about the world: Firm – can I think of things my customers want to own, and how can I make and sell those things. Firm – can I think of ongoing relationships/interactions with my customers and their stakeholders, and how can I establish and continuously improve those interactions in a win-win manner Fact: Service growth in “national economies” All nations are experiencing a macro-economic shift from value in producing physical things (agriculture and goods) to value from apply capabilities for the benefit of others (services). Observation: Service sector is where the job growth is, not only in the US but around the world. Implication: Most science and engineering and management jobs will be in the service sector. For example, Kenneth Smith of H.B.Maynard (one of the oldest and most prestigious industrial engineering consulting firms) said - “Historically, most of our business at H.B. Maynard was manufacturing, today roughly 80% is in the retail sector…” So why do we still train most scientist and engineers for manufacturing age jobs? Could this be part of the reason that in most US engineering schools only 50% of entering engineering students graduate with an engineering degree? The service sector is the fastest growing segment of global economies. In the US, in 1800 90% of people were worked on farms, and today less than 3% of workers are employed in agriculture. Goods, or manufacturing of physical products, peaked in the US in the mid-1950’s and has been decreasing ever since due to automation and off shoring. However, services, especially complex information and business services, as we will see is where the growth is. But the growth in the service sector jobs is not just in the developed countries, it is also happening in the developing countries. In fact, the International Labor Organization, reports that 2006 was the first time in human history that more people worker in the service sector than in agriculture world wide. 40% in service sector, 39.7% in agriculture, and 21.3% in manufacturing, with the growth coming by moving people from agriculture to services – this represents the largest labor force migration in human history. 1970 estimates % of service in labor force (change to 2005/2009 est) China 12 +17 142% India 17 +6 35% US 62 +14 23% Indonesia 29 +10 34% Brazil 41 +25 61% Russia 42 +27 64% Japan 48 +19 45% Nigeria 16 +3 19% Bangledesh 19 +7 37% Germany 45 +19 42%
  4. IBM has seen its service revenue grow, and lead the growth of IBM in the last two decades. In the last two decades the growth was B2B, in the coming decade it will be B2G service growth – powered in part by shared service across government and cloud computing… Fact: Service growth in “manufacturing” businesses 2008 GTS 40 (39.2) GBS 20 (19.6) SWG 22 (22.1) S&amp;T 20 (19.2) FIN 2 (2.6) Total 103.6B Profit 45.6B
  5. Researchers at University of Cambridge hosted industry and academic service researchers to create a framework for service innovation success… The framework is outlined in five columns – service innovation is the priority, we need to study service systems and networks, we call this study service science, and multiple stakeholders have to align to advance service science, and double investment in service research and education by 2015. You can read the complete report at the following URL: http://www.ifm.eng.cam.ac.uk/ssme/ To ensure we are making progress, we need to see how much government, academia, and industry are investing in service research and innovation. IfM and IBM (2008). Succeeding through service innovation: A service perspective for education, research, business and government. Cambridge, UK: University of Cambridge Institute for Manufacturing.
  6. Researchers at Arizona State University in the US recently surveyed service researchers from around the world to create a research priorities framework for service science. You can read the executive summary at the following website: http://wpcarey.asu.edu/csl/knowledge/Research-Priorities.cfm You can read the complete article in the Journal of Service Research… Ostrom, AL, MJ Bitner, SW Brown, KA Burkhard, M Goul, V Smith-Daniels, H Demirkan, E Rabinovich (2010) Moving Forward and Making a Difference: Research Priorities for the Science of Service. Journal of Service Research. 13(1). 4-36.
  7. The evolution of service science is to apply service science to create a Smarter Planet. What is smarter planet? A smarter planet is built out of many harmonized smarter systems, systems that are instrumented, interconnected, and intelligent (data, models, and analytics software are used to make better decisions) The world is instrumented meaning everything has computers, cameras, gps or other sensors – cars, stop lights, signs, roads, hospitals, retail stores, rivers, bridges, etc.. The world is getting more and more interconnected. If we could capture the right data and analyze it, we can make our planet smarter. IBM has been working on cleaning up pollution in Galway Bay, Ireland. The marine scientists told the IBMers that the mussels in the water close their shells when something bad enters the water. So IBM put sensors in some of the mussels and connected the sensors to an alert system and visualization system. When a pollutant enters the water, the mussels shut their shells, the sensors sends an alert and water management officials begin to take action to clean it up. Over time, they realize that a particular ship may be coming into the bay every other Tuesday, causing the problem, and they can go after the ship company to not drop pollutants or to find another way to rid of waste. This optimization takes place with other causes of the pollutants.
  8. What improves quality of life? Service system innovations. Every day we are customers of 13 types of service systems. If any of them fail, we have a “bad day” (Katrina New Orleans) I have been to two service science related conferences recently, one in Japan on Service Design and one in Portugal on Service Marketing… the papers from the proceedings of the conferences mapped onto all of these types of service systems… The numbers in yellow: 61 papers Service Design (Japan) / 75 papers Service Marketing (Portugal) Number in yellow Fist number: Service Design Conference, Japan 2nd International Service Innovation Design Conference (ISIDC 2010), Future University Hakodate, Japan Second number Service Marketing Conference, Portugal, AMA SERVSIG at U Porto, Portugal Numbers in yellow: Number of AMA ServSIG 2010 abstracts that study each type of service system… (http://www.servsig2010.org/) Of 132 total abstracts… 10 studies all types of service systems 19 could not be classified In a moment we will look at definitions of quality of life, but for the moment, consider that everyday we all depend on 13 systems to have a relatively high quality of life, and if any one of these systems goes out or stops providing good service, then our quality of life suffers…. Transportation, Water, Food, Energy, Information, Buildings, Retail, Banking &amp; Financial Services (like credit cards), Healthcare, Education, and Government at the City, State, and National levels…. Volcanic ash, hurricanes, earthquakes, snow storms, floods are some of the types of natural disasters that impact the operation of these service systems – but human made challenges like budget crises, bank failures, terrorism, wars, etc. can also impact the operation of these 13 all important service systems. Moreover, even when these systems are operating normally – we humans may not be satisfied with the quality of service or the quality of jobs in these systems. We want both the quality of service and the quality of jobs in these systems to get better year over year, ideally, but sometimes, like healthcare and education, the cost of maintaining existing quality levels seems to be a challenge as costs continue to rise… why is that “smarter” or sustainable innovation, which continuously reduces waste, and expands the capabilities of these systems is so hard to achieve? Can we truly achieve smarter systems and modern service? A number of organizations are asking these questions – and before looking at how these questions are being formalized into grand challenge questions for society – let’s look at what an IBM report concluded after surveying about 400 economists…. ==================== Quality of life for the average citizen (voter) depends on the quality of service and quality of jobs in 13 basic systems….. Local progress (from the perspective of the average citizen or voter) can be defined for our purposes as (quality of service &amp; jobs) + returns (the provider, which is really the investor perspective, the risk taker in provisioning the service) + security (the authority or government perspective on the cost of maintaining order, and dealing with rules and rule violations) + smarter (or the first derivative – does all this get better over time – parents often talk about wanting to help create a better world for their children - sustainable innovation, means reducing waste, being good stewards of the planet, and expanding our capabilities to do things better and respond to challenges and outlier events better)…. Without putting too fine a point on it, most of the really important grand challenges in business and society relate to improving quality of life. Quality of life is a function of both quality of service from systems and quality of opportunities (or jobs) in systems. We have identified 13 systems that fit into three major categories – systems that focus on basic things people need, systems that focus on people’s activities and development, and systems that focus on governing. IBM’s Institute for Business Value has identified a $4 trillion challenge that can be addressed by using a system of systems approach. Employment data… 2008 http://www.bls.gov/news.release/ecopro.t02.htm A. 3+0.4+0.5+8.9+1.4+2.0=16.2 B. C.13.1+1.8=14.9 Total 150,932 (100%) Transportation (Transportation and Warehousing 4,505 (3%)) Water &amp; Waste (Utilities 560 (0.4%)) Food &amp; Manufacturing (Mining 717 (0.5%), Manufacturing 13,431 (8.9%), Agriculture, Forestry, Fishing 2,098 (1.4%)) Energy &amp; Electricity Information (Information 2,997 (2%)) Construction (Construction 7,215 (4.8%)) Retail &amp; Hospitality (Wholesale Trade 5,964 (4.0%), Retail Trade 15,356 (10.2%), Leisure and hospitality 13,459 (8.9%)) Financial &amp; Banking/Business &amp; Consulting (Financial activities 8,146 (5.4%), Professional and business services 17,778 (11.8%), Other services 6,333 (4.2%)) Healthcare (Healthcare and social assistance 15,819 (10.5%) Education (Educational services 3,037 (2%), Self-employed and unpaid family 9,313 (6.2%), Secondary jobs self-employed and unpaid family 1,524 (1.0%)) City Gov State Gov (State and local government 19,735 (13.1%)) Federal Gov (Federal government 2,764 (1.8%))
  9. The reasonable questions: What is a service system? What is service science? A service system is a human-made system to improve customer-provider interactions, or value-cocreation. As a customer, who is your favorite service provider? Don’t have one – well that is one reason we need service science : - ) More seriously service systems can be very complex… Because service systems are so complex, many different disciplines study different aspects of them… you can think of marketing as study the trunk of the elephant (the customer) and operations as studying the tale (the provider), design and psychology the user experience, computer science the information systems part, systems engineering some aspects of the engineered parts of the system, and economics other aspects of the value creation, not studied by the systems engineers… in fact many people say “Service science is just &amp;lt;and then they name their favorite discipline&amp;gt;” Service Science is the study of service systems and value cocreation…. including routine and non-routine, direct and indirect, customer and provider interactions that achieve value-cocreation outcomes for all stakeholders Economics Service1 = economic activities that are not agriculture or manufacturing Service3 = a transformation that one economic entity performs with the permission of a second entity, that transforms the second entity or a possession of the second entity Service4 = an exchange between economic entities that does not transfer ownership of a physical thing. Service Science Service2 = human-made value-cocreation phenomena, specifically a mutually beneficial outcome proposed, agreed to, and realized by two or more service system entities interacting. Service system entities can be people, businesses, nations, and any other economic entities with legal rights, such as the ability to own property, enter into binding contracts, etc. Quantifiable measures associated with service system entity interactions over the life-time of the entity, include quality, productivity, compliance, and sustainable innovation measures. Service system entities configure four types of resources, accessible by four types of access rights, and reason about four types of stakeholders when designing value-cocreation interactions, and evaluating them via their processes of valuing. Both collaboration and competition can both be/not be forms of value-cocreation, depending on context Operations Service5 = a production process that requires inputs from a customer entity Computer Science Service6 = a modular capability that can be computationally accessed and composed with others Systems Engineering Service7 = a system (with inputs, outputs, capacity limits, and performance characteristics) which is interconnected with other systems that may seek to access its capabilities to create benefits, and in which local optimization of the system interactions may not lead to global performance improvements Design and Psychology Service8 = an experience of a customer entity that results from that customer entity interacting with provider entities’ offerings Marketing Service9 = the application of competence (e.g., resources, skills, capabilities) for the benefit of another entity Service10 = a customer-provider interaction that creates mutual benefits
  10. How to visualize service science? The systems-disciplines matrix… SSMED or service science, for short, provides a transdisciplinary framework for organizing student learning around 13 systems areas and 13 specialized academic discipline areas. We have already discussed the 13 systems areas, and the three groups (flows, human activity, and governing)… the discipline areas are organized into four areas that deal with stakeholders, resources, change, and value creation. If we have time, I have included some back-up slides that describes service science in the next level of detail. However, to understand the transdisciplinary framework, one just needs to appreciate that discipline areas such as marketing, operations, public policy, strategy, psychology, industrial engineering, computer science, organizational science, economics, statistics, and others can be applied to any of the 13 types of systems. Service science provides a transdisciplinary framework to organize problem sets and exercises that help students in any of these disciplines become better T-shaped professionals, and ready for teamwork on multidisciplinary teams working to improve any type of service system. As existing disciplines graduate more students who are T-shaped, and have exposure to service science, the world becomes better prepared to solve grand challenge problems and create smarter systems that deliver modern service. Especially, where students have had the opportunity to work as part of an urban innovation center that links their university with real-world problems in their urban environment – they will have important experiences to help them contribute to solving grand challenge problems. ================================================ SSMED (Service Science, Management, Engineering and Design) Systems change over their life cycle… what is inside become outside and vice versa In the course of the lifecycle… systems are merged and divested (fusion and fission) systems are insourced and outsourced (leased/contracted relations) systems are input and output (owner ship relations) SSMED standard should ensure people know 13 systems and 13 disciplines/professions (the key is knowing them all to the right level to be able to communicate and problem-solve effectively) Multidisciplinary teams – solve problems that require discipline knowledge Interdisciplinary teams – solve harder problems, because they create new knowledge in between disciplines Transdisciplinary teams – solve very hard problems, because the people know discipline and system knowledge Ross Dawson says “Collaboration drives everything” in his talk about the future of universities… https://deimos.apple.com/WebObjects/Core.woa/BrowsePrivately/griffith.edu.au.3684852440
  11. What is the skills goal? T-shaped professional, ready for T-eamwork… T-shaped people are ready for T-eamwork – they are excellent communicators, with real world experience, and deep (or specialized) in at least one discipline and systems area, but with good team work skills interacting with others who are deep in other disciplines and systems areas. Also, T-shaped professionals also make excellent entrepreneurs, able to innovate with others to create new technology, business, and societal innovations. T-shaped people are adaptive innovators, and well prepared for life-long learning in case they need to become deep in some new area… they are better prepared than I-shaped people, who lack the breadth. Therefore, IBM and other public and private organizations are looking to hire more of this new kind of skills and experience profile – one that is both broad and deep.. These organizations have been collaborating with universities around the world to establish a new area of study known as service science, management, engineering, and design (SSMED) – to prepare computer scientists, MBAs, industrial engineers, operations research, management of information systems, systems engineers, and students of many other discipline areas – to understand better how to work on multidisciplinary teams and attack the grand challenge problems associated with improving service systems…
  12. Where are the opportunities? Everywhere! IBM 2009 Annual Report – survey of smarter planet projects around the world…. But how do we involve universities more? How do we weave a “total solution” that includes universities in smarter city projects? What is the role of the university in creating a smarter city? In the continuous improvement of quality of life in cities? And aren’t universities really mini-cities within cities? … and on this Map of the World, in the 2009 IBM Annual report one can see a sampling of IBM Smarter Planet engagements around the world… working to improve the complete spectrum of system of systems… often with a focus on one system in one city… such as smarter energy in venezula or smarter medical research for healthcare in the US… some of these engagements include a partnership between the cities and universities – but much more opportunity exists… to help focus cities and universities, among others, on these opportunities… IBM and other organizations have begun to identify grand challenge problems…. For example, if you look at the IBM Smarter Planet website….
  13. In conclusion, let’s consider the big picture – starting with the big bang…. and evolution of the earth, life on earth, human life, cities, universities, and the modern world… the evolution of observed hierarchical-complexity Many people still ask -- where is the science in the “Service Science?” One answer is that the science is hidden away in each of the component disciplines that study service systems, scientifically from their particular perspective… However, the big picture answer is “Ecology” - Ecology is the study of the abundance and distribution of entities (populations of things) in an environment… and how the entities interact with each other and their environment over successive generations of entities. The natural sciences (increasingly interdisciplinary) study the left side, using physics, chemistry, and biology Service science (originated as interdisciplinary) studies the right side, using history, economics, management, engineering, design, etc. Service science is still a young area, but from the growth of service in nations and businesses to the opportunity to apply service science to build a smarter planet, innovate service systems, and improve quality of life… it is an emerging science with bright future, and yes… it will continue to evolve : - ) Most people think of ecology in terms of living organisms, like plants and animals in a natural environment. However, the concept of ecology is more general and can be applied to entities as diverse as the populations of types of atoms in stars to the types of businesses in a national economy. I want to start my talk today on “service,” by first thinking broadly about ecologies of entities and their interactions. Eventually, we will get to human-made service system entities and human-made value-cocreation mechanisms… but for today, let’s really start at the very beginning – the big bang. About 14B years ago (indicated by the top of this purple bar), our universe started with a big bang. And through a process of known as fusion, stars turned populations of lighter atoms like hydrogen into heavier atoms like helium, and when stars of a certain size have done all the fusion they could, they would start slowing down, and eventually collapse rapidly, go nova, explode and send heavier atoms out into the universe, and eventually new stars form, and the process repeats over and over, creating stars with different populations of types of atoms, including heavier and heavier elments. So where did our sun and the earth come from…. Eventually after about ten billion years in the ecology of stars and atoms within stars, a very important star formed our sun (the yellow on the left) – and there were plenty of iron and nickel atoms swirling about as our sun formed, and began to burn 4.5B years ago, and the Earth formed about 4.3B years ago (the blue on the left)… In less than a billion years, the early earth evolved a remarkable ecology of complex molecules, including amino acids, and after less than a billion years, an ecology of bacteria took hold on early earth (the bright green on the left). The ecology of single cell bacteria flourished and after another billion years of interactions between the bacteria, the first multicellular organisms formed, and soon the ecology of sponges (the light blue on the left) and other multi-cellular entities began to spread out across the earth. Then after nearly two billion years, a type of division of labor between the cells in multicelluar organism lead to entities with cells acting as neurons in the first clams (the red on the left), and these neurons allowed the clams to open and close at the right time. After only 200 million years, tribolites appeared the first organisms with dense neural structures that could be called brains appeared (the black on the left), and then after about 300 million years, multicelluar organisms as complex as bees appeared (the olive on the left), and these were social insects, with division of labor among individuals in a population, with queens, drones, worker bees. So 200 million years ago, over 13B years after the big bang, the ecology of living entities is well established on planet earth, including social entities with brains and division of labor between individuals in a population…. Living in colonies that some have compared to human cities – where thousands of individuals live in close proximity and divide up the work that needs to be done to help the colony survive through many, many generations of individuals that come and go. Bees are still hear today. And their wingless cousins, called ants, have taken division of labor to incredible levels of complexity in ant cities in nearly every ecological niche on the planet, except under water. Now let’s look at the human ecology,and the formation of service system entities and value-cocreation mechanisms, a small portion of which is represented by the colored bar on the right. Recall bees appeared about 200 million years ago, a small but noticeable fraction of the age of the universe. Now take 1% of this little olive slice, which is 2 million years… that is how long people have been on earth, just one percent of this little olive slice here. What did people do in most of that 2million years? Basically, they spread out to every corner of the planet, and changed their skin color, eye colors, and hair colors, they spread out and became diverse with many different appearances and languages. It took most of that 200 millions just to spread out and cover most of the planet with people. When there was no more room to spread out the density of people in regions went up…. Now take 1% of that 2million years of human history which basically involved spreading out to every corner of the planet and becoming more diverse, recall ecology is the study of abundance and distribution and types of interactions, and 1% of that 2million years is just 20,000 years, and now divide that in half and that represents 10,000 years. The bar on the right represents 10,000 years or just 500 generations of people, if a generation is about 20 years. 500 generations ago humans built the first cities, prior to this there were no cities so the roughly 100M people spread out around the world 0% lived in cities, but about 500 generations ago the first cities formed, and division of labor and human-made service interactions based on division of labor took off – this is our human big bang – the explosion of division of labor in cities. Cities were the big bang for service scientists, because that is when the diversity of specialized roles and division of labor, which is at the heart of a knowledge-based service economy really begins to take off... So cities are the first really important type of human-made service system entities for service scientists to study, the people living in the city, the urban dwellers or citizens are both customers of and providers of service to each other, and division of labor is the first really important type of human-made value-cocreation mechanism for service scientists to study. (Note families are a very important type of service system entity, arguably more important than cities and certainly much older – however, family structure is more an evolution of primate family structure – and so in a sense is less of a human-made service system entity and more of an inherited service system entity… however, in the early cities often the trades were handed down father to son, and mother to daughter as early service businesses were often family run enterprises in which the children participated – so families specialized and the family names often reflect those specialization – for example, much later in England we get the family names like smith, mason, taylor, cooper, etc.) So to a service scientist, we are very excited about cities as important types of service system entities, and division of labor as an important type of value-cocreation mechanism, and all this really takes off in a big way just 500 generations ago when the world population was just getting to around 100M people spread out all around the world – so 10,000 years about about 1% of the worlds population was living in early versions of cities. It wasn’t until 1900 that 10% of the world’s then nearly 2B people lived in cities, and just this last decade that 50% of the worlds 6B people lived in cities, and by 2050 75% of the worlds projected 10B population will be urban dwellers. If there is a human-made service system that we need to design right, it is cities. It should be noted that the growth of what economist call the service sector, parallels almost exactly the growth of urban population size and increased division-of-labor opportunities that cities enable – so in a very real sense SERVICE GROWTH IS CITY GROWTH OR URBAN POPULATION GROWTH… in the last decade service jobs passed agriculture jobs for the first time, and urban dwellers passed rural dwellers for the first time. But I am starting to get ahead of myself, let’s look at how the human-made ecology of service system entities and value-cocreation mechanisms evolved over the last 10,000 years or 500 generations. The population of artifacts with written language on them takes off about 6000 years ago or about 300 generations ago (the yellow bar on the right). Expertise with symbols helped certain professions form – and the first computers were people writing and processing symbols - scribes were required, another division of labor – so the service of reading and writing, which had a limited market at first began to emerge to help keep better records. Scribes were in many ways the first computers, writing and reading back symbols – and could remember more and more accurately than anyone else. Written laws (blue on right) that govern human behavior in cities takes off about 5000 years ago – including laws about property rights, and punishment for crimes. Shortly there after, coins become quite common as the first type of standard monetary and weight measurement system (green on right). So legal and economic infrastructure for future service system entities come along about 5000 years ago, or 250 generations ago, with perhaps 2% of the population living in cities…. (historical footnote: Paper money notes don’t come along much until around about 1400 years ago – bank notes, so use of coins is significantly older than paper money, and paper money really required banks as service system entities before paper money could succeed.). About 50 generations ago, we get the emergence of another one of the great types of service system entities – namely universities (light blue line) – students are the customers, as well as the employers that need the students. Universities help feed the division of labor in cities that needed specialized skills, including the research discipline skills needed to deepen bodies of knowledge in particular discipline areas. The red line indicates the population of printing presses taking off in the world, and hence the number of books and newspapers. This was only about 500 years or 25 generations ago. Now university faculty and students could more easily get books, and cities began to expand as the world’s population grew, and more cities had universities as well. The black line indicates the beginning of the industrial revolution about 200 years ago, the sream engine, railroads, telegraph and proliferation of the next great type of service system entity – the manufacturing businesses - that benefited from standard parts, technological advances and scale economies, and required professional managers and engineers. About 100 years ago, universities began adding business schools to keep up with the demand for specialized business management skills, and many new engineering disciplines including civil engineering, mechanical engineering, chemical engineering, and electrical engineering, fuel specialization and division of labor. By 1900, just over 100 years ago, or 5 generations ago 10% of the worlds population, or about 200 million people were living in cities and many of those cities had universities or were starting universities. Again fueling specialization, division of labor, and the growth of service as a component of the economy measured by traditional economists. Finally, just 60 years ago or 3 generations ago, the electronic semiconductor transistor was developed (indicated by the olive colored line on the right), and the information age took off, and many information intensive service activities could now benefit from computers to improve technology (e.g., accounting) and many other areas. So to recap, cities are one of the oldest and most important type of service system and universities are an important and old type of service system, as well as many types of businesses. Service science is the study of service system entities, their abundance and distribution, and their interactions. Division of labor is one of the most important types of value cocreation mechanisms, and people often need specialized skills to fill roles in service systems. Service science like ecology studies entities and their interactions over successive generations. New types of human-made service system entities and value-cocreation mechanisms continue to form, like wikipedia and peer production systems. Age of Unvierse (Wikipedia) The age of the universe is the time elapsed between the Big Bang and the present day. Current theory and observations suggest that the universe is 13.75 ±0.17 billion years old.[1] Age of Sun The Sun was formed about 4.57 billion years ago when a hydrogen molecular cloud collapsed.[85] Solar formation is dated in two ways: the Sun&amp;apos;s current main sequence age, determined using computer models of stellar evolution and nucleocosmochronology, is thought to be about 4.57 billion years.[86] This is in close accord with the radiometric date of the oldest Solar System material, at 4.567 billion years ago.[87][88] Age of Earth The age of the Earth is around 4.54 billion years (4.54 × 109 years ± 1%).[1][2][3] This age has been determined by radiometric age dating of meteorite material and is consistent with the ages of the oldest-known terrestrial and lunar samples. The Sun, in comparison, is about 4.57 billion years old, about 30 million years older. Age of Bacteria (Uni-cellular life) The ancestors of modern bacteria were single-celled microorganisms that were the first forms of life to develop on earth, about 4 billion years ago. For about 3 billion years, all organisms were microscopic, and bacteria and archaea were the dominant forms of life.[22][23] Although bacterial fossils exist, such as stromatolites, their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny, and these studies indicate that bacteria diverged first from the archaeal/eukaryotic lineage.[24] The most recent common ancestor of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago.[25][26] Cities (Wikipedia) Early cities developed in a number of regions of the ancient world. Mesopotamia can claim the earliest cities, particularly Eridu, Uruk, and Ur. After Mesopotamia, this culture arose in Syria and Anatolia, as shown by the city of Çatalhöyük (7500-5700BC). Writing (Wikipedia) Writing is an extension of human language across time and space. Writing most likely began as a consequence of political expansion in ancient cultures, which needed reliable means for transmitting information, maintaining financial accounts, keeping historical records, and similar activities. Around the 4th millennium BC, the complexity of trade and administration outgrew the power of memory, and writing became a more dependable method of recording and presenting transactions in a permanent form[2]. In both Mesoamerica and Ancient Egypt writing may have evolved through calendrics and a political necessity for recording historical and environmental events. Written Law (Wikipedia) The history of law is closely connected to the development of civilization. Ancient Egyptian law, dating as far back as 3000 BC, contained a civil code that was probably broken into twelve books. It was based on the concept of Ma&amp;apos;at, characterised by tradition, rhetorical speech, social equality and impartiality.[81][82] By the 22nd century BC, the ancient Sumerian ruler Ur-Nammu had formulated the first law code, which consisted of casuistic statements (&amp;quot;if ... then ...&amp;quot;). Around 1760 BC, King Hammurabi further developed Babylonian law, by codifying and inscribing it in stone. Hammurabi placed several copies of his law code throughout the kingdom of Babylon as stelae, for the entire public to see; this became known as the Codex Hammurabi. The most intact copy of these stelae was discovered in the 19th century by British Assyriologists, and has since been fully transliterated and translated into various languages, including English, German, and French.[83] Money (Wikipedia) Many cultures around the world eventually developed the use of commodity money. The shekel was originally both a unit of currency and a unit of weight.[10]. The first usage of the term came from Mesopotamia circa 3000 BC. Societies in the Americas, Asia, Africa and Australia used shell money – usually, the shell of the money cowry (Cypraea moneta) were used. According to Herodotus, and most modern scholars, the Lydians were the first people to introduce the use of gold and silver coin.[11] It is thought that these first stamped coins were minted around 650–600 BC.[12] Universities (Wikipedia) Prior to their formal establishment, many medieval universities were run for hundreds of years as Christian cathedral schools or monastic schools (Scholae monasticae), in which monks and nuns taught classes; evidence of these immediate forerunners of the later university at many places dates back to the 6th century AD.[7] The first universities were the University of Bologna (1088), the University of Paris (c. 1150, later associated with the Sorbonne), the University of Oxford (1167), the University of Palencia (1208), the University of Cambridge (1209), the University of Salamanca (1218), the University of Montpellier (1220), the University of Padua (1222), the University of Naples Federico II (1224), the University of Toulouse (1229).[8][9] Printing and Books (Wikipedia) Johannes Gutenberg&amp;apos;s work on the printing press began in approximately 1436 when he partnered with Andreas Dritzehn—a man he had previously instructed in gem-cutting—and Andreas Heilmann, owner of a paper mill.[34] However, it was not until a 1439 lawsuit against Gutenberg that an official record exists; witnesses&amp;apos; testimony discussed Gutenberg&amp;apos;s types, an inventory of metals (including lead), and his type molds.[34]
  14. Permission to re-distribute granted by Jim Spohrer – please request via email (spohrer@us.ibm.com) This talk provided a concise introduction to SSME+D evolving, and applying Service Science to build a Smarter Planet… Reference content from this presentation as: Spohrer, JC (2010) Presentation: SSME+D (for Design) Evolving: Update on Service Science Progress &amp; Directions. Event. Place. Date. Permission to redistribute granted upon request to spohrer@us.ibm.com But I want to end by sharing some relevant quotes… The first you may have seen on TV or heard on the radio – it is from IBM – Instrumented, Interconnected, Intellient – Let’s build a smarter planet (more on this one shortly) Second, If we are going to build a smarter planet, let’s start by building smarter cities, (as we will see cities turn out to be ideal building blocks to get right for a number of reasons) And if we focus on cities, then the quote from the Foundation Metropolitan paints the right picture, cities learning from cities learning from cities… The next is probably the best known quote in the group “think global, act local” (we will revisit this important thought) Since all the major cities of the world have one or more universities, the next quote is of interest “the future is born in universities” And two more well known quotes about the future – the best way to predict the future is to build it, and the future is already here… it is just not evenly distributed. The next quote is an important one for discipline specialists at universities to keep in mind – real-world problems may not respect discipline boundaries (so be on guard for myopic solutions that appear too good to be true, they often are!)… Because if we are not careful, today’s problems may come from yesterday’s solutions… And since we cannot anticipate all risks or quickly resolve them once we notice them, we should probably never forget what HG Wells said - that history is a race between education and catastrophe… In a world of accelerating change, this last statement also serves as a reminder that the pace of real innovation in education is a good target for study in terms of smarter systems and modern service…
  15. The lesson of history -- technologies underlie improved value creation mechanisms when combined with the right societal rules/incentives. Nonzero – summarizes all of human history, and is about win-win interactions (what “service science” calls value-cocreation mechanisms) Morals and markets – summarizes all of human history, and is about balancing what is good for individuals with what is good for the collective. Paul Romer’s Charter Cities video – summarizes the consequences of bad rules in recent history (Africa, North Korea, Haiti, etc.), and is about the need for the right rules and incentives, including rules to change rules (cities are the right size to experiment – Hong Kong, Singapore, etc.).
  16. Question: How can we maintain a high quality of life when population is increasing, flat, decreasing? Understand “service system scaling” will be a key part of the answer… Source of UN chart is Wikipedia “World Population” World population from 1800 to 2100, based on UN 2004 projections (red, orange, green) and US Census Bureau historical estimates (black). The human population “carrying capacity” of planet Earth depends on the ecology of service systems we can collectively create and maintain…. Especially important building blocks to get right are cities and universities – we call these tightly-coupled holistic service systems, and argue for their importance as a topic of research in the emerging area known as service science… http://en.wikipedia.org/wiki/Carrying_capacity The carrying capacity of a biological species in an environment is the population size of the species that the environment can sustain indefinitely, given the food, habitat, water and other necessities available in the environment. For the human population, more complex variables such as sanitation and medical care are sometimes considered as part of the necessary establishment. As population density increases, birth rate often decreases and death rate typically increases. Permission to re-distribute granted by Jim Spohrer – please request via email (spohrer@us.ibm.com)
  17. The world view is that of an ecology of service-system-entities. Ecology is the study of the populations of entities, and their interactions with each other and the environment Types of Service System Entities, Interactions, and Outcomes is what a service scientist studies. Service systems include: Person, Family/Household, Business, Citiy, Nation, University, Hospital, Call-Center, Data-Center, etc. – any legal entity that can own property and be sued We see that Resources (People, Technology, Information, Organizations) and Stakeholder (Customers, Providers, Authorities, Competitors) are part of the conceptual framework for service science.
  18. Both individual people and institutions/organizations are learning… this is the vision of the educational continuum… http://www-935.ibm.com/services/us/gbs/bus/html/education-for-a-smarter-planet.html
  19. Example mission: Your city’s water usage has increased at twice the rate of population growth, and supplies are becoming tested (and possibly polluted by human activity); your municipality is losing as much as 40% of its water supply through leaky infrastructure; and your energy costs are steadily increasing. You must institute a Water Management System so you have accurate real-time data to make decisions on delivering the highest water quality in most economical way. http://www-01.ibm.com/software/solutions/soa/innov8/cityone/index.html
  20. The mission of the Urban Service Systems Sustainability and Innovation Centers will be to increase understanding in three areas that can have a direct impact on quality of life in cities…. Holistic modeling, STEM Education Pipeline, and Entrepreneurship &amp; Job Creation…. Area of Future Growth: Holistic Modeling and Analytics for Cities (Urban Service System Sustainability and Innovation Centers) Improve Input for this area: STEM (Science Technology Engineering and Mathematics) Education Pipeline, and Improve Output for this area: Jobs &amp; Entrepreneurship Regarding quality of living and quality of infrastructure, Boston rated #33 in both rankings for 2009... http://www.mercer.com/qualityoflivingpr#Top_50_cities:_Quality_of_living What would it take to get Boston into the #1 position in both rankings? Also, of interest - ranking by population... http://www.mongabay.com/cities_pop_01.htm For truly large cities, Japan seems to do best in quality of living and quality of infrastructure.... Mercer evaluates local living conditions in all the 420 cities it surveys worldwide. Living conditions are analysed according to 39 factors, grouped in 10 categories: Political and social environment (political stability, crime, law enforcement, etc) Economic environment (currency exchange regulations, banking services, etc) Socio-cultural environment (censorship, limitations on personal freedom, etc) Health and sanitation (medical supplies and services, infectious diseases, sewage, waste disposal, air pollution, etc) Schools and education (standard and availability of international schools, etc) Public services and transportation (electricity, water, public transport, traffic congestion, etc) Recreation (restaurants, theatres, cinemas, sports and leisure, etc) Consumer goods (availability of food/daily consumption items, cars, etc) Housing (housing, household appliances, furniture, maintenance services, etc) Natural environment (climate, record of natural disasters)
  21. … cities are a system of systems with dense population, which creates challenges and opportunities and even the potential for many new types of careers… some statistics… Demographic change: During the first decade of the 21st century, for the first time in history, more than 50% of the world’s population live in cities and the urban population of all nations continues to grow. For developed nations, the urban population has reached 70% and continues to increase. Challenges: The negative impacts of urbanization are well known from traffic congestion, housing, clean water, and energy shortages, pollution, waste disposal costs, pandemic risks, high school drop-out rates, tax burden, and environmental stress (noise, lights at night, carcinogens, toxins, etc.). Opportunity: Cities may be the key building blocks for a sustainable planet, where innovations can quickly scale to impact the lives of millions of people. While technology will not be a panacea, rapidly advancing technology will offer new opportunities for efficiencies. Cities provide opportunities to more rapidly deploy and scale up advanced technologies to benefit the people living in a region. Careers: As urban sustainability and innovation projects increase in quantity, attractive long-term career paths will open up for students properly prepared. Examples: More US cities are adopting climate change action plans. PlaNYC (released 2007) has a focus initiatives that apply technology to reduce waste and continuously improve a long-term sustainability and quality of life roadmap for the city. In October 2009, 30 new initiatives to grow New York City’s green economy were announced by the mayor’s office, including an urban technology innovation center to promote smart building best practices and develop NYC’s green tech workforce. Without putting too fine a point on it, most of the really important grand challenges in business and society relate to improving quality of life. Quality of life is a function of both quality of service from systems and quality of opportunities (or jobs) in systems. We have identified 13 systems that fit into three major categories – systems that focus on basic things people need, systems that focus on people’s activities and development, and systems that focus on governing. IBM’s Institute for Business Value has identified a $4 trillion challenge that can be addressed by using a system of systems approach.
  22. A growing number of cities are partnering with their local universities to address their grand challenge problems and to improve quality of life through investments in smarter systems and modern service… To understand how universities can respond and help cities, it is important to understand that universities are mini-cities (system of systems) – with their own operations and challenges. Cities are important building blocks in nations. Universities are important building blocks in cities.
  23. Talk about US being off the chart with 23% WW GDP and 30% of Top Ranked University in WW Top 500, China and other large population emerging markets rising rapidly, and US moving down towards the rest of the pack…. 2004-2009: Relative Change China (+3,+2), US (-3.5,-5) Graph based on data from Source: http://www.arwu.org/ARWUAnalysis2009.jsp Analysis: Antonio Fischetto and Giovanna Lella (URome, Italy) students visiting IBM Almaden US is still “off the chart” – China projected to be “off the chart” in less than 10 years: US % of WW Top-Ranked Universities: 30,3 % US % of WW GDP: 23,3 % Correlating Nation’s (2004) % of WW GDP to % of WW Top-Ranked Universities US is literally “off the chart” – but including US make high correlation even higher: US % of WW Top-Ranked Universities: 33,865 % US % of WW GDP: 28,365 %
  24. Teaching Service Science – start with who is the audience? Graduate students, from engineering, business, social sciences, information school, etc? Undergraduate students majoring in engineering, business, social sciences, information science, etc.? Business practitioners in manufacturing businesses, traditional service businesses, non-profits, government agencies? Service Science Reading List – Many textbooks and reference-textbooks included: http://www.cob.sjsu.edu/ssme/refmenu.asp
  25. Also, more and more product businesses, those in both manufacturing, mining, agriculture, are increasingly part of value networks and service chains that require thinking about service innovation. All businesses have both a front-stage (direct customer contact) and a back-stage (no-direct customer contact)… so the distinction between product businesses and service businesses is disappearing, and more and more people talk about product-service-systems or service-system-entities. The point is simply that as more of the world lives in cities, and as more product businesses see themselves as product-service-systems, the trend towards service is inexorable, and cannot be ignored in research and education. Academia has begun to study service both from a front-stage customer-interaction focus as well as a back-stage operational efficiciency focus. Service innovation and design impact both front-stage and back-stage, because when value chains and networks form, front-stage and back-stage are relative terms. The focus is on people, their capabilities (skills and competencies), their tools, and who and what they interact with most in value creation networks. Human-Capabilities-Tools- and-Interactions in Value Creation Networks Managers and Engineers fromboth Service and Product Businesses seeking to improve their business performance Academic Researchers from many disciplines and schools seeking funding, data sets, and access for both empirical studies and action research (design and interventions) to advance scientific knowledge and publish results in top journals Policy Makers and Concerned Citizens seeking to improve the performance of their governments and societal institutions Quality-of-Life including Quality of service to customers Quality of jobs to employees Quality of investment opportunities to stakeholders Sustainable Innovation People, Planet,Profits Should We, Can We, May We, Will We Surprisingly to some, the service science community includes managers and engineers from both service busineses and product businesses. Service businesses can learn a lot about operational efficiency from product businesses, and product businesses can learn a lot about customer value from service businesses. This is because as Harvard’s Theordore Leavitt observed in his famous 1974 paper, all businesses include some amount of front stage activities (direct customer contact) and some amount of back stage activities (no direct customer contact). In traditional service firms, the front stage dominates and in traditional product companies the back stage dominates, in terms of number of employees. In addition to Managers and Engineers from both Service and Produce Businesses, the service science commnuity also includes academic researchers from many disciplines and schools, including engineering schools, management schools, social science schools, and information schools. Furthermore, the service science community is not restricted to for-profit businesses and academics, the community also include government policy makers and concerned citizens seeking to improve the performance of government institutions and diverse types of non-profit organizations.
  26. Resource Integrator = Service-Systems = Product-Service-System A service system entity can be a person, a business, or a government entity. A service system has to have rights and be able to own property – either the focal person or focal group (role fillers) in case of an organization. Think of an individual person like a sole proprietorship, with all the resources that are part of the legal entity.
  27. Self-service or value-creation: When an entity achieves an outcome, some change in the world that is desired and that they worked to create – then the entity has created value for itself. Service or value-cocreation: When an entity achieved an outcome, some change in the world that is desired and they worked to create, but could not have done without the help or the resources of another entity, that willing provided the help or resource in exchange for benefits – then value-cocreation has occurred. Value-cocreation is not a zero-sum game, where for one entity to gain another entity must lose (e.g., not the case that for me to get +3, you have to get -3, so in the end it is a total of zero (0) together) Value-cocreation is a positive-sum game, where both entities can and do gain (e.g., the case that I can get +3 and you can get +4, so in the end it is a total of +7 together).
  28. Types of service interactions: Direct: Service with direct customer-provider interaction, a patient visiting a doctor for an exam Indirect: Service with indirect access, a patient emails their doctor, and the doctor responds to the email Self: Self-service with the customer in the role of the employee, for example, pumping gas at a gas station (using the stations equipment), or taking one’s own blood pressure at home, using a blood pressure machine provided by the doctor’s office
  29. Four key types of resources: People – example, a doctor or a nurse Technology – example, a computer or car, but can also be the environment, such as an agricultural-field or a coal-mine Organizations – example, IBM or a university like MIT or a government like the national government of Germany Shared Information – example, could be language, laws, measures, etc.
  30. Four Key Stakeholder Perspectives: P = Provider C = Customer A = Authority S = Substitute (Competitor)
  31. Four key types of access rights: Owned Outright – buying a car or a house Leased/Contract – renting a car or hotel room Shared Access – a bus or sleep-over-at-the-aquarium Privileged Access – a government vehicle assigned to you or living in the governor’s mansion
  32. The three premises of service science deal with resources, stakeholders, and access rights. Four Key Stakeholder Perspectives: P = Provider C = Customer A = Authority S = Substitute (Competitor) Reference content from this presentation as: Spohrer, JC (2010) Presentation: SSME+D (for Design) Evolving: Update on Service Science Progress &amp; Directions. Event. Place. Date. Permission to redistribute granted upon request to spohrer@us.ibm.com