SlideShare a Scribd company logo
R 上で定義された実数値関数列 {fn}∞n=1 が R 上で実
数値関数 f に一様収束すると する。
(1) 各 fn が R 上で一様連続であるならば, f も R
上で一様連続であることを示せ。
証明 [杉浦光夫]解析入門1p305
(2) An ={fn(x);x∈R}(n=1,2,3,...) , A={f(x); x∈R}とおく. 各An
が 上に有界ならば, A も上に有界であり,
lim
𝑛→∞
(sup An) = sup A が成立することを示せ。

More Related Content

More from nabeshimamasataka

双曲幾何学
双曲幾何学双曲幾何学
双曲幾何学
nabeshimamasataka
 
曲面の面積の計算と証明
曲面の面積の計算と証明曲面の面積の計算と証明
曲面の面積の計算と証明
nabeshimamasataka
 
ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束
nabeshimamasataka
 
少し複雑な積分問題
少し複雑な積分問題少し複雑な積分問題
少し複雑な積分問題
nabeshimamasataka
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
nabeshimamasataka
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束
nabeshimamasataka
 
積分と漸化式
積分と漸化式積分と漸化式
積分と漸化式
nabeshimamasataka
 
ガウス積分
ガウス積分ガウス積分
ガウス積分
nabeshimamasataka
 
2次曲面の極値の問題
2次曲面の極値の問題2次曲面の極値の問題
2次曲面の極値の問題
nabeshimamasataka
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
nabeshimamasataka
 
発散と収束の証明
発散と収束の証明発散と収束の証明
発散と収束の証明
nabeshimamasataka
 
面積と長さの問題
面積と長さの問題面積と長さの問題
面積と長さの問題
nabeshimamasataka
 
ラプシアン作用素
ラプシアン作用素ラプシアン作用素
ラプシアン作用素
nabeshimamasataka
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体
nabeshimamasataka
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラス
nabeshimamasataka
 
3つの球体の合体
3つの球体の合体3つの球体の合体
3つの球体の合体
nabeshimamasataka
 
凸角形全体の位相の性質
凸角形全体の位相の性質凸角形全体の位相の性質
凸角形全体の位相の性質
nabeshimamasataka
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題
nabeshimamasataka
 
位相と有限集合
位相と有限集合位相と有限集合
位相と有限集合
nabeshimamasataka
 
(a,b]位相とコンパクト性
(a,b]位相とコンパクト性(a,b]位相とコンパクト性
(a,b]位相とコンパクト性
nabeshimamasataka
 

More from nabeshimamasataka (20)

双曲幾何学
双曲幾何学双曲幾何学
双曲幾何学
 
曲面の面積の計算と証明
曲面の面積の計算と証明曲面の面積の計算と証明
曲面の面積の計算と証明
 
ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束ゼータ関数と任意の正の数への収束
ゼータ関数と任意の正の数への収束
 
少し複雑な積分問題
少し複雑な積分問題少し複雑な積分問題
少し複雑な積分問題
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
 
関数の各点収束と一様収束
関数の各点収束と一様収束関数の各点収束と一様収束
関数の各点収束と一様収束
 
積分と漸化式
積分と漸化式積分と漸化式
積分と漸化式
 
ガウス積分
ガウス積分ガウス積分
ガウス積分
 
2次曲面の極値の問題
2次曲面の極値の問題2次曲面の極値の問題
2次曲面の極値の問題
 
D上の関数の極値の問題
D上の関数の極値の問題D上の関数の極値の問題
D上の関数の極値の問題
 
発散と収束の証明
発散と収束の証明発散と収束の証明
発散と収束の証明
 
面積と長さの問題
面積と長さの問題面積と長さの問題
面積と長さの問題
 
ラプシアン作用素
ラプシアン作用素ラプシアン作用素
ラプシアン作用素
 
2つのトーラスの合体
2つのトーラスの合体2つのトーラスの合体
2つのトーラスの合体
 
メビウスの帯とトーラス
メビウスの帯とトーラスメビウスの帯とトーラス
メビウスの帯とトーラス
 
3つの球体の合体
3つの球体の合体3つの球体の合体
3つの球体の合体
 
凸角形全体の位相の性質
凸角形全体の位相の性質凸角形全体の位相の性質
凸角形全体の位相の性質
 
コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題コンパクトとハウスドルフの問題
コンパクトとハウスドルフの問題
 
位相と有限集合
位相と有限集合位相と有限集合
位相と有限集合
 
(a,b]位相とコンパクト性
(a,b]位相とコンパクト性(a,b]位相とコンパクト性
(a,b]位相とコンパクト性
 

一様収束の問題

  • 1. R 上で定義された実数値関数列 {fn}∞n=1 が R 上で実 数値関数 f に一様収束すると する。 (1) 各 fn が R 上で一様連続であるならば, f も R 上で一様連続であることを示せ。 証明 [杉浦光夫]解析入門1p305 (2) An ={fn(x);x∈R}(n=1,2,3,...) , A={f(x); x∈R}とおく. 各An が 上に有界ならば, A も上に有界であり, lim 𝑛→∞ (sup An) = sup A が成立することを示せ。