SlideShare a Scribd company logo
Time-Space Duality
Space
System is linear since Helmholtz equation which U must satisfy is linear.
System is shift invariant since free space is invariant to displacement of the coordinate system.
2 ( )
( , ) ( , ) x yj x y
x y x yh x y H e d d
  
   

 

   is impulse response of the LTI system.
2 ( )
( , ) ( , ) x yj x y
x yH h x y e dxdy
  
 



   is Transfer function of the LTI system.
( ).
2 2 2 2 2
1 1 1
( )
: ( , , )
2 2
0: 2 :
sin ( / ) sin ( ), sin ( / )
: ( , ) ( , ,0)
: (
x y z
k kx y
x y
j k x k y k zjk r
x y z
k x x x k y y
j k x k y
h
h
plane wave U x y z Ae Ae
f
U k U k k k k k
c c
k k k k
harmonic input f x y U x y Ae
harmonic output g
  


     
  
  
 
  
         
    
  

2 2 2
( )
2
2 2 2 2 2
2 2 2 2 2
, ) ( , , )
( , ) ( , ) / ( , )
: 0 0: ( , ) 1
: 0 0:
( ,
x y z
x yz
j k x k y k d
j djk d
x y h h
x y p x y
x y p
x y
x y U x y d Ae
H g x y f x y e e
if Propagating TF H
if Attenuating TF evanescent wave
H
   
 
      
    
 

  
  
 
 
 
  
        
        
2 ( )
) ( , ) x yj x y
h x y e dxdy
  



  
Fresnel approximation ( 4
0  )
2 4
2 2 2 2 22 2 2
2 2 2 2 2 2
2
1 2 1 2 (1 ......)2 2 8
4
: 0 0, 0 , ( .)( )
( , )
0
( , )
x yx yz
x y x y x x y y optical axis x y
d d
j d d j jj djk d
x y
x y
f v v like paraxial ray app
H e e e e e
H
  
            
             
 

 



          
             
    

 
2
2 2
22
2 (1 ) 2 2 (2 2 )2
0
x yz
d d d
j j j jkd
jkd j djk d
e e ee He e
 
       

   
  
   
We know that
2 2 2 2
/4
,j t j j t
e e e e e      
  =>by taking IFT:
2 2 2 2
1
2
0
( )(1 )
22 22
( , ) ( , )z
x y k r
jk jjk d
jk d jk
jk
d
d
d d d
x y
jk j
H ee e h x y e e he e
d

 



  
  
     
For output
2 2
0
2 2 2 2
0
2 2 2 2
0
( ) ( )
2
2 2
2
( )
2 2
( , ) ( , ) ( , ) ( , )
( , ) ( , )
( , ) ( , )
k x x y y
j
d
k x x xx y y yy
j
d
k x y k x y k
j j j xx yy
d d d
g x y f x y h x x y y dx dy f x y h e dx dy
g x y f x y h e dx dy
g x y f x y h e e e dx d
     

 
        


  
   
             
    
  
   
 
2 2 2 2
0
( )
2 2
( , ) ( , )
k x y k x y k
j j j xx yy
d d d
y
g x y h e f x y e e dx dy


  
   

 
   
 
 
Chirp modulation using lens
2 2
0 1 2
1 12 2 ( 1) ( )
2
0
1 2
1 1
( , ) ( ) ( , )
2
x y
jk n
jkn R R
l l
x y
x y t x y e e
R R

 
 
      
2 2
0 1 2
2 22 2 2 2
0 1 2
0
2 2
0
0
1 1
( 1) ( )
2
1 1
( 1) ( ) ( )
22 2
0
1
(( 1)(
2
0
( , ) ( , ) ( , ) ( , )
( , ) ( , )
( , ) ( , )
x y
jk n
jkn R R
l
x yk x y k x y kjk nj j j xx yy
jkn R Rd d d
k x y nj
jknd
f x y f x y t x y f x y e e
g x y h e f x y e e e e dx dy
g x y h e e f x y e

 
 
         
 

 
 
 
   
 
 
2 2
1 2
1 1
) ) ( )
2
x y kjk j xx yy
R R d d
e dx dy
     

  
2 2
0
0
1 2
2
( )
2 ( )2
0 0
1 1 1 1
( 1)( )
( , ) ( , ) ( , )
,
x y
k x y j xx yyj j x yjkn fd
x y
for n
d R R f
g x y h e e f x y e dx dy f x y e dxdy
x y
f f

  
 
 
     
 
    
      
  
   
Time
2 2
10 0 0 0
0 0
2
0
0 0
2
0
0 0
2 2
0 0
0 0 0
( )
( ) 2 2
( )
2
( )
2
( ) 2 ( ) (
2
( ) ( )
( )
( ) ( ) ( ) ( )
( )
j j
j jj
t
j
j
t
j
j
t t t
j j
j j
H H e e e e e
h t e e
z t x h t d x e e d
x e e d e e
 
     

 
 
 
   
  
 
    
 
   
  


  

 
    
 

   

  
 
 

2 2
0 0
0 0 0
2
2 22
0 0
0 0 0 0
2 2
0 0
0 0 0
) ( )
2 2
2
0
( ) ( )
2 22
( ) ( )1
( )
2 2
( )
: ( ) ( )
( ) ( )
( ) ( )
t
j j
t
ja
t t
j j jja
j
t t
j a j j
j
x e e d
chirp modulation x t x t e
z t e x e e e d
z t e x e e
  
  
  
   
  
  
 
 

 


  



  


 
 



0
2
0 0
0 0 0
0 0
( ) ( )
2
0
0
1 1
( ) ( ) ( )
t t
j j
j j
d
for a f
a
z t e x e d x e d
t

  
   

 
   





   

 
   
 

 

 
Space time duality
2 2
0
0 0 0
2 2 2 2
( ) ( )
2 2
( )
2 2 2
0
( )
( , )
1 1 1
2
2
dt t
j j
j
x y k r k r
jk j j
jkd jkdd d d
t
t
h t e e Ae
j j
h x y e e e e Be
d d
k
d d d
means that
d
d

  
 
 







  
 
 
  
  



More Related Content

More from Hossein Babashah

Ultrafast Optical signal processing
Ultrafast Optical signal processingUltrafast Optical signal processing
Ultrafast Optical signal processing
Hossein Babashah
 
How to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature ReviewHow to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature Review
Hossein Babashah
 
Time lens
Time lensTime lens
Time lens
Hossein Babashah
 
AKAZE and ORB Planar Tracking Comparisson
AKAZE and ORB Planar Tracking ComparissonAKAZE and ORB Planar Tracking Comparisson
AKAZE and ORB Planar Tracking Comparisson
Hossein Babashah
 
Robust 3D Tracking with Descriptor Fields
Robust 3D Tracking with Descriptor FieldsRobust 3D Tracking with Descriptor Fields
Robust 3D Tracking with Descriptor Fields
Hossein Babashah
 
LaTex tutorial with Texstudio
LaTex tutorial with TexstudioLaTex tutorial with Texstudio
LaTex tutorial with Texstudio
Hossein Babashah
 
Acoustic Deep-Subwavelength Imaging
Acoustic Deep-Subwavelength ImagingAcoustic Deep-Subwavelength Imaging
Acoustic Deep-Subwavelength Imaging
Hossein Babashah
 
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
Hossein Babashah
 
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical AmplifiersHeterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Hossein Babashah
 
Plasmonic nanoantennas
Plasmonic nanoantennasPlasmonic nanoantennas
Plasmonic nanoantennas
Hossein Babashah
 
Microresonator based optical frequency combs
Microresonator based optical frequency combsMicroresonator based optical frequency combs
Microresonator based optical frequency combs
Hossein Babashah
 
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
Hossein Babashah
 
Optical volume holograms and their applications
Optical volume holograms and their applicationsOptical volume holograms and their applications
Optical volume holograms and their applications
Hossein Babashah
 
Design and Analysis of DNA String Matching by Optical Parallel Processing
Design and Analysis of DNA String Matching by Optical Parallel ProcessingDesign and Analysis of DNA String Matching by Optical Parallel Processing
Design and Analysis of DNA String Matching by Optical Parallel Processing
Hossein Babashah
 

More from Hossein Babashah (14)

Ultrafast Optical signal processing
Ultrafast Optical signal processingUltrafast Optical signal processing
Ultrafast Optical signal processing
 
How to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature ReviewHow to simulate Metamaterials using lumerical and Some literature Review
How to simulate Metamaterials using lumerical and Some literature Review
 
Time lens
Time lensTime lens
Time lens
 
AKAZE and ORB Planar Tracking Comparisson
AKAZE and ORB Planar Tracking ComparissonAKAZE and ORB Planar Tracking Comparisson
AKAZE and ORB Planar Tracking Comparisson
 
Robust 3D Tracking with Descriptor Fields
Robust 3D Tracking with Descriptor FieldsRobust 3D Tracking with Descriptor Fields
Robust 3D Tracking with Descriptor Fields
 
LaTex tutorial with Texstudio
LaTex tutorial with TexstudioLaTex tutorial with Texstudio
LaTex tutorial with Texstudio
 
Acoustic Deep-Subwavelength Imaging
Acoustic Deep-Subwavelength ImagingAcoustic Deep-Subwavelength Imaging
Acoustic Deep-Subwavelength Imaging
 
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
Electrically pumped continuous wave iii–v quantum dot lasers on silicon.
 
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical AmplifiersHeterogeneous Silicon/III–V Semiconductor Optical Amplifiers
Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers
 
Plasmonic nanoantennas
Plasmonic nanoantennasPlasmonic nanoantennas
Plasmonic nanoantennas
 
Microresonator based optical frequency combs
Microresonator based optical frequency combsMicroresonator based optical frequency combs
Microresonator based optical frequency combs
 
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectr...
 
Optical volume holograms and their applications
Optical volume holograms and their applicationsOptical volume holograms and their applications
Optical volume holograms and their applications
 
Design and Analysis of DNA String Matching by Optical Parallel Processing
Design and Analysis of DNA String Matching by Optical Parallel ProcessingDesign and Analysis of DNA String Matching by Optical Parallel Processing
Design and Analysis of DNA String Matching by Optical Parallel Processing
 

Space time relations

  • 1. Time-Space Duality Space System is linear since Helmholtz equation which U must satisfy is linear. System is shift invariant since free space is invariant to displacement of the coordinate system. 2 ( ) ( , ) ( , ) x yj x y x y x yh x y H e d d               is impulse response of the LTI system. 2 ( ) ( , ) ( , ) x yj x y x yH h x y e dxdy            is Transfer function of the LTI system. ( ). 2 2 2 2 2 1 1 1 ( ) : ( , , ) 2 2 0: 2 : sin ( / ) sin ( ), sin ( / ) : ( , ) ( , ,0) : ( x y z k kx y x y j k x k y k zjk r x y z k x x x k y y j k x k y h h plane wave U x y z Ae Ae f U k U k k k k k c c k k k k harmonic input f x y U x y Ae harmonic output g                                          2 2 2 ( ) 2 2 2 2 2 2 2 2 2 2 2 , ) ( , , ) ( , ) ( , ) / ( , ) : 0 0: ( , ) 1 : 0 0: ( , x y z x yz j k x k y k d j djk d x y h h x y p x y x y p x y x y U x y d Ae H g x y f x y e e if Propagating TF H if Attenuating TF evanescent wave H                                                       2 ( ) ) ( , ) x yj x y h x y e dxdy         
  • 2. Fresnel approximation ( 4 0  ) 2 4 2 2 2 2 22 2 2 2 2 2 2 2 2 2 1 2 1 2 (1 ......)2 2 8 4 : 0 0, 0 , ( .)( ) ( , ) 0 ( , ) x yx yz x y x y x x y y optical axis x y d d j d d j jj djk d x y x y f v v like paraxial ray app H e e e e e H                                                                        2 2 2 22 2 (1 ) 2 2 (2 2 )2 0 x yz d d d j j j jkd jkd j djk d e e ee He e                       We know that 2 2 2 2 /4 ,j t j j t e e e e e         =>by taking IFT: 2 2 2 2 1 2 0 ( )(1 ) 22 22 ( , ) ( , )z x y k r jk jjk d jk d jk jk d d d d d x y jk j H ee e h x y e e he e d                   For output 2 2 0 2 2 2 2 0 2 2 2 2 0 ( ) ( ) 2 2 2 2 ( ) 2 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) k x x y y j d k x x xx y y yy j d k x y k x y k j j j xx yy d d d g x y f x y h x x y y dx dy f x y h e dx dy g x y f x y h e dx dy g x y f x y h e e e dx d                                                        2 2 2 2 0 ( ) 2 2 ( , ) ( , ) k x y k x y k j j j xx yy d d d y g x y h e f x y e e dx dy                     Chirp modulation using lens 2 2 0 1 2 1 12 2 ( 1) ( ) 2 0 1 2 1 1 ( , ) ( ) ( , ) 2 x y jk n jkn R R l l x y x y t x y e e R R             2 2 0 1 2 2 22 2 2 2 0 1 2 0 2 2 0 0 1 1 ( 1) ( ) 2 1 1 ( 1) ( ) ( ) 22 2 0 1 (( 1)( 2 0 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) x y jk n jkn R R l x yk x y k x y kjk nj j j xx yy jkn R Rd d d k x y nj jknd f x y f x y t x y f x y e e g x y h e f x y e e e e dx dy g x y h e e f x y e                                 2 2 1 2 1 1 ) ) ( ) 2 x y kjk j xx yy R R d d e dx dy          
  • 3. 2 2 0 0 1 2 2 ( ) 2 ( )2 0 0 1 1 1 1 ( 1)( ) ( , ) ( , ) ( , ) , x y k x y j xx yyj j x yjkn fd x y for n d R R f g x y h e e f x y e dx dy f x y e dxdy x y f f                                    Time 2 2 10 0 0 0 0 0 2 0 0 0 2 0 0 0 2 2 0 0 0 0 0 ( ) ( ) 2 2 ( ) 2 ( ) 2 ( ) 2 ( ) ( 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) j j j jj t j j t j j t t t j j j j H H e e e e e h t e e z t x h t d x e e d x e e d e e                                                                    2 2 0 0 0 0 0 2 2 22 0 0 0 0 0 0 2 2 0 0 0 0 0 ) ( ) 2 2 2 0 ( ) ( ) 2 22 ( ) ( )1 ( ) 2 2 ( ) : ( ) ( ) ( ) ( ) ( ) ( ) t j j t ja t t j j jja j t t j a j j j x e e d chirp modulation x t x t e z t e x e e e d z t e x e e                                               0 2 0 0 0 0 0 0 0 ( ) ( ) 2 0 0 1 1 ( ) ( ) ( ) t t j j j j d for a f a z t e x e d x e d t                                        Space time duality
  • 4. 2 2 0 0 0 0 2 2 2 2 ( ) ( ) 2 2 ( ) 2 2 2 0 ( ) ( , ) 1 1 1 2 2 dt t j j j x y k r k r jk j j jkd jkdd d d t t h t e e Ae j j h x y e e e e Be d d k d d d means that d d                              