SlideShare a Scribd company logo
1 of 18
THE DEVELOPMENT OFA REAGENT
ENVIRONMENT FOR A SILICA-MAGNETITE
FROTH FLOTATION SYSTEM
UROP Project
July-September 2015
Anna Caklais and Charlie Singer
Project Aims
• Develop a simplified bench-scale system with which to
test design modifications to laboratory-scale flotation
tanks.
• Understand the principles of froth flotation of silica
through examining the fundamental principles of air
pressure, pH, and reagent dosages.
• Advance understanding from a single silica species
system through investigating the effects of varying
reagent concentrations on a silica-magnetite froth flotation
system.
• Analyse data to determine an optimum reagent
environment that would enable separation of the two
species.
Planning
• Determined the effects of pH, frother concentration and air speed
variation on a single silica species system.
- Allowed application to two species system
• Investigation into two projects:
- Charlie : Silica-barite
- Anna: Silica-magnetite
• Problems encountered:
- Magnetic separation not applicable to barite
- Attempted dissolving the barite using sodium carbonate -
unsuccessful on time scale
- Attempted using density contrasts between silica and
barite to deduce the relative proportions in overflow samples -
however, could not physically separate the two species
Planning
• Sample sizing of silica and magnetite to determine feed
grain size distributions.
0
10
20
30
40
50
60
70
80
90
100
-38 +38 -45 +45 -53 +53 -63 +63 -75 +75 -
90
+90 -
106
+106
Mass(g)
Particle Size (µm)
Silica Feed Size Distribution
+44 -88 +30 - 62 50:50
0
5
10
15
20
25
30
35
40
45
50
<38 38-45 45-53 53-63 63-75 75-90 90-106 >106
Mass(g)
Particle Size (µm)
Feed Size Distribution
Magnetite Feed Silica Feed Feed Used
Planning
• Undertook literature searches - scoping work by Filippov. L. O.
et al (2010) was used in the selection of reagents and their
concentrations.
• Reverse cationic flotation – dominant method used in research
and industry whereby the collector adopts a positive charge to
float the gangue mineral (silica)
Reagents:
• Collector: Dodecylamine at 98%-purity
• Activator: 1-Tridecanol
• Depressor: Modified cornstarch
• For each reagent a maximum, optimum and minimum
concentration was selected for investigation.
Risk Assessments
• Completed personal hazard assessments
• Updated COSHH files with reagents and materials
• Completed SOP forms with experimental procedure
Experimental design
• Experimental design:
• Fractional factorial programme was employed using an augmented
Box –Behnken test.
• Series of 15 representative experiments constructed to vary
collector, activator, and depressor dosages top understand effects
on both grade and recovery.
Experimental Methods:
Chemical -1 0 1
Dodecylamine 30 g/t; 0.027 g 45 g/t; 0.0405 g 60 g/t; 0.054 g
1-Tridecanol 5 g/t; 0.0045 g 15 g/t; 0.0135 g 25 g/t; 0.0225 g
Starch 500 g/t; 0.45 g 750 g/t; 0.675 g 1000 g/t; 0.9 g
Flotation methods
• Flotation undertaken using a Denver Cell:
• 60:40 ratio silica: magnetite:
• 270 g +30-62; 270 g +44-88; 360 g magnetite
• 2.1 L deionised water
• 30% solids
Method:
• Mixing of solids and deionised water for 2 minutes and pH reading taken
• Activator and depressor added – 5 minutes conditioning
• pH reading taken and collector added to slurry and allowed to condition for
10 minutes to allow absorption to the silica
• No PH modifier added – varied between 9.8 and 10.2
• Frother incorporated into mixture for 1 minute
• Air and impeller speed maintained constant
• Fast overflow collector for 30 seconds, and slow overflow for 90 seconds
• Wet masses measured
• Oven dried to determine dry masses.
Sampling methods
• Dry masses recorded
• Each sample placed on top of a stack of sieves and shaken for 15
minutes:
• 106 μm
• 90 μm
• 75 μm
• 63 μm
• 53 μm
• 45 μm
• 38 μm
- Samples re-weighed and masses recorded.
- Horseshoe magnets were used to separate magnetite grains from
the silica – each placed in separate sample bags.
- Remaining silica weighed to calculate grade and recovery.
Experiment
Run 1 (%) Run 2 (%)
Total flow grade
Total flow
recovery Total flow grade
Total flow
recovery
1 [-1] [-1] [0] 74.222 9.478
2 [-1] [1] [0] 83.350 15.654 80.589 24.555
3 [1] [-1] [0] 85.717 42.846 92.205 27.710
4 [1] [1] [0] 83.371 43.956 77.728 37.115
5 [-1] [0] [-1] 87.824 37.341 81.249 23.774
6 [-1] [0] [-1] 72.273 8.311 78.714 19.338
7 [1] [0] [-1] 83.787 38.535 83.548 47.291
8 [1] [0] [1] 89.024 50.787 81.379 48.814
9 [0] [-1] [-1] 84.669 47.111 76.037 40.810
10 [0] [-1] [1] 86.618 47.134 87.185 41.034
11 [0] [1] [-1] 88.056 32.091 86.406 30.691
12 [0] [1] [1] 76.413 17.099 77.865 20.449
13 [0] [0] [0] 77.499 38.310 77.650 51.606
14 [0] [0] [0] 87.351 46.555 79.949 46.785
15 [0] [0] [0] 84.374 37.718 81.471 39.969
Grade =
Mass of silica obtained in sieve x 100
Total mass of overflow solids
Recovery =
Mass of silica retained on sieve x 100
Initial mass of silica in tank pulp
Results from First Linear Regression
Variable Effect Standard Error t-value p-value
Intercept 84.061 1.009 83.315 9.62E-25
x1 C 3.8752 1.5959 2.4282 0.025882
x2 A -1.0464 1.4119 -0.74116 0.46816
x3 D -3.1492 1.2846 -2.4516 0.024662
x4 O -1.9506 1.6695 -1.1684 0.25788
x1:x2 C:A -3.8893 1.5165 -2.5646 0.019493
x1:x3 C:D 1.1614 1.7323 0.67046 0.51107
x1:x4 C:O -1.4321 2.3777 -0.6023 0.55448
x2:x3 A:D -3.2478 1.5482 -2.0978 0.050308
x2:x4 A:O 1.2101 2.0556 0.58869 0.56339
x3:x4 D:O 4.2758 3.0187 1.4164 0.17372
Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x1*x3) + (x1*x4) + (x2*x3) + (x2*x4) + (x3*x4)
R-squared: 0.67 Adjusted R-Squared: 0.486 p-value : 0.00827
Variable Effect Standard Error t-value p-value
Intercept 84.138 0.91242 92.214 7.04E-29
x1 C 3.5794 1.0379 3.4487 0.002406
x2 A -0.63544 0.97449 -0.65207 0.52143
x3 D -3.3619 1.1273 -2.9823 0.007103
x4 O -2.4212 1.5483 -1.5638 0.13281
x1:x2 C:A -3.8591 1.4464 -2.668 0.014392
x2:x3 A:D -2.9149 1.4548 -2.0037 0.058174
x3:x4 D:O 5.6073 2.5611 2.1894 0.040005
Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x2*x3) + (x3*x4)
R-squared: 0.64 Adjusted R-Squared: 0.52 p-value : 0.00128
First Step-wise Linear Regression
Variable Effect Standard Error t-value p-value
Intercept 83.534 1.0045 83.16 6.13E-28
x1 C 3.9178 1.651 2.373 0.027269
x2 A -0.062962 1.3645 -0.04614 0.96363
x3 D -3.0283 1.3274 -2.2814 0.033063
x4 O -1.6489 1.5826 -1.0419 0.30931
x1:x2 C:A -4.032 1.5608 -2.5833 0.017336
x1:x3 C:D 1.3275 1.7882 0.74236 0.46609
x1:x4 C:D -1.3725 2.4499 -0.56024 0.58125
x2:x3 A:D -3.3235 1.6012 -2.0757 0.050395
x2:x4 A:O 0.29558 1.9716 0.14992 0.88226
x3:x4 D:O 3.9729 3.1174 1.2744 0.21643
Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x1*x3) + (x1*x4) + (x2*x3) + (x2*x4) + (x3*x4)
R-squared: 0.613
Adjusted R-Squared:
0.429 p-value: 0.00977
Linear Regression with Additional 1-Tridecanol Data
Variable Effect
Standard
Error
t-value p-value
Intercept 83.657 0.90964 91.967 4.25E-32
x1 C 3.5646 1.0718 3.3259 0.002828
x2 A -0.030364 0.93536 -0.03246 0.97437
x3 D -3.2728 1.1649 -2.8094 0.009714
x4 O -2.018 1.4733 -1.3697 0.18346
x1:x2 C:A -4.0698 1.4878 -2.7354 0.011528
x2:x3 A:D -2.9536 1.503 -1.9651 0.06108
x3:x4 D:O 5.4524 2.6348 2.0694 0.049444
y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x2*x3) + (x3*x4)
R-squared: 0.587 Adjusted R-Squared 0.467 p-value = 0.00156
Step-wise Linear Regression with Additional 1-Tridecanol Data
Non-Linear Regression

More Related Content

Viewers also liked

carreteras nom-012-sct-2-2014
carreteras nom-012-sct-2-2014carreteras nom-012-sct-2-2014
carreteras nom-012-sct-2-2014ivan haro nava
 
NAACP Region IV Crati Environmental and Climate Justice Presentation
NAACP Region IV Crati Environmental and Climate Justice Presentation NAACP Region IV Crati Environmental and Climate Justice Presentation
NAACP Region IV Crati Environmental and Climate Justice Presentation cgrantnaacp
 
Formato planartistica2dogrado
Formato planartistica2dogradoFormato planartistica2dogrado
Formato planartistica2dogradoFranco Franco
 
Beauty of-mathematics.pps
Beauty of-mathematics.ppsBeauty of-mathematics.pps
Beauty of-mathematics.ppsmathisi
 
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016Lidija Gligoric
 
Perspective of Airbus Defence and Space on Services Market, June 2016
Perspective of Airbus Defence and Space on Services Market, June 2016Perspective of Airbus Defence and Space on Services Market, June 2016
Perspective of Airbus Defence and Space on Services Market, June 2016ICSA, LLC
 
Italy and the F-35: Secretary Wynne Visits the FACO
Italy and the F-35: Secretary Wynne Visits the FACOItaly and the F-35: Secretary Wynne Visits the FACO
Italy and the F-35: Secretary Wynne Visits the FACOICSA, LLC
 
Patología Ginecológica
Patología GinecológicaPatología Ginecológica
Patología GinecológicaITESM - EMIS
 
O Egito Antigo - 3500aC - 2005dC
O Egito Antigo - 3500aC - 2005dCO Egito Antigo - 3500aC - 2005dC
O Egito Antigo - 3500aC - 2005dCCristiane Freitas
 
Shock Cardiogenico Prxt
Shock Cardiogenico PrxtShock Cardiogenico Prxt
Shock Cardiogenico PrxtPaul Sanchez
 

Viewers also liked (16)

BA's thesis
BA's thesisBA's thesis
BA's thesis
 
Linking words
Linking wordsLinking words
Linking words
 
carreteras nom-012-sct-2-2014
carreteras nom-012-sct-2-2014carreteras nom-012-sct-2-2014
carreteras nom-012-sct-2-2014
 
NAACP Region IV Crati Environmental and Climate Justice Presentation
NAACP Region IV Crati Environmental and Climate Justice Presentation NAACP Region IV Crati Environmental and Climate Justice Presentation
NAACP Region IV Crati Environmental and Climate Justice Presentation
 
Formato planartistica2dogrado
Formato planartistica2dogradoFormato planartistica2dogrado
Formato planartistica2dogrado
 
Darian Resume New
Darian Resume NewDarian Resume New
Darian Resume New
 
Beauty of-mathematics.pps
Beauty of-mathematics.ppsBeauty of-mathematics.pps
Beauty of-mathematics.pps
 
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016
Lidija gligorić elektronsko poslovanje i budućnost poštanskih usluga palić 2016
 
Penzioni sistem Japana
Penzioni sistem JapanaPenzioni sistem Japana
Penzioni sistem Japana
 
Perspective of Airbus Defence and Space on Services Market, June 2016
Perspective of Airbus Defence and Space on Services Market, June 2016Perspective of Airbus Defence and Space on Services Market, June 2016
Perspective of Airbus Defence and Space on Services Market, June 2016
 
Italy and the F-35: Secretary Wynne Visits the FACO
Italy and the F-35: Secretary Wynne Visits the FACOItaly and the F-35: Secretary Wynne Visits the FACO
Italy and the F-35: Secretary Wynne Visits the FACO
 
Patología Ginecológica
Patología GinecológicaPatología Ginecológica
Patología Ginecológica
 
O Egito Antigo - 3500aC - 2005dC
O Egito Antigo - 3500aC - 2005dCO Egito Antigo - 3500aC - 2005dC
O Egito Antigo - 3500aC - 2005dC
 
Infecciones de transmision sexual
Infecciones de transmision sexualInfecciones de transmision sexual
Infecciones de transmision sexual
 
Shock Cardiogenico Prxt
Shock Cardiogenico PrxtShock Cardiogenico Prxt
Shock Cardiogenico Prxt
 
Presentation_Defense_Light
Presentation_Defense_LightPresentation_Defense_Light
Presentation_Defense_Light
 

Similar to Silica - Magnetite presentation (Singer%2c Charlie R)

Plating Broken Wafer
Plating Broken WaferPlating Broken Wafer
Plating Broken WaferLee Kin Nan
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxRasaniyaShreem
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)Ash Ayesh
 
QC CIRCLE PRESENTATION (1).pptx
QC CIRCLE PRESENTATION (1).pptxQC CIRCLE PRESENTATION (1).pptx
QC CIRCLE PRESENTATION (1).pptxRajeshGanesan24
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdfSajawalNawaz5
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project resultsPetra Scanferla
 
Optimising the ripening period of Slow Sand filter
Optimising the ripening period of Slow Sand filter  Optimising the ripening period of Slow Sand filter
Optimising the ripening period of Slow Sand filter Hemant Arora
 
Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014John Glenning
 
Press conference by dir iti 220813
Press conference by dir iti 220813Press conference by dir iti 220813
Press conference by dir iti 220813lakpuvath
 
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...Rana Tayyarah
 
I risultati del progetto Green Site
I risultati del progetto Green SiteI risultati del progetto Green Site
I risultati del progetto Green SiteeAmbiente
 

Similar to Silica - Magnetite presentation (Singer%2c Charlie R) (20)

Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Plating Broken Wafer
Plating Broken WaferPlating Broken Wafer
Plating Broken Wafer
 
Taguchi1
Taguchi1Taguchi1
Taguchi1
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptx
 
Detector efficiency (1)
Detector efficiency (1)Detector efficiency (1)
Detector efficiency (1)
 
QC CIRCLE PRESENTATION (1).pptx
QC CIRCLE PRESENTATION (1).pptxQC CIRCLE PRESENTATION (1).pptx
QC CIRCLE PRESENTATION (1).pptx
 
Frother type Impact over size by size Cu recovery
Frother type Impact over size by size Cu recoveryFrother type Impact over size by size Cu recovery
Frother type Impact over size by size Cu recovery
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdf
 
Synopsis 21st february
Synopsis 21st februarySynopsis 21st february
Synopsis 21st february
 
Green Site Project results
Green Site Project resultsGreen Site Project results
Green Site Project results
 
Optimising the ripening period of Slow Sand filter
Optimising the ripening period of Slow Sand filter  Optimising the ripening period of Slow Sand filter
Optimising the ripening period of Slow Sand filter
 
Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014
 
Work Examples
Work ExamplesWork Examples
Work Examples
 
Press conference by dir iti 220813
Press conference by dir iti 220813Press conference by dir iti 220813
Press conference by dir iti 220813
 
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
Method development for the analysis of mono-carbonyl compounds in e-vapor pro...
 
Six sigma technique
Six sigma techniqueSix sigma technique
Six sigma technique
 
I risultati del progetto Green Site
I risultati del progetto Green SiteI risultati del progetto Green Site
I risultati del progetto Green Site
 
B012420715
B012420715B012420715
B012420715
 
01 mixture proportioning b
01 mixture proportioning b01 mixture proportioning b
01 mixture proportioning b
 
01 mixture proportioning
01 mixture proportioning01 mixture proportioning
01 mixture proportioning
 

Silica - Magnetite presentation (Singer%2c Charlie R)

  • 1. THE DEVELOPMENT OFA REAGENT ENVIRONMENT FOR A SILICA-MAGNETITE FROTH FLOTATION SYSTEM UROP Project July-September 2015 Anna Caklais and Charlie Singer
  • 2. Project Aims • Develop a simplified bench-scale system with which to test design modifications to laboratory-scale flotation tanks. • Understand the principles of froth flotation of silica through examining the fundamental principles of air pressure, pH, and reagent dosages. • Advance understanding from a single silica species system through investigating the effects of varying reagent concentrations on a silica-magnetite froth flotation system. • Analyse data to determine an optimum reagent environment that would enable separation of the two species.
  • 3. Planning • Determined the effects of pH, frother concentration and air speed variation on a single silica species system. - Allowed application to two species system • Investigation into two projects: - Charlie : Silica-barite - Anna: Silica-magnetite • Problems encountered: - Magnetic separation not applicable to barite - Attempted dissolving the barite using sodium carbonate - unsuccessful on time scale - Attempted using density contrasts between silica and barite to deduce the relative proportions in overflow samples - however, could not physically separate the two species
  • 4. Planning • Sample sizing of silica and magnetite to determine feed grain size distributions. 0 10 20 30 40 50 60 70 80 90 100 -38 +38 -45 +45 -53 +53 -63 +63 -75 +75 - 90 +90 - 106 +106 Mass(g) Particle Size (µm) Silica Feed Size Distribution +44 -88 +30 - 62 50:50 0 5 10 15 20 25 30 35 40 45 50 <38 38-45 45-53 53-63 63-75 75-90 90-106 >106 Mass(g) Particle Size (µm) Feed Size Distribution Magnetite Feed Silica Feed Feed Used
  • 5. Planning • Undertook literature searches - scoping work by Filippov. L. O. et al (2010) was used in the selection of reagents and their concentrations. • Reverse cationic flotation – dominant method used in research and industry whereby the collector adopts a positive charge to float the gangue mineral (silica) Reagents: • Collector: Dodecylamine at 98%-purity • Activator: 1-Tridecanol • Depressor: Modified cornstarch • For each reagent a maximum, optimum and minimum concentration was selected for investigation.
  • 6. Risk Assessments • Completed personal hazard assessments • Updated COSHH files with reagents and materials • Completed SOP forms with experimental procedure
  • 7. Experimental design • Experimental design: • Fractional factorial programme was employed using an augmented Box –Behnken test. • Series of 15 representative experiments constructed to vary collector, activator, and depressor dosages top understand effects on both grade and recovery. Experimental Methods: Chemical -1 0 1 Dodecylamine 30 g/t; 0.027 g 45 g/t; 0.0405 g 60 g/t; 0.054 g 1-Tridecanol 5 g/t; 0.0045 g 15 g/t; 0.0135 g 25 g/t; 0.0225 g Starch 500 g/t; 0.45 g 750 g/t; 0.675 g 1000 g/t; 0.9 g
  • 8. Flotation methods • Flotation undertaken using a Denver Cell: • 60:40 ratio silica: magnetite: • 270 g +30-62; 270 g +44-88; 360 g magnetite • 2.1 L deionised water • 30% solids Method: • Mixing of solids and deionised water for 2 minutes and pH reading taken • Activator and depressor added – 5 minutes conditioning • pH reading taken and collector added to slurry and allowed to condition for 10 minutes to allow absorption to the silica • No PH modifier added – varied between 9.8 and 10.2 • Frother incorporated into mixture for 1 minute • Air and impeller speed maintained constant • Fast overflow collector for 30 seconds, and slow overflow for 90 seconds • Wet masses measured • Oven dried to determine dry masses.
  • 9. Sampling methods • Dry masses recorded • Each sample placed on top of a stack of sieves and shaken for 15 minutes: • 106 μm • 90 μm • 75 μm • 63 μm • 53 μm • 45 μm • 38 μm - Samples re-weighed and masses recorded. - Horseshoe magnets were used to separate magnetite grains from the silica – each placed in separate sample bags. - Remaining silica weighed to calculate grade and recovery.
  • 10. Experiment Run 1 (%) Run 2 (%) Total flow grade Total flow recovery Total flow grade Total flow recovery 1 [-1] [-1] [0] 74.222 9.478 2 [-1] [1] [0] 83.350 15.654 80.589 24.555 3 [1] [-1] [0] 85.717 42.846 92.205 27.710 4 [1] [1] [0] 83.371 43.956 77.728 37.115 5 [-1] [0] [-1] 87.824 37.341 81.249 23.774 6 [-1] [0] [-1] 72.273 8.311 78.714 19.338 7 [1] [0] [-1] 83.787 38.535 83.548 47.291 8 [1] [0] [1] 89.024 50.787 81.379 48.814 9 [0] [-1] [-1] 84.669 47.111 76.037 40.810 10 [0] [-1] [1] 86.618 47.134 87.185 41.034 11 [0] [1] [-1] 88.056 32.091 86.406 30.691 12 [0] [1] [1] 76.413 17.099 77.865 20.449 13 [0] [0] [0] 77.499 38.310 77.650 51.606 14 [0] [0] [0] 87.351 46.555 79.949 46.785 15 [0] [0] [0] 84.374 37.718 81.471 39.969 Grade = Mass of silica obtained in sieve x 100 Total mass of overflow solids Recovery = Mass of silica retained on sieve x 100 Initial mass of silica in tank pulp
  • 11. Results from First Linear Regression Variable Effect Standard Error t-value p-value Intercept 84.061 1.009 83.315 9.62E-25 x1 C 3.8752 1.5959 2.4282 0.025882 x2 A -1.0464 1.4119 -0.74116 0.46816 x3 D -3.1492 1.2846 -2.4516 0.024662 x4 O -1.9506 1.6695 -1.1684 0.25788 x1:x2 C:A -3.8893 1.5165 -2.5646 0.019493 x1:x3 C:D 1.1614 1.7323 0.67046 0.51107 x1:x4 C:O -1.4321 2.3777 -0.6023 0.55448 x2:x3 A:D -3.2478 1.5482 -2.0978 0.050308 x2:x4 A:O 1.2101 2.0556 0.58869 0.56339 x3:x4 D:O 4.2758 3.0187 1.4164 0.17372 Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x1*x3) + (x1*x4) + (x2*x3) + (x2*x4) + (x3*x4) R-squared: 0.67 Adjusted R-Squared: 0.486 p-value : 0.00827
  • 12. Variable Effect Standard Error t-value p-value Intercept 84.138 0.91242 92.214 7.04E-29 x1 C 3.5794 1.0379 3.4487 0.002406 x2 A -0.63544 0.97449 -0.65207 0.52143 x3 D -3.3619 1.1273 -2.9823 0.007103 x4 O -2.4212 1.5483 -1.5638 0.13281 x1:x2 C:A -3.8591 1.4464 -2.668 0.014392 x2:x3 A:D -2.9149 1.4548 -2.0037 0.058174 x3:x4 D:O 5.6073 2.5611 2.1894 0.040005 Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x2*x3) + (x3*x4) R-squared: 0.64 Adjusted R-Squared: 0.52 p-value : 0.00128 First Step-wise Linear Regression
  • 13.
  • 14. Variable Effect Standard Error t-value p-value Intercept 83.534 1.0045 83.16 6.13E-28 x1 C 3.9178 1.651 2.373 0.027269 x2 A -0.062962 1.3645 -0.04614 0.96363 x3 D -3.0283 1.3274 -2.2814 0.033063 x4 O -1.6489 1.5826 -1.0419 0.30931 x1:x2 C:A -4.032 1.5608 -2.5833 0.017336 x1:x3 C:D 1.3275 1.7882 0.74236 0.46609 x1:x4 C:D -1.3725 2.4499 -0.56024 0.58125 x2:x3 A:D -3.3235 1.6012 -2.0757 0.050395 x2:x4 A:O 0.29558 1.9716 0.14992 0.88226 x3:x4 D:O 3.9729 3.1174 1.2744 0.21643 Model: y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x1*x3) + (x1*x4) + (x2*x3) + (x2*x4) + (x3*x4) R-squared: 0.613 Adjusted R-Squared: 0.429 p-value: 0.00977 Linear Regression with Additional 1-Tridecanol Data
  • 15. Variable Effect Standard Error t-value p-value Intercept 83.657 0.90964 91.967 4.25E-32 x1 C 3.5646 1.0718 3.3259 0.002828 x2 A -0.030364 0.93536 -0.03246 0.97437 x3 D -3.2728 1.1649 -2.8094 0.009714 x4 O -2.018 1.4733 -1.3697 0.18346 x1:x2 C:A -4.0698 1.4878 -2.7354 0.011528 x2:x3 A:D -2.9536 1.503 -1.9651 0.06108 x3:x4 D:O 5.4524 2.6348 2.0694 0.049444 y ~ 1 + x1 + x2 + x3 + x4 + (x1*x2) + (x2*x3) + (x3*x4) R-squared: 0.587 Adjusted R-Squared 0.467 p-value = 0.00156 Step-wise Linear Regression with Additional 1-Tridecanol Data
  • 16.
  • 17.