SlideShare a Scribd company logo
Sviluppo	
  di	
  sistemi	
  robo0ci	
  per	
  la	
  
               neuroriabilitazione	
  dell'arto	
  
                              superiore	
  
                        Maria	
  Chiara	
  Carrozza	
  
                      Scuola	
  Superiore	
  Sant’Anna	
  
                                  Pisa,	
  Italy	
  


                     XII	
  CONGRESSO	
  SIAMOC	
  
13-­‐10-­‐2011	
                             ©	
  Maria	
  Chiara	
  Carrozza	
       1	
  
                     Bosisio	
  Parini,	
  28	
  se@embre-­‐1	
  o@obre	
  2011	
  
Content	
  
•       Symbiosis	
  	
  
•       AcDons	
  &	
  FuncDons	
  
•       Hand	
  and	
  Brain	
  
•       RehabilitaDon	
  and	
  Assistance	
  
•       Future	
  perspecDves	
  (and	
  lower	
  limb)	
  	
  




13-­‐10-­‐2011	
                 ©	
  Maria	
  Chiara	
  Carrozza	
     2	
  
Content	
  
•       Symbiosis	
  
•       AcDons	
  &	
  FuncDons	
  
•       Hand	
  and	
  Brain	
  
•       RehabilitaDon	
  and	
  Assistance	
  
•       Future	
  perspecDves	
  (and	
  lower	
  limb)	
  	
  	
  




13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     3	
  
Human-­‐robot	
  symbiosis                                                           	
  




              Is	
  “physical”	
  human-­‐exoskeleton	
  symbiosis	
  doable?	
  
                     In	
  1960s,	
  in	
  Man-­‐Computer	
  symbiosis	
  ,	
  J.C.R.	
  Licklider	
  
                     formulated	
  a	
  vision	
  of	
  human-­‐computer	
  symbiosis	
  in	
  which	
  
                     computers	
  and	
  humans	
  would	
  become	
  fluidly	
  interdependent	
  
                     and	
  share	
  goals	
  
                     In	
  2010s,	
  in	
  many	
  tasks,	
  human	
  and	
  computer	
  share	
  goals	
  and	
  
                     are	
  interdependent	
  




13-­‐10-­‐2011	
                                       ©	
  Maria	
  Chiara	
  Carrozza	
                            4	
  
Symbiosis:	
  requirements	
  
•       Wearability	
  
•       Natural	
  control	
  
•       Safe	
  interacDon	
  	
  
•       Body	
  ownership	
  
•       …..	
  




13-­‐10-­‐2011	
                     ©	
  Maria	
  Chiara	
  Carrozza	
     5	
  
Human-­‐robot	
  symbiosis                                                  	
  

•  Moving	
  from	
  human-­‐computer	
  to	
  physical	
  human-­‐robot	
  (or	
  human-­‐exoskeleton)	
  
   symbiosis	
  requires	
  addressing	
  some	
  design	
  issues:	
  

          Wearability	
                           Natural	
  Control	
                           Safe	
  Interac=on	
  
  safe	
  and	
  comfortable	
             Non-­‐invasive	
  user	
  mo0on	
             Distributed	
  sensoriza0on	
  
  physical	
  human-­‐robot	
           inten0on	
  detec0on	
  and	
  gentle	
           of	
  the	
  physical	
  human-­‐
          interac0on	
                              assistance	
                                 robot	
  interface	
  




NEUROExos	
  elbow	
  exoskeleton	
      Adap0ve	
  oscillators	
  for	
  assis0ng	
     Sensorized	
  cuff	
  for	
  lower-­‐limb	
  
                                              rhythmic	
  mo0ons	
                               exoskeletons	
  

     13-­‐10-­‐2011	
                            ©	
  Maria	
  Chiara	
  Carrozza	
                                         6	
  
AcDons	
  and	
  FuncDons	
  
•  AcDons:	
  
         •  Reaching,	
  Touching,	
  Grasping,	
  Feeling,	
  
            ManipulaDng	
  
•  FuncDons:	
  
           –  LocomoDon,	
  navigaDon,	
  manipulaDon	
  
           –  AcDvity	
  of	
  daily	
  living	
  
           –  Therapy:	
  motor	
  recovery	
  
           –  Replacement:	
  prostheDcs	
  
           –  Enhancement:	
  personal	
  assistance	
  

13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     7	
  
Content	
  
•       Symbiosis	
  
•       AcDons	
  &	
  FuncDons	
  
•       Hand	
  and	
  Brain	
  
•       RehabilitaDon	
  and	
  Assistance	
  
•       Future	
  perspecDves	
  (and	
  lower	
  limb)	
  	
  




13-­‐10-­‐2011	
                 ©	
  Maria	
  Chiara	
  Carrozza	
     8	
  
Reaching,	
  Grasping,	
  Touching,	
  
                            ManipulaDng	
  




13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     9	
  
Touching	
  and	
  Grasping	
  




B.	
  B.	
  Edin,	
  L.	
  Ascari,	
  L.	
  Beccai,	
  S.	
  
Roccella,	
  J.-­‐J.	
  Cabibihan,	
  and	
  M.C.	
  
Carrozza,	
  “Bio-­‐inspired	
  sensorizaDon	
  
of	
  a	
  biomechatronic	
  robot	
  handfor	
  
the	
  grasp-­‐and-­‐lic	
  tasks,”	
  Brain	
  Res.	
  
Bull.,	
  vol.	
  75,	
  pp.	
  785–795,	
  2008	
  




     13-­‐10-­‐2011	
                                           ©	
  Maria	
  Chiara	
  Carrozza	
     10	
  
Wearability	
  	
  




13-­‐10-­‐2011	
        ©	
  Maria	
  Chiara	
  Carrozza	
     11	
  
Body	
  ownership	
  	
  
                                                                                               In	
  the	
  "rubber-­‐hand	
  illusion,"	
  the	
  sight	
  of	
  brushing	
  of	
  
                                                                                               a	
  rubber	
  hand	
  at	
  the	
  same	
  Dme	
  as	
  brushing	
  of	
  the	
  
                                                                                               person's	
  own	
  hidden	
  hand	
  is	
  sufficient	
  to	
  produce	
  a	
  
                                                                                               feeling	
  of	
  ownership	
  of	
  the	
  fake	
  hand.	
  We	
  shown	
  
                                                                                               previously	
  that	
  this	
  illusion	
  is	
  associated	
  with	
  acDvity	
  
                                                                                               in	
  the	
  mulDsensory	
  areas,	
  most	
  notably	
  the	
  ventral	
  
                                                                                               premotor	
  cortex	
  (Ehrsson	
  et	
  al.,	
  2004Go).	
  However,	
  it	
  
                                                                                               remains	
  to	
  be	
  demonstrated	
  that	
  this	
  illusion	
  does	
  
                                                                                               not	
  simply	
  reflect	
  the	
  dominant	
  role	
  of	
  vision	
  and	
  
                                                                                               that	
  the	
  premotor	
  acDvity	
  does	
  not	
  reflect	
  a	
  visual	
  
                                                                                               representaDon	
  of	
  an	
  object	
  near	
  the	
  hand.	
  To	
  
                                                                                               address	
  these	
  issues,	
  we	
  introduce	
  a	
  somaDc	
  rubber-­‐
                                                                                               hand	
  illusion.	
  The	
  experimenter	
  moved	
  the	
  
                                                                                               blindfolded	
  parDcipant's	
  lec	
  index	
  finger	
  so	
  that	
  it	
  
                                                                                               touched	
  ……	
  

h@p://www.dailymoDon.com/video/xhb0kd_roboDc-­‐hand-­‐that-­‐feels-­‐real_tech	
  
         H.	
  H.	
  Ehrsson,	
  N.	
  P.	
  Holmes,	
  and	
  R.	
  E.	
  Passingham,,”	
  Touching	
  a	
  Rubber	
  Hand:	
  Feeling	
  of	
  Body	
  Ownership	
  Is	
  Associated	
  with	
  
                     Ac0vity	
  in	
  Mul0sensory	
  Brain	
  Areas”,	
  The	
  Journal	
  of	
  Neuroscience,	
  November	
  9,	
  2005,	
  25(45):10564-­‐10573	
  
         M.	
  L.	
  Blefari,	
  C.	
  Cipriani,	
  M.	
  C.	
  Carrozza,	
  "A	
  Novel	
  Method	
  for	
  Assessing	
  Sense	
  of	
  Body	
  Ownership	
  Using	
  
                     Electroencephalography,"	
  IEEE	
  Trans.	
  Biomedical	
  Engineering,	
  2010,	
  p.	
  1,	
  99,	
  10.1109/TBME.2010.2076282	
  
13-­‐10-­‐2011	
                                                                      ©	
  Maria	
  Chiara	
  Carrozza	
                                                                    12	
  
Three	
  main	
  challenges:	
  

                           (1)	
  	
                                                                                                                                        (2)	
  	
  
RoboDc	
  hand	
  able	
  to	
                                                                                                        Suitable	
  interface	
  for	
  
perform	
  dexterous	
  acDons	
                                                                                                      controlling	
  percepDon	
  and	
  
and	
  sense	
  objects	
                                                                                                             acDon	
  

                                                                                                                                                                                      Interface	
  


                                                                                                                                                                                  bi-­‐direcDonal	
  



                                                                                                                                                          (3)	
  	
  
                                                                                                                                  Sense	
  of	
  Body	
  
                                                                                                                                  Ownership	
  
                M.	
  C.	
  Carrozza,	
  G.	
  Cappiello,	
  S.	
  Micera,	
  B.	
  B.	
  Edin,	
  L.	
  Beccai,	
  and	
  C.	
  Cipriani,	
  “Design	
  of	
  a	
  cyberneDc	
  hand	
  for	
  percepDon	
  and	
  acDon,”	
  Biol.	
  
                Cybern.,	
  vol.	
  95,	
  no.	
  6,	
  pp.	
  629–644,	
  2006	
  
    13-­‐10-­‐2011	
                                                                            ©	
  Maria	
  Chiara	
  Carrozza	
                                                                                                     13	
  
Content	
  
•       Symbiosis	
  
•       AcDons	
  &	
  FuncDons	
  
•       Hand	
  and	
  Brain	
  
•       RehabilitaDon	
  and	
  Assistance	
  
•       Future	
  perspecDves	
  (and	
  lower	
  limb)	
  	
  	
  




13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     14	
  
Why	
  a	
  roboDc	
  model	
  of	
  the	
  human	
  arm	
  
    •       NEURARM	
  is	
  intended	
  to	
  test	
  hypotheses	
  of	
  the	
  
            human	
  arm	
  motor	
  control	
  system	
  
    •       A	
  model	
  that	
  is	
  “under	
  full	
  control	
  of	
  the	
  
            experimenter”	
  
    •       A	
  roboDc	
  model	
  is	
  a	
  powerful	
  tool	
  to	
  overcome	
  
            the	
  possible	
  “reality	
  gap”	
  of	
  mathemaDcal	
  
            models	
  
    •       A	
  roboDc	
  model	
  can	
  complement	
  results	
  from	
  
            either	
  numerical	
  simulaDons	
  or	
  measurements	
  
            on	
  human	
  arm	
  (e.g.	
  Burdet	
  et	
  al.,	
  2001)	
  
Lenzi	
  T,	
  ViDello	
  N,	
  McIntyre	
  J,	
  Roccella	
  S,	
  Carrozza	
  MC,	
  (2010),	
  A	
  roboDc	
  model	
  to	
  invesDgate	
  the	
  human	
  motor	
  control,	
  Biological	
  
Cyberne=cs,	
  in	
  press,	
  2011.	
  


      13-­‐10-­‐2011	
                                                               ©	
  Maria	
  Chiara	
  Carrozza	
                                                                             15	
  
Design	
  goals	
  for	
  the	
  NEURARM	
  
 Mimic	
  the	
  dynamics	
  and	
  control	
  	
  
 structure	
  of	
  the	
  human	
  arm	
  
  •      ac0vely-­‐adjustable	
  passive	
  compliance	
                                          To	
  invesDgate	
  neuroscien0fic	
  
           –  tendon	
  driven	
  	
                                                               hypotheses	
  on	
  motor	
  control	
  and	
  
           –  antagonisDc	
  muscle	
  pairs	
  	
                                                 test	
  possible	
  benefits	
  for	
  controlling	
  
           –  nonlinear	
  spring-­‐like	
  actuators	
                                            roboDc	
  arDfacts	
  
  •      similar	
  limb	
  kinema0cs	
  and	
  dynamics	
                                        ApplicaDon	
  field:	
  robo0cs	
  for	
  
           –  limb	
  inerDa	
                                                                     rehabilita0on	
  	
  
           –  joint	
  sDffness	
  ranges	
  




                                                                                                                              RoboDc	
  
Biological	
  model	
         CyberneDc	
  model	
              Bio-­‐inspired	
  roboDc	
  	
  arDfact	
                     implementaDon	
  
       13-­‐10-­‐2011	
                                  ©	
  Maria	
  Chiara	
  Carrozza	
                                                    16	
  
Remote	
  and	
  antagonist	
  actuaDon	
  
 •  Two	
  remote	
  and	
  antagonist	
  actuaDon	
  units	
  
 •  Each	
  unit	
  is	
  a	
  series	
  of	
  a	
  non-­‐linear	
  spring,	
  a	
  contracDle	
  element	
  and	
  a	
  steel	
  wire	
  rope	
  
 •  Two	
  control	
  strategies:	
  
              –  passive	
  compliance	
  control,	
  for	
  robot-­‐in-­‐charge	
  therapy	
  
              –  torque	
  control,	
  for	
  pa=ent-­‐in-­‐charge	
  therapy	
  


          Despite its greater
           complexity, pros are:
                    compared to gearhead
                     DC motors, a low
                     output impedance
                     over all the frequency
                     spectrum
                    compared to series
                     elastic actuators, an
                     adjustable hardware
                     compliance
     N.	
  ViDello,	
  T.	
  Lenzi,	
  S.M.M.	
  De	
  Rossi,	
  S.	
  Roccella,	
  M.C.	
  Carrozza,	
  “A	
  sensorless	
  torque	
  control	
  for	
  AntagonisDc	
  Driven	
  Compliant	
  joints”,	
  
     Mechatronics,	
  vol.	
  20(3),	
  pp.	
  355-­‐367,	
  2010.	
  
            13-­‐10-­‐2011	
                                                                   ©	
  Maria	
  Chiara	
  Carrozza	
                                                                    17	
  
Adjustable	
  Rest-­‐Length	
  and	
  Non-­‐linear	
  	
  
                   Springs	
  
                                    Reciprocally	
   shiing	
   the	
   length-­‐tension	
   curve	
   of	
   the	
  
                                    opposing	
  springs	
  causes	
  a	
  shic	
  of	
  Equilibrium	
  Point.	
  	
  	
  



                                    Concomitantly	
   shiing	
   the	
   length-­‐tension	
   curves	
   of	
  
                                    the	
   opposing	
   springs	
   increases	
   the	
   sDffness	
   in	
   each	
  
                                    muscle	
  for	
  the	
  same	
  Equilibrium	
  Point.	
  



     Changing	
  the	
  Equilibrium	
  Point	
  is	
  achieved	
  by	
  reciprocal	
  
      acDvaDon	
  
   Net	
  sDffness	
  may	
  be	
  increased	
  by	
  co-­‐acDvaDon	
  
 ∴	
  Nonlinear	
  springs	
  make	
  EPH	
  control	
  viable	
  and	
  similar	
  to	
  
      biological	
  muscles	
  
 13-­‐10-­‐2011	
                      ©	
  Maria	
  Chiara	
  Carrozza	
                                             18	
  
Actuator	
  Control	
  
                       The	
  Equilibrium	
  Point	
  Hypothesis	
  based	
  control	
  


   Antagonist                                                               Antagonist
pistons move in                                                          pistons move in
   the same                                                                 opposite
   direction                                                                direction




STIFFNESS                                                                   POSITION
regulation                                                                  regulation

                                      XExt/Flx = XCOM ± XDIFF
XCOM – common mode displacement  joint stiffness
XDIFF – differential mode displacement  joint equilibrium position

  13-­‐10-­‐2011	
                             ©	
  Maria	
  Chiara	
  Carrozza	
          19	
  
4-­‐DOF	
  passive	
  mechanism	
  
•  From	
  biomechanics*:	
  
       –  human	
  elbow	
  is	
  a	
  LOOSE	
  hinge	
  joint	
  
       –  because	
  of	
  the	
  intra-­‐	
  and	
  –inter	
  subject	
  
          variability,	
  elbow	
  axis:	
  
       –  traces	
  a	
  double	
  conic	
  frustum	
  (max	
  values	
  
          for	
  βh	
  and	
  βf	
  are:	
  10°and	
  6)	
  along	
  the	
  
          flexion-­‐extension	
  movement	
  
       –  forms	
  an	
  angle	
  with	
  AH	
  of	
  80°-­‐92°	
  
       –  forms	
  an	
  angle	
  with	
  AML	
  of	
  ±5°	
  
•  We	
  need	
  a	
  passive	
  mechanism	
  which	
  
   compensates	
  for:	
  
       –  the	
  rotaDons	
  of	
  elbow	
  flexion	
  axis	
  in	
  both	
  
          frontal	
  and	
  horizontal	
  planes	
  
       –  compensate	
  for	
  the	
  human-­‐robot	
  joint	
  axes	
  
          misalignment	
  
                                                                                                        (Adapted	
  from	
  I.A.	
  KAPANDJI	
  	
  Physiology	
  of	
  Human	
  
                                                                                                                                                                        Joints	
  )	
  

                                                                                        *Bo@lang	
  et	
  al.,	
  1998;	
  Bo@lang	
  et	
  al.,	
  2000;	
  Duck	
  

                                                                                                                                                              et	
  al.,	
  2003	
  

   13-­‐10-­‐2011	
                                      ©	
  Maria	
  Chiara	
  Carrozza	
                                                                                   20	
  
4-­‐DOF	
  passive	
  mechanism	
  




13-­‐10-­‐2011	
                 ©	
  Maria	
  Chiara	
  Carrozza	
     21	
  
Passive	
  compliance	
  control	
  
•  Passive	
  compliance	
  control:	
  
               –  inspired	
  by	
  the	
  Equilibrium	
  Point	
  Hypothesis	
  
               –  independent	
  control	
  of	
  joint	
  equilibrium	
  posiDon	
  and	
  sDffness,	
  by	
  means	
  of	
  
                  the	
  independent	
  control	
  of	
  the	
  pistons	
  posiDons	
  
[Nm]	
  




                                [deg]	
  
            StaDc	
  characterizaDon	
  of	
  the	
  tunable	
                      Step	
  response	
  of	
  the	
  posiDon	
  control	
  for	
  
             passive	
  compliance;	
  sDffness	
  range:	
                             three	
  different	
  values	
  of	
  sDffness	
  
                          28-­‐72	
  Nm/rad	
  
           13-­‐10-­‐2011	
                                ©	
  Maria	
  Chiara	
  Carrozza	
                                                22	
  
Torque	
  control	
  	
  
•  Two	
  independent	
  closed-­‐loop	
  force	
  controllers	
  
           –  (a)	
  step	
  response	
  of	
  the	
  force	
  control	
  
                     •  raising	
  Dme:	
  0.54	
  s	
  
           –  (b)	
  closed-­‐loop	
  Bode	
  diagram:	
  
                     •  -­‐3	
  dB	
  bandwidth:	
  ≈10	
  Hz	
  




13-­‐10-­‐2011	
                                             ©	
  Maria	
  Chiara	
  Carrozza	
               23	
  
                                           (a)	
                                                    (b)	
  
AdapDve	
  oscillators	
  for	
  moDon	
  
                                     assistance	
  




       Experiment	
  with	
  NEUROExos	
  (in	
  torque	
  control	
  
      modality),	
  conducted	
  at	
  ARTS	
  Lab,	
  Scuola	
  Superiore	
                                               Human-­‐robot	
  cross-­‐adapta0on	
  
      Sant’Anna	
  in	
  collaboraDon	
  with	
  EPFL	
  (Switzerland)	
                                                     through	
  synchroniza0on	
  




R.	
  Ronsse,	
  N.	
  ViDello,	
  T.	
  Lenzi,	
  J.	
  van	
  den	
  Kieboom,	
  M.C.	
  Carrozza,	
  A.J.	
  Ijspeert,	
  “Human-­‐robot	
  synchrony:	
  flexible	
  assistance	
  using	
  
adapDve	
  oscillator”,	
  IEEE	
  Transac=ons	
  on	
  Biomedical	
  Engineering,	
  vol.	
  58(4):1001-­‐12,	
  2011.	
  
    13-­‐10-­‐2011	
                                                               ©	
  Maria	
  Chiara	
  Carrozza	
                                                                             24	
  
RehabilitaDon	
  and	
  Assistance	
  




13-­‐10-­‐2011	
               ©	
  Maria	
  Chiara	
  Carrozza	
     25	
  
Materials	
  and	
  methods:	
  the	
  assisDve	
  strategy	
  
•  Block	
  diagram	
  of	
  the	
  assisDve	
  strategy	
  




•  The	
  adapDve	
  oscillator	
  is	
  a	
  modified	
  Hopf	
  oscillator	
  that	
  can	
  learn	
  the	
  
   frequency	
  ω(t),	
  amplitude	
  α1(t)	
  and	
  offset	
  α0(t):	
  




   13-­‐10-­‐2011	
                            ©	
  Maria	
  Chiara	
  Carrozza	
                           26	
  
Results:	
  adapDve	
  oscillator	
  tracks	
  the	
  actual	
  joint	
  
                           angle	
  
    AdapDve	
  oscillator	
  tracks	
  elbow	
  joint	
  angle	
  with	
  no	
  delay	
  




         True	
  signal	
  in	
  black,	
  oscillator-­‐based	
  esDmate	
  in	
  dashed	
  gray	
  
1st	
  case	
  (frequency	
  constant):	
  EMG	
  
                                profile	
  
ReducDon	
  of	
  EMG	
  acDvity,	
  for	
  both	
  biceps	
  and	
  triceps,	
  is	
  more	
  evident	
  if	
  we	
  
    look	
  at	
  the	
  single-­‐cycle	
  EMG	
  profile	
  averaged	
  over	
  all	
  subjects	
  and	
  cycles	
  

                                                                                                       no-­‐exoskeleton	
  
                                                                                                 no-­‐assistance	
  (k=0)	
  
                                                                                         low-­‐	
  assistance	
  (k=0.33)	
  
                                                                                           high	
  assistance	
  (k=0.5)	
  




 13-­‐10-­‐2011	
                                ©	
  Maria	
  Chiara	
  Carrozza	
                                   28	
  
Assistance	
  through	
  Powered	
  
•       The	
  big	
  challenge	
  
                                    Exoskeletons	
  
           –  understand	
  the	
  intenDon	
  of	
  the	
  user	
  and	
  react	
  
              appropriately	
  to	
  provide	
  the	
  required	
  assistance	
  in	
  
              Dme	
  

•  The	
  know	
  strategy	
  
           1.         Es0mate	
  with	
  the	
  best	
  possible	
  accuracy	
  the	
  torque	
  
                      needed	
  to	
  perform	
  the	
  desired	
  movement	
  
           2.         Provide	
  a	
  constant	
  fracDon	
  of	
  that	
  torque	
  to	
  the	
  
                      user	
  

•  The	
  open	
  quesDons	
  
           –  Is	
  accuracy	
  the	
  “holy	
  grail”	
  of	
  robot-­‐mediated	
  
              assistance?	
  
           –  Is	
  the	
  “constant	
  fracDon”	
  paradigm	
  strictly	
  needed	
  for	
  
              assisDng	
  effecDvely	
  humans?	
  
           –  How	
  to	
  take	
  into	
  account	
  the	
  user’s	
  reacDon?	
  
                      •  What	
  	
  does	
  it	
  mean	
  assistance	
  from	
  a	
  Motor	
  Learning	
  
                         perspecDve?	
  

     13-­‐10-­‐2011	
                                                  ©	
  Maria	
  Chiara	
  Carrozza	
     29	
  
The	
  ProporDonal	
  EMG	
  controller	
  
•  Our	
  hypothesis	
  
        –  motor	
  learning	
  can	
  compensate	
  for	
  torque	
  esDmate	
  imprecision,	
  
           without	
  adding	
  further	
  cogniDve	
  effort	
  to	
  the	
  user	
  
•  Our	
  goal	
  
        –  Verify	
  the	
  closed-­‐loop	
  usability	
  of	
  a	
  simplified	
  assisDve	
  controller	
  	
  
                   •  proporDonal	
  EMG	
  control	
  
                   •  preferred	
  gain	
  directly	
  chosen	
  by	
  subjects	
  	
  




    The	
  NEUROExos	
  elbow	
  exoskeleton	
                          Block	
  diagram	
  of	
  the	
  simplified	
  assisDve	
  controller	
  

  13-­‐10-­‐2011	
                                        ©	
  Maria	
  Chiara	
  Carrozza	
                                                 30	
  
Experimental	
  Procedure	
  (1/2)	
  
1.  PreparaDon	
  (electrodes	
  placement)	
  
     –  sEMG	
  from	
  the	
  biceps	
  brachii	
  and	
  
        triceps	
  brachii	
  
               •      pre-­‐gelled	
  Ag/AgCl	
  (Pirronse&Co.,	
  Italy)	
  
               •      digiDzed	
  @1Khz	
  with	
  internal	
  band-­‐pass	
  
                      filter	
  (10-­‐500Hz)	
  (Noraxon)	
  

2.  Preferred	
  gain	
  selecDon	
  
     –  Subjects	
  don	
  NEUROExos	
  	
  and	
  perform	
  
        unconstrained	
  flexion-­‐extension	
  
        movement	
  
     –  Subjects	
  increase	
  the	
  gains	
  gradually	
  
        using	
  a	
  knob	
  as	
  long	
  as	
  they	
  feel	
  
        comfortable	
  with	
  assistance	
  
 13-­‐10-­‐2011	
                                 ©	
  Maria	
  Chiara	
  Carrozza	
     31	
  
Experimental	
  Procedure	
  (2/2)	
  
3.  Behavioral	
  experiments	
  
     –  Rhythmic	
  flexion/extension	
  
        movement	
  against	
  gravity	
  at	
  a	
  target	
  
        pace	
  and	
  amplitude	
  supplied	
  
        through:	
  
               •      augmented	
  visual	
  feedback	
  
               •      acousDc	
  cueing	
  

     –  Variable	
  assistance	
  level	
  
               •      	
  50%-­‐100%-­‐150%	
  of	
  the	
  preferred	
  gain	
  
                      previously	
  chosen	
  

     –  Different	
  movement	
  condiDon	
  
               •      hand-­‐free	
  movement	
  (trial	
  1)	
  
               •      dumb-­‐bell	
  licing	
  (trial	
  2)	
  
               •      variable	
  target	
  pace	
  (trial	
  3)	
  

 13-­‐10-­‐2011	
                                     ©	
  Maria	
  Chiara	
  Carrozza	
     32	
  
Results	
  (1/2)	
  

                                                                                •  PosiDon	
  velocity	
  and	
  
                                                                                   acceleraDon	
  profiles	
  are	
  not	
  
                                                                                   altered	
  by	
  the	
  assistance	
  
                                                                                •  LE	
  decrease	
  with	
  the	
  
                                                                                   assistance	
  indicaDng	
  an	
  
                                                                                   effecDve	
  effort	
  reducDon	
  

Steady-­‐state	
  profiles	
  of	
  posiDon	
  (A),	
  velocity	
  (B)	
  ,	
  acceleraDon	
  (C)	
  and	
  biceps	
  linear	
  
envelope	
  (D)	
  for	
  one	
  representaDve	
  subject.	
  	
  
Profiles	
  were	
  obtained	
  by	
  resampling	
  the	
  actual	
  trajectories	
  over	
  1000	
  equally	
  spaced	
  
samples	
  for	
  each	
  cycle,	
  then	
  averaging	
  on	
  the	
  steady-­‐state	
  cycles	
  of	
  each	
  gain	
  separately.	
  

   13-­‐10-­‐2011	
                                     ©	
  Maria	
  Chiara	
  Carrozza	
                                          33	
  
Discussion	
  
•  Subjects	
  could	
  keep	
  the	
  full	
  control	
  of	
  their	
  arm	
  movement	
  despite	
  the	
  
   acDon	
  of	
  the	
  EMG-­‐proporDonal	
  assisDve	
  controller.	
  	
  
           –  with	
  the	
  EMG	
  assistance	
  on,	
  parDcipants	
  successfully	
  performed	
  the	
  rhythmic	
  
              task	
  independently	
  of	
  the	
  presence	
  of	
  an	
  addiDonal	
  weight	
  and	
  the	
  required	
  
              movement	
  pace	
  

•  In	
  all	
  tested	
  condiDons	
  parDcipants	
  could	
  reduce	
  the	
  effort	
  spent	
  for	
  
   generaDng	
  the	
  arm	
  movement	
  as	
  shown	
  by	
  the	
  considerable	
  biceps	
  IEMGs	
  
   drop	
  off	
  

•  Very	
  fast	
  adapta0on	
  of	
  subjects	
  to	
  the	
  disturbances	
  induced	
  by	
  the	
  EMG	
  
   controller.	
  
           –  all	
  parDcipants	
  could	
  recover	
  the	
  target	
  movement	
  pace	
  and	
  amplitude	
  within	
  
              3	
  cycles	
  acer	
  an	
  abrupt	
  assistance	
  acDvaDon,	
  regardless	
  of	
  the	
  specific	
  
              movement	
  condiDon	
  experienced	
  during	
  the	
  trials.	
  	
  
           –  IEMG	
  recordings	
  reached	
  a	
  staDonary	
  level	
  within	
  the	
  same	
  number	
  of	
  cycles	
  



13-­‐10-­‐2011	
                                     ©	
  Maria	
  Chiara	
  Carrozza	
                                    34	
  
Design	
  goals	
  for	
  Handexos	
  
•  Development	
  of	
  an	
  exoskeleton	
  for	
  rehabilitaDon	
  
   and	
  funcDonal	
  recovery	
  of	
  the	
  human	
  hand	
  
•  System	
  requirements	
  
           –  Matching	
  the	
  kinemaDc	
  requirements	
  of	
  the	
  human	
  
              hand	
  
                     •  Inter-­‐subjects	
  anthropometric	
  variability	
  
           –  Comfortable	
  physical	
  human-­‐robot	
  interacDon	
  
           –  Minimum	
  encumbrance	
  
           –  Low	
  inerDa	
  of	
  the	
  moving	
  parts	
  

13-­‐10-­‐2011	
                                ©	
  Maria	
  Chiara	
  Carrozza	
     35	
  
HANDEXOS:	
  1st	
  prototype	
  
  Shell-­‐like	
  structures	
  for	
  the	
  link	
  
             MinimizaDon	
  of	
  the	
  overall	
  size	
  
             Comfortable	
  distributed	
  physical	
  
              human-­‐robot	
  interface	
  
  Proximal	
  slider	
  crank-­‐like	
  
   mechanism	
  to	
  transmit	
  the	
  
   driving	
  torque	
  onto	
  the	
  human	
  
   MCP	
  joint	
  while	
  minimizing	
  the	
  
   undesired	
  forces	
  loading	
  the	
  MCP	
  
   arDculaDon	
  
  Underactuated	
  remote	
  actuaDon	
  
  Free	
  palm	
  area	
  


                                                                                                                                         Chiri et al., IROS, 2009
13-­‐10-­‐2011	
                                    ©	
  Maria	
  Chiara	
  Carrozza	
                  Chiri ert al., IEEE Transactions on Mechatronics, 2011
                                                                                                                                                          36	
  
                                                                               S. Roccella et al., Wearable Mechatronic Device, Pub. No.: WO/2009/016478
Index	
  finger	
  module	
  
Finger	
  mechanism,	
  exploded	
  view	
  




      3	
   acDve	
   rotaDonal	
   joints	
   for	
   finger	
   flexion/
           extension	
  
      1	
   passive	
   rotaDonal	
   joint	
   for	
   finger	
   abducDon	
  
           adducDon	
  
      1	
   passive	
   translaDonal	
   joint	
   for	
   the	
   kinemaDc	
  
           coupling	
  of	
  the	
  human/exoskeleton	
  MCCP	
  aCarrozza	
  
    13-­‐10-­‐2011	
                                ©	
  Maria	
   hiara	
  
                                                                             xes	
     37	
  
ActuaDon	
  System	
  
  Light	
  weight	
  
  Modular	
  
  	
  Simply	
  reconfigurable	
  
  Remotely	
   located	
   with	
   respect	
   to	
   the	
  
   hand	
  
  It	
  is	
  composed	
  of	
  an	
  actuated	
  extension	
  
   unit	
  (top	
  blue	
  box)	
  and	
  a	
  passive	
  flexion	
  
   module	
  (down	
  red	
  box)	
  
  The	
   transmission	
   system	
   is	
   based	
   on	
  
   steel	
   wire	
   ropes	
   routed	
   through	
   spiral-­‐
   spring	
  Bowden	
  cables	
  
          external	
  diameter	
  1.6	
  mm	
  
          internal	
  diameter	
  0.8	
  mm	
  
  The	
   tendon	
   cable	
   is	
   pulled	
   by	
   a	
   linear	
  
   slider	
   driven	
   by	
   a	
   dc	
   motor	
   (18.10	
   W)	
  
   through	
   a	
   planetary	
   gear	
   with	
   a	
  
   reducDon	
  raDo	
  of	
  43	
  
  The	
   moDon	
   is	
   transmi@ed	
   to	
   a	
   lead	
  
   screw	
   (pitch	
   0.5	
   mm)	
   by	
   means	
   of	
   spur	
  
 13-­‐10-­‐2011	
                                         ©	
  Maria	
  Chiara	
  Carrozza	
     38	
  
   gears	
  
Sensors	
  
 Lower	
   shells	
   are	
   equipped	
  
  with	
   three	
   force	
   sensors	
   to	
  
  sense	
   the	
   interacDon	
   force	
  
  onto	
  the	
  palmar	
  side	
  
 The	
   extension	
   unit	
   is	
  
  equipped	
   with	
   two	
   Hall	
  
  sensors	
  which	
  serve	
  as	
  limit	
  
  switches	
  
 Cable	
   force	
   is	
   sensed	
  
  through	
  strain	
  gauges	
  


13-­‐10-­‐2011	
                        ©	
  Maria	
  Chiara	
  Carrozza	
     39	
  
Control	
  System	
  
  The	
  low-­‐level	
  layer	
  running	
  at	
  5	
  kHz	
  on	
  a	
  standalone	
  moDon	
  controller	
  implements	
  the	
  posiDon	
  
   control	
  of	
  the	
  linear	
  slider	
  
  The	
   high-­‐level	
   layer	
   running	
   on	
   a	
   remote	
   PC	
   at	
   100	
   Hz	
   sets	
   the	
   desired	
   posiDon	
   of	
   the	
   linear	
  
   slider	
   in	
   accordance	
   with	
   the	
   rehabilitaDve	
   task	
   to	
   be	
   performed,	
   and	
   it	
   monitors	
   the	
   cable	
  
   force	
  for	
  reverDng	
  the	
  slider	
  moDon	
  in	
  the	
  case	
  of	
  force	
  overload	
  




13-­‐10-­‐2011	
                                                  ©	
  Maria	
  Chiara	
  Carrozza	
                                                            40	
  
(11)    Experimental	
  results	
  
                              Comparison	
  of	
  finger	
  kinema0cs	
  with	
  and	
  without	
  wearing	
  HANDEXOS	
  



                                                                                                     All	
   subjects	
   could	
   easily	
   wear	
   HANDEXOS	
  
                                                                                                      and	
  perform	
  extension/flexion	
  tasks	
  
                                                                                                     The	
   level	
   of	
   similarity	
   of	
   joint	
   trajectories	
  
                                                                                                      between	
  NE	
  and	
  NA	
  modes	
  was	
  assessed	
  
                                                                                                      by	
   calculaDng	
   the	
   Pearson	
   product	
  
                                                                                                      moment	
  correlaDon	
  	
  
                                                                                                     Thanks	
   to	
   its	
   passive	
   DOFs,	
   HANDEXOS	
  
                                                                                                      could	
  fit	
  the	
  hand	
  anthropometry	
  of	
  each	
  
                                                                                                      subject,	
   and	
   none	
   of	
   them	
   reported	
   any	
  
                                                                                                      discomfort	
  in	
  wearing	
  the	
  device	
  
Human	
  MCP,	
  PIP	
  and	
  DIP	
  trajectories	
  acquired	
  during	
  NA	
  (no	
  
acDon,	
  dashed	
  line)	
  and	
  NE	
  (no	
  exoskeleton,	
  solid	
  line)	
  modes	
  
for	
  subject	
  #1.	
  

   Wearing	
  HANDEXOS	
  does	
  not	
  modify	
  the	
  
      finger	
  extension/flexion	
  mo0on	
  
     13-­‐10-­‐2011	
                                                              ©	
  Maria	
  Chiara	
  Carrozza	
                                                  41	
  
Experimental	
  results	
  
          Evalua0on	
  of	
  the	
  undesired	
  transla0onal	
  force	
  ac0ng	
  on	
  the	
  human	
  MCP	
  ar0cula0on	
  


  Small	
  undesired	
  reciprocal	
  translaDon	
  
   exists	
   between	
   the	
   device	
   and	
   the	
  
   user’s	
   hand	
   during	
   flexion-­‐extension	
  
   moDon	
  tasks	
  
  The	
  maximum	
  esDmated	
  translaDons	
  
   force	
   acDng	
   on	
   the	
   human	
   MCP	
  
                                                                        Acquired	
  (θ1	
  in	
  solid	
  black	
  line)	
  and	
  esDmated	
  (θ’1	
  in	
  dashed	
  
   arDculaDon	
   in	
   a	
   task	
   of	
   assisted	
                black	
  line)	
  HANDEXOS	
  MCP	
  trajectories	
  for	
  subject	
  #1.	
  The	
  
   extension	
  was	
  about	
  8	
  N	
                                    grey	
  line	
  represents	
  the	
  human	
  MCP	
  trajectory	
  (q1).	
  

                                                                       AVERAGE	
  AND	
  STANDARD	
  DEVIATION	
  OF	
  RMS	
  AND	
  MAX	
  ERR	
  
                                                                                             FOR	
  EACH	
  SUBJECT	
  




  HANDEXOS	
  does	
  not	
  overload	
  MCP	
  aMaria	
  Chiara	
  Carrozza	
   than	
  the	
  ac0vi0es	
  of	
  daily	
  living	
  
  13-­‐10-­‐2011	
                          ©	
   r0cula0on	
  more	
                                                          42	
  
Content	
  
•       Symbiosis	
  
•       AcDons	
  &	
  FuncDons	
  
•       Hand	
  and	
  Brain	
  
•       RehabilitaDon	
  and	
  Assistance	
  
•       Future	
  perspecDves	
  (and	
  lower	
  limb)	
  	
  	
  




13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     43	
  
Work	
  on	
  lower	
  limb:	
  measurement	
  of	
  
                          HRI	
  force	
  
•  The	
  need	
  for	
  measuring	
  interacDon	
  
       –  How	
  the	
  machine	
  is	
  dynamically	
  
          interacDng	
  with	
  the	
  user	
  
•  How	
  interacDon	
  is	
  transmi@ed	
  
       –  Cuffs	
  
       –  Orthoses	
  
•  How	
  interacDon	
  is	
  measured	
  
                                                                                   HAL-­‐5	
     MIT-­‐leg	
  exos	
  
                                                                                                                  Lokomat	
  
       –  InteracDve	
  torque	
  
            •  Model	
  –	
  based	
  approaches	
  
       –  InteracDve	
  force	
  
            •  Load	
  cells	
  	
  (Lokomat)	
  
            •  Spring-­‐based	
  force	
  sensors	
  (MIT	
  
               Exoskeleton)	
  
            •  Strain	
  gauges	
  (HAL)	
  

                                                                              Michingan	
  AFO	
          MIT	
  AFO	
  

   13-­‐10-­‐2011	
                                 ©	
  Maria	
  Chiara	
  Carrozza	
                                     44	
  
Sensorized	
  cuff	
  
                                                                                                   Shielded	
  cable	
  
                                               Rigid	
  plasDc	
  frame	
  
                                                                                              Connector	
  
                   Flexible	
  belt	
  




                                                                                                 Skilsens	
  pad	
  

•     Soc	
  tacDle	
  sensor	
  does	
  not	
  affect	
  the	
  comfort	
  
•     The	
  posiDon	
  and	
  number	
  of	
  sensors	
  can	
  be	
  changed	
  
•     Adaptable	
  to	
  all	
  cuff	
  sizes	
  


     13-­‐10-­‐2011	
                                  ©	
  Maria	
  Chiara	
  Carrozza	
                              45	
  
The	
  Skilsens	
  tacDle	
  sensing	
  technology	
  
•  Skilsens	
  technology	
  




•  Each	
  sensor	
  can	
  be	
  adapted:	
  
       –  Size	
  and	
  shape	
  
       –  Force	
  range	
  
       –  SpaDal	
  resoluDon	
  

  13-­‐10-­‐2011	
                   ©	
  Maria	
  Chiara	
  Carrozza	
     46	
  
Results:	
  walking	
  experiments	
  
•        This	
  sensory	
  apparatus	
  can	
  discriminate	
  
         between	
  two	
  walking	
  condiDons:	
  
            –  Zero-­‐torque	
  control	
  
            –  Viscous	
  field:	
  10	
  Nm/rad·∙s-­‐1	
  




                                                                           Increased	
  local	
                                                                          30	
  kPa	
  peaks	
  
                                                                               pressure   	
  
S.M.M.	
  De	
  Rossi,	
  N.	
  ViDello,	
  T.	
  Lenzi,	
  R.	
  Ronsse,	
  B.	
  Koopman,	
  A.	
  Persiche„,	
  F.	
  Vecchi,	
  A.J.	
  Ijspeert,	
  H.	
  van	
  der	
  Kooij,	
  M.C.	
  Carrozza,	
  
“Sensing	
  pressure	
  distribuDon	
  on	
  a	
  Lower-­‐Limb	
  Exoskeleton	
  Physical	
  Human-­‐Machine	
  Interface”,	
  Sensors,	
  vol.	
  11(1),	
  pp.	
  207-­‐227,	
  2010.	
  
   13-­‐10-­‐2011	
                                                                     ©	
  Maria	
  Chiara	
  Carrozza	
                                                                                   47	
  
Summary	
  of	
  features	
  
•      New	
  Prototype	
  Pros:	
  
        •  Maximum	
  wearability	
  and	
  comfort	
  	
  
        •  Allows	
  Long-­‐term	
  recordings	
  in	
  a	
  normal	
  shoe	
  
        •  Coverage	
  of	
  most	
  of	
  the	
  plantar	
  area	
  
               •  Allows	
  to	
  compute	
  relaDve	
  posiDon	
  of	
  CoP	
  and	
  
                    total	
  GRF	
  
        •  Good	
  single-­‐cell	
  esDmaDon	
  accuracy	
  
        •  High	
  temporal	
  resoluDon	
  for	
  high-­‐	
  and	
  low-­‐level	
  
            data	
  
•      Possible	
  improvements:	
  
        •  Decrease	
  sensor	
  size	
  
        •  Reduce	
  size	
  of	
  onboard	
  electronics	
  
        •  Integrate	
  electronics	
  on	
  the	
  sensor	
  board	
  
        •  On-­‐board	
  data	
  logging	
  



     13-­‐10-­‐2011	
                                 ©	
  Maria	
  Chiara	
  Carrozza	
     48	
  
Acknowledgments	
  
•  NANOBIOTACT:	
  Nanoengineering	
  BiomimeDc	
  TacDle	
  
   Sensors	
  (Project	
  EU-­‐FP6-­‐NMP-­‐033287)	
  
•  NANOBIOTOUCH:	
  Nano-­‐resolved	
  mulD-­‐scale	
  
   invesDgaDons	
  of	
  human	
  tacDle	
  sensaDons	
  and	
  Dssue	
  
   engineered	
  nanobiosensors	
  (Project	
  EU-­‐FP7-­‐
   NMP-­‐228844)	
  
•  WAY	
  Wearable	
  interfaces	
  hAnd	
  funcDon	
  recoverY	
  
        FP7-­‐ICT-­‐2011-­‐	
  288551	
  
•  The	
  EVRYON	
  CollaboraDve	
  STREP	
  Project:	
  “EVolving	
  
   MoRphologies	
  for	
  Human-­‐Robot	
  SYmbioDc	
  
   InteracDON”,	
  FP7-­‐ICT-­‐2007-­‐3-­‐231451	
  

13-­‐10-­‐2011	
                            ©	
  Maria	
  Chiara	
  Carrozza	
     49	
  
NeuroroboDcs	
  @	
  The	
  BioroboDcs	
  InsDtute	
  
                                    ChrisDan	
  Cipriani	
  (Assistant	
  Professor)	
  
                                    Fabrizio	
  Vecchi	
  (Research	
  manager)	
  
                                    Stefano	
  Roccella	
  (Senior	
  research	
  assistant)	
  
                                    Nicola	
  ViDello	
  (Post-­‐Doc)	
  
                                    Alessandro	
  Persiche„	
  	
  (Post-­‐Doc)	
  
                                    Michela	
  Aquilano	
  (Post-­‐Doc)	
  
                                    Filippo	
  Cavallo	
  (Post-­‐Doc)	
  
                                    Calogero	
  Oddo	
  (Post-­‐Doc)	
  
                                    Marco	
  Controzzi	
  (PhD	
  student)	
  
                                    Manuele	
  Bonaccorsi	
  (PhD	
  Student)	
  
                                    Tommaso	
  Lenzi	
  (PhD	
  student)	
  
                                    Stefano	
  De	
  Rossi	
  (PhD	
  student)	
  
                                    Azzurra	
  Chiri	
  (PhD	
  student)	
  
                                    Marco	
  Cempini	
  (PhD	
  Student)	
  
                                    Maria	
  Laura	
  Blefari	
  (PhD	
  Student)	
  
                                    Gunter	
  Kanitz	
  (PhD	
  Student)	
  
                                    Marco	
  D’Alonzo	
  (PhD	
  Student)	
  
                                    Francesco	
  Giovacchini	
  (Research	
  assistant)	
  
                                    Marco	
  DonaD	
  (Research	
  assistant)	
  




13-­‐10-­‐2011	
       ©	
  Maria	
  Chiara	
  Carrozza	
                                          50	
  

More Related Content

Viewers also liked

Johnson CV
Johnson CVJohnson CV
Johnson CV
Johnson Wang
 
San petesburgo.(dr.zibago)
San petesburgo.(dr.zibago)San petesburgo.(dr.zibago)
San petesburgo.(dr.zibago)
titosobarzo
 
Bw broadcast v2 flyer
Bw broadcast v2 flyerBw broadcast v2 flyer
Bw broadcast v2 flyer
Radikal Ltd.
 
Emo Risaliti’s Wine Labels - Short Tour
Emo Risaliti’s Wine Labels - Short TourEmo Risaliti’s Wine Labels - Short Tour
Emo Risaliti’s Wine Labels - Short Tour
Studio Emo Risaliti
 
Profiles International Company Profile v.2
Profiles International Company Profile v.2Profiles International Company Profile v.2
Profiles International Company Profile v.2
Hussein Mansour
 
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
Stefan Henningsson
 
Marketingcity
MarketingcityMarketingcity
Marketingcity
Marketingcity
 
Updated Sara's Resume (3) (1)
Updated Sara's Resume (3) (1)Updated Sara's Resume (3) (1)
Updated Sara's Resume (3) (1)
Sara San Miguel
 
IB-Zumiez
IB-ZumiezIB-Zumiez
IB-Zumiez
Macey Eamma
 
Los vicios del internet
Los vicios del internetLos vicios del internet
Los vicios del internet
Jhon Jairo Guaña
 
RockStar Ninja Power Ranger
RockStar Ninja Power RangerRockStar Ninja Power Ranger
RockStar Ninja Power Ranger
Tomislav Kozačinski
 
Plantilla evaluación de fuentes. Flor de Maria Casas Angel
Plantilla evaluación de fuentes. Flor de Maria Casas AngelPlantilla evaluación de fuentes. Flor de Maria Casas Angel
Plantilla evaluación de fuentes. Flor de Maria Casas Angel
Maycitocasas7
 
El vals lento_de_las_tortugas_-_katherine_pancol
El vals lento_de_las_tortugas_-_katherine_pancolEl vals lento_de_las_tortugas_-_katherine_pancol
El vals lento_de_las_tortugas_-_katherine_pancol
Braw Antonio
 
Fw joeeeeeer este si que es el e mail del año -__.txt
Fw joeeeeeer este si que es el e mail del año -__.txtFw joeeeeeer este si que es el e mail del año -__.txt
Fw joeeeeeer este si que es el e mail del año -__.txt
Elena Infante
 
1025 mi
1025 mi1025 mi
Blue Systems Tecnologia 2016
Blue Systems Tecnologia 2016Blue Systems Tecnologia 2016
Blue Systems Tecnologia 2016
Andre Jaccon
 
Glauben leicht gemacht (taschenbuch). german deutsche
Glauben leicht gemacht (taschenbuch). german deutscheGlauben leicht gemacht (taschenbuch). german deutsche
Glauben leicht gemacht (taschenbuch). german deutsche
HarunyahyaGerman
 
I Love Chocolate
I Love ChocolateI Love Chocolate
I Love Chocolate
Manuela Szekely
 
Produção das unidades de saúde agosto 2010
Produção das unidades de saúde agosto 2010Produção das unidades de saúde agosto 2010
Produção das unidades de saúde agosto 2010
Secretaria Municipal de Saúde
 
El libro de los mediums
El libro de los mediumsEl libro de los mediums
El libro de los mediums
Jorge Alberto Villamor Medina
 

Viewers also liked (20)

Johnson CV
Johnson CVJohnson CV
Johnson CV
 
San petesburgo.(dr.zibago)
San petesburgo.(dr.zibago)San petesburgo.(dr.zibago)
San petesburgo.(dr.zibago)
 
Bw broadcast v2 flyer
Bw broadcast v2 flyerBw broadcast v2 flyer
Bw broadcast v2 flyer
 
Emo Risaliti’s Wine Labels - Short Tour
Emo Risaliti’s Wine Labels - Short TourEmo Risaliti’s Wine Labels - Short Tour
Emo Risaliti’s Wine Labels - Short Tour
 
Profiles International Company Profile v.2
Profiles International Company Profile v.2Profiles International Company Profile v.2
Profiles International Company Profile v.2
 
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
Own it! Swedish Investments In Global Energy Sector and How Capital Affects C...
 
Marketingcity
MarketingcityMarketingcity
Marketingcity
 
Updated Sara's Resume (3) (1)
Updated Sara's Resume (3) (1)Updated Sara's Resume (3) (1)
Updated Sara's Resume (3) (1)
 
IB-Zumiez
IB-ZumiezIB-Zumiez
IB-Zumiez
 
Los vicios del internet
Los vicios del internetLos vicios del internet
Los vicios del internet
 
RockStar Ninja Power Ranger
RockStar Ninja Power RangerRockStar Ninja Power Ranger
RockStar Ninja Power Ranger
 
Plantilla evaluación de fuentes. Flor de Maria Casas Angel
Plantilla evaluación de fuentes. Flor de Maria Casas AngelPlantilla evaluación de fuentes. Flor de Maria Casas Angel
Plantilla evaluación de fuentes. Flor de Maria Casas Angel
 
El vals lento_de_las_tortugas_-_katherine_pancol
El vals lento_de_las_tortugas_-_katherine_pancolEl vals lento_de_las_tortugas_-_katherine_pancol
El vals lento_de_las_tortugas_-_katherine_pancol
 
Fw joeeeeeer este si que es el e mail del año -__.txt
Fw joeeeeeer este si que es el e mail del año -__.txtFw joeeeeeer este si que es el e mail del año -__.txt
Fw joeeeeeer este si que es el e mail del año -__.txt
 
1025 mi
1025 mi1025 mi
1025 mi
 
Blue Systems Tecnologia 2016
Blue Systems Tecnologia 2016Blue Systems Tecnologia 2016
Blue Systems Tecnologia 2016
 
Glauben leicht gemacht (taschenbuch). german deutsche
Glauben leicht gemacht (taschenbuch). german deutscheGlauben leicht gemacht (taschenbuch). german deutsche
Glauben leicht gemacht (taschenbuch). german deutsche
 
I Love Chocolate
I Love ChocolateI Love Chocolate
I Love Chocolate
 
Produção das unidades de saúde agosto 2010
Produção das unidades de saúde agosto 2010Produção das unidades de saúde agosto 2010
Produção das unidades de saúde agosto 2010
 
El libro de los mediums
El libro de los mediumsEl libro de los mediums
El libro de los mediums
 

Similar to Siamoc 01102001 2

Pete^2 - Presentation
Pete^2 - PresentationPete^2 - Presentation
Pete^2 - Presentation
guest1da3cd3
 
The Mobile Virtual Cane
The Mobile Virtual CaneThe Mobile Virtual Cane
Wearing your heart on your sleeve: a wearable computing primer (of sorts)
Wearing your heart on your sleeve: a wearable computing primer (of sorts)Wearing your heart on your sleeve: a wearable computing primer (of sorts)
Wearing your heart on your sleeve: a wearable computing primer (of sorts)
Alejandro Zamudio
 
Enchanted Objects: The next wave of the web
Enchanted Objects: The next wave of the webEnchanted Objects: The next wave of the web
Enchanted Objects: The next wave of the web
David Rose
 
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
Kalle
 
Haptics ppt
Haptics pptHaptics ppt
Haptics ppt
bhavyashah14
 
Embodied Cognition with Pproject Intu
Embodied Cognition with Pproject IntuEmbodied Cognition with Pproject Intu
Embodied Cognition with Pproject Intu
diannepatricia
 
The future of immersive tech 02112017
The future of immersive tech 02112017The future of immersive tech 02112017
The future of immersive tech 02112017
Let's Learn Digital
 
Dave snowden practice without sound theory will not scale
Dave snowden   practice without sound theory will not scaleDave snowden   practice without sound theory will not scale
Dave snowden practice without sound theory will not scale
AGILEMinds
 
Is the “i” in “ai” indispensable to delivering value
Is the “i” in “ai” indispensable to delivering valueIs the “i” in “ai” indispensable to delivering value
Is the “i” in “ai” indispensable to delivering value
Dr. Sanjeev B Ahuja
 
Your Brain On Graphics: IA Summit 2011 (can download)
Your Brain On Graphics: IA Summit 2011 (can download)Your Brain On Graphics: IA Summit 2011 (can download)
Your Brain On Graphics: IA Summit 2011 (can download)
Connie Malamed
 
AR/VR and designing for human interaction
AR/VR and designing for human interactionAR/VR and designing for human interaction
AR/VR and designing for human interaction
Alina Catalina Banuleasa
 
This is Your Brain on Virtual Reality
This is Your Brain on Virtual RealityThis is Your Brain on Virtual Reality
This is Your Brain on Virtual Reality
Lynda Joy Gerry
 
HOLOGRAPHICS AND VIRTUAL REALITY
HOLOGRAPHICS AND VIRTUAL REALITYHOLOGRAPHICS AND VIRTUAL REALITY
HOLOGRAPHICS AND VIRTUAL REALITY
Dhammika Vidanalage
 
Killer product - how to make your product noticeable and used by people
Killer product - how to make your product noticeable and used by peopleKiller product - how to make your product noticeable and used by people
Killer product - how to make your product noticeable and used by people
Krzysztof Piwowar
 
Pete^2 - research presentation wk7
Pete^2 - research presentation wk7Pete^2 - research presentation wk7
Pete^2 - research presentation wk7
guest8a50ac
 
Haptics
Haptics Haptics
Haptics
pmvin
 
Multimodal Interaction: An Introduction
Multimodal Interaction: An IntroductionMultimodal Interaction: An Introduction
Multimodal Interaction: An Introduction
Abdallah El Ali
 
HAPTIC TECHNOLOGY.pptx
HAPTIC TECHNOLOGY.pptxHAPTIC TECHNOLOGY.pptx
HAPTIC TECHNOLOGY.pptx
ParthNanu
 
Are robots present?
Are robots present?Are robots present?
Are robots present?
Riva Giuseppe
 

Similar to Siamoc 01102001 2 (20)

Pete^2 - Presentation
Pete^2 - PresentationPete^2 - Presentation
Pete^2 - Presentation
 
The Mobile Virtual Cane
The Mobile Virtual CaneThe Mobile Virtual Cane
The Mobile Virtual Cane
 
Wearing your heart on your sleeve: a wearable computing primer (of sorts)
Wearing your heart on your sleeve: a wearable computing primer (of sorts)Wearing your heart on your sleeve: a wearable computing primer (of sorts)
Wearing your heart on your sleeve: a wearable computing primer (of sorts)
 
Enchanted Objects: The next wave of the web
Enchanted Objects: The next wave of the webEnchanted Objects: The next wave of the web
Enchanted Objects: The next wave of the web
 
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
Mc Lendon Using Eye Tracking To Investigate Important Cues For Representative...
 
Haptics ppt
Haptics pptHaptics ppt
Haptics ppt
 
Embodied Cognition with Pproject Intu
Embodied Cognition with Pproject IntuEmbodied Cognition with Pproject Intu
Embodied Cognition with Pproject Intu
 
The future of immersive tech 02112017
The future of immersive tech 02112017The future of immersive tech 02112017
The future of immersive tech 02112017
 
Dave snowden practice without sound theory will not scale
Dave snowden   practice without sound theory will not scaleDave snowden   practice without sound theory will not scale
Dave snowden practice without sound theory will not scale
 
Is the “i” in “ai” indispensable to delivering value
Is the “i” in “ai” indispensable to delivering valueIs the “i” in “ai” indispensable to delivering value
Is the “i” in “ai” indispensable to delivering value
 
Your Brain On Graphics: IA Summit 2011 (can download)
Your Brain On Graphics: IA Summit 2011 (can download)Your Brain On Graphics: IA Summit 2011 (can download)
Your Brain On Graphics: IA Summit 2011 (can download)
 
AR/VR and designing for human interaction
AR/VR and designing for human interactionAR/VR and designing for human interaction
AR/VR and designing for human interaction
 
This is Your Brain on Virtual Reality
This is Your Brain on Virtual RealityThis is Your Brain on Virtual Reality
This is Your Brain on Virtual Reality
 
HOLOGRAPHICS AND VIRTUAL REALITY
HOLOGRAPHICS AND VIRTUAL REALITYHOLOGRAPHICS AND VIRTUAL REALITY
HOLOGRAPHICS AND VIRTUAL REALITY
 
Killer product - how to make your product noticeable and used by people
Killer product - how to make your product noticeable and used by peopleKiller product - how to make your product noticeable and used by people
Killer product - how to make your product noticeable and used by people
 
Pete^2 - research presentation wk7
Pete^2 - research presentation wk7Pete^2 - research presentation wk7
Pete^2 - research presentation wk7
 
Haptics
Haptics Haptics
Haptics
 
Multimodal Interaction: An Introduction
Multimodal Interaction: An IntroductionMultimodal Interaction: An Introduction
Multimodal Interaction: An Introduction
 
HAPTIC TECHNOLOGY.pptx
HAPTIC TECHNOLOGY.pptxHAPTIC TECHNOLOGY.pptx
HAPTIC TECHNOLOGY.pptx
 
Are robots present?
Are robots present?Are robots present?
Are robots present?
 

Recently uploaded

Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
sayalidalavi006
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 

Recently uploaded (20)

Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5Community pharmacy- Social and preventive pharmacy UNIT 5
Community pharmacy- Social and preventive pharmacy UNIT 5
 
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 

Siamoc 01102001 2

  • 1. Sviluppo  di  sistemi  robo0ci  per  la   neuroriabilitazione  dell'arto   superiore   Maria  Chiara  Carrozza   Scuola  Superiore  Sant’Anna   Pisa,  Italy   XII  CONGRESSO  SIAMOC   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   1   Bosisio  Parini,  28  se@embre-­‐1  o@obre  2011  
  • 2. Content   •  Symbiosis     •  AcDons  &  FuncDons   •  Hand  and  Brain   •  RehabilitaDon  and  Assistance   •  Future  perspecDves  (and  lower  limb)     13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   2  
  • 3. Content   •  Symbiosis   •  AcDons  &  FuncDons   •  Hand  and  Brain   •  RehabilitaDon  and  Assistance   •  Future  perspecDves  (and  lower  limb)       13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   3  
  • 4. Human-­‐robot  symbiosis   Is  “physical”  human-­‐exoskeleton  symbiosis  doable?   In  1960s,  in  Man-­‐Computer  symbiosis  ,  J.C.R.  Licklider   formulated  a  vision  of  human-­‐computer  symbiosis  in  which   computers  and  humans  would  become  fluidly  interdependent   and  share  goals   In  2010s,  in  many  tasks,  human  and  computer  share  goals  and   are  interdependent   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   4  
  • 5. Symbiosis:  requirements   •  Wearability   •  Natural  control   •  Safe  interacDon     •  Body  ownership   •  …..   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   5  
  • 6. Human-­‐robot  symbiosis   •  Moving  from  human-­‐computer  to  physical  human-­‐robot  (or  human-­‐exoskeleton)   symbiosis  requires  addressing  some  design  issues:   Wearability   Natural  Control   Safe  Interac=on   safe  and  comfortable   Non-­‐invasive  user  mo0on   Distributed  sensoriza0on   physical  human-­‐robot   inten0on  detec0on  and  gentle   of  the  physical  human-­‐ interac0on   assistance   robot  interface   NEUROExos  elbow  exoskeleton   Adap0ve  oscillators  for  assis0ng   Sensorized  cuff  for  lower-­‐limb   rhythmic  mo0ons   exoskeletons   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   6  
  • 7. AcDons  and  FuncDons   •  AcDons:   •  Reaching,  Touching,  Grasping,  Feeling,   ManipulaDng   •  FuncDons:   –  LocomoDon,  navigaDon,  manipulaDon   –  AcDvity  of  daily  living   –  Therapy:  motor  recovery   –  Replacement:  prostheDcs   –  Enhancement:  personal  assistance   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   7  
  • 8. Content   •  Symbiosis   •  AcDons  &  FuncDons   •  Hand  and  Brain   •  RehabilitaDon  and  Assistance   •  Future  perspecDves  (and  lower  limb)     13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   8  
  • 9. Reaching,  Grasping,  Touching,   ManipulaDng   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   9  
  • 10. Touching  and  Grasping   B.  B.  Edin,  L.  Ascari,  L.  Beccai,  S.   Roccella,  J.-­‐J.  Cabibihan,  and  M.C.   Carrozza,  “Bio-­‐inspired  sensorizaDon   of  a  biomechatronic  robot  handfor   the  grasp-­‐and-­‐lic  tasks,”  Brain  Res.   Bull.,  vol.  75,  pp.  785–795,  2008   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   10  
  • 11. Wearability     13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   11  
  • 12. Body  ownership     In  the  "rubber-­‐hand  illusion,"  the  sight  of  brushing  of   a  rubber  hand  at  the  same  Dme  as  brushing  of  the   person's  own  hidden  hand  is  sufficient  to  produce  a   feeling  of  ownership  of  the  fake  hand.  We  shown   previously  that  this  illusion  is  associated  with  acDvity   in  the  mulDsensory  areas,  most  notably  the  ventral   premotor  cortex  (Ehrsson  et  al.,  2004Go).  However,  it   remains  to  be  demonstrated  that  this  illusion  does   not  simply  reflect  the  dominant  role  of  vision  and   that  the  premotor  acDvity  does  not  reflect  a  visual   representaDon  of  an  object  near  the  hand.  To   address  these  issues,  we  introduce  a  somaDc  rubber-­‐ hand  illusion.  The  experimenter  moved  the   blindfolded  parDcipant's  lec  index  finger  so  that  it   touched  ……   h@p://www.dailymoDon.com/video/xhb0kd_roboDc-­‐hand-­‐that-­‐feels-­‐real_tech   H.  H.  Ehrsson,  N.  P.  Holmes,  and  R.  E.  Passingham,,”  Touching  a  Rubber  Hand:  Feeling  of  Body  Ownership  Is  Associated  with   Ac0vity  in  Mul0sensory  Brain  Areas”,  The  Journal  of  Neuroscience,  November  9,  2005,  25(45):10564-­‐10573   M.  L.  Blefari,  C.  Cipriani,  M.  C.  Carrozza,  "A  Novel  Method  for  Assessing  Sense  of  Body  Ownership  Using   Electroencephalography,"  IEEE  Trans.  Biomedical  Engineering,  2010,  p.  1,  99,  10.1109/TBME.2010.2076282   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   12  
  • 13. Three  main  challenges:   (1)     (2)     RoboDc  hand  able  to   Suitable  interface  for   perform  dexterous  acDons   controlling  percepDon  and   and  sense  objects   acDon   Interface   bi-­‐direcDonal   (3)     Sense  of  Body   Ownership   M.  C.  Carrozza,  G.  Cappiello,  S.  Micera,  B.  B.  Edin,  L.  Beccai,  and  C.  Cipriani,  “Design  of  a  cyberneDc  hand  for  percepDon  and  acDon,”  Biol.   Cybern.,  vol.  95,  no.  6,  pp.  629–644,  2006   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   13  
  • 14. Content   •  Symbiosis   •  AcDons  &  FuncDons   •  Hand  and  Brain   •  RehabilitaDon  and  Assistance   •  Future  perspecDves  (and  lower  limb)       13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   14  
  • 15. Why  a  roboDc  model  of  the  human  arm   •  NEURARM  is  intended  to  test  hypotheses  of  the   human  arm  motor  control  system   •  A  model  that  is  “under  full  control  of  the   experimenter”   •  A  roboDc  model  is  a  powerful  tool  to  overcome   the  possible  “reality  gap”  of  mathemaDcal   models   •  A  roboDc  model  can  complement  results  from   either  numerical  simulaDons  or  measurements   on  human  arm  (e.g.  Burdet  et  al.,  2001)   Lenzi  T,  ViDello  N,  McIntyre  J,  Roccella  S,  Carrozza  MC,  (2010),  A  roboDc  model  to  invesDgate  the  human  motor  control,  Biological   Cyberne=cs,  in  press,  2011.   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   15  
  • 16. Design  goals  for  the  NEURARM   Mimic  the  dynamics  and  control     structure  of  the  human  arm   •  ac0vely-­‐adjustable  passive  compliance     To  invesDgate  neuroscien0fic   –  tendon  driven     hypotheses  on  motor  control  and   –  antagonisDc  muscle  pairs     test  possible  benefits  for  controlling   –  nonlinear  spring-­‐like  actuators   roboDc  arDfacts   •  similar  limb  kinema0cs  and  dynamics     ApplicaDon  field:  robo0cs  for   –  limb  inerDa   rehabilita0on     –  joint  sDffness  ranges   RoboDc   Biological  model   CyberneDc  model   Bio-­‐inspired  roboDc    arDfact   implementaDon   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   16  
  • 17. Remote  and  antagonist  actuaDon   •  Two  remote  and  antagonist  actuaDon  units   •  Each  unit  is  a  series  of  a  non-­‐linear  spring,  a  contracDle  element  and  a  steel  wire  rope   •  Two  control  strategies:   –  passive  compliance  control,  for  robot-­‐in-­‐charge  therapy   –  torque  control,  for  pa=ent-­‐in-­‐charge  therapy     Despite its greater complexity, pros are:   compared to gearhead DC motors, a low output impedance over all the frequency spectrum   compared to series elastic actuators, an adjustable hardware compliance N.  ViDello,  T.  Lenzi,  S.M.M.  De  Rossi,  S.  Roccella,  M.C.  Carrozza,  “A  sensorless  torque  control  for  AntagonisDc  Driven  Compliant  joints”,   Mechatronics,  vol.  20(3),  pp.  355-­‐367,  2010.   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   17  
  • 18. Adjustable  Rest-­‐Length  and  Non-­‐linear     Springs   Reciprocally   shiing   the   length-­‐tension   curve   of   the   opposing  springs  causes  a  shic  of  Equilibrium  Point.       Concomitantly   shiing   the   length-­‐tension   curves   of   the   opposing   springs   increases   the   sDffness   in   each   muscle  for  the  same  Equilibrium  Point.     Changing  the  Equilibrium  Point  is  achieved  by  reciprocal   acDvaDon     Net  sDffness  may  be  increased  by  co-­‐acDvaDon   ∴  Nonlinear  springs  make  EPH  control  viable  and  similar  to   biological  muscles   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   18  
  • 19. Actuator  Control   The  Equilibrium  Point  Hypothesis  based  control   Antagonist Antagonist pistons move in pistons move in the same opposite direction direction STIFFNESS POSITION regulation regulation XExt/Flx = XCOM ± XDIFF XCOM – common mode displacement  joint stiffness XDIFF – differential mode displacement  joint equilibrium position 13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   19  
  • 20. 4-­‐DOF  passive  mechanism   •  From  biomechanics*:   –  human  elbow  is  a  LOOSE  hinge  joint   –  because  of  the  intra-­‐  and  –inter  subject   variability,  elbow  axis:   –  traces  a  double  conic  frustum  (max  values   for  βh  and  βf  are:  10°and  6)  along  the   flexion-­‐extension  movement   –  forms  an  angle  with  AH  of  80°-­‐92°   –  forms  an  angle  with  AML  of  ±5°   •  We  need  a  passive  mechanism  which   compensates  for:   –  the  rotaDons  of  elbow  flexion  axis  in  both   frontal  and  horizontal  planes   –  compensate  for  the  human-­‐robot  joint  axes   misalignment   (Adapted  from  I.A.  KAPANDJI    Physiology  of  Human   Joints  )   *Bo@lang  et  al.,  1998;  Bo@lang  et  al.,  2000;  Duck   et  al.,  2003   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   20  
  • 21. 4-­‐DOF  passive  mechanism   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   21  
  • 22. Passive  compliance  control   •  Passive  compliance  control:   –  inspired  by  the  Equilibrium  Point  Hypothesis   –  independent  control  of  joint  equilibrium  posiDon  and  sDffness,  by  means  of   the  independent  control  of  the  pistons  posiDons   [Nm]   [deg]   StaDc  characterizaDon  of  the  tunable   Step  response  of  the  posiDon  control  for   passive  compliance;  sDffness  range:   three  different  values  of  sDffness   28-­‐72  Nm/rad   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   22  
  • 23. Torque  control     •  Two  independent  closed-­‐loop  force  controllers   –  (a)  step  response  of  the  force  control   •  raising  Dme:  0.54  s   –  (b)  closed-­‐loop  Bode  diagram:   •  -­‐3  dB  bandwidth:  ≈10  Hz   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   23   (a)   (b)  
  • 24. AdapDve  oscillators  for  moDon   assistance   Experiment  with  NEUROExos  (in  torque  control   modality),  conducted  at  ARTS  Lab,  Scuola  Superiore   Human-­‐robot  cross-­‐adapta0on   Sant’Anna  in  collaboraDon  with  EPFL  (Switzerland)   through  synchroniza0on   R.  Ronsse,  N.  ViDello,  T.  Lenzi,  J.  van  den  Kieboom,  M.C.  Carrozza,  A.J.  Ijspeert,  “Human-­‐robot  synchrony:  flexible  assistance  using   adapDve  oscillator”,  IEEE  Transac=ons  on  Biomedical  Engineering,  vol.  58(4):1001-­‐12,  2011.   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   24  
  • 25. RehabilitaDon  and  Assistance   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   25  
  • 26. Materials  and  methods:  the  assisDve  strategy   •  Block  diagram  of  the  assisDve  strategy   •  The  adapDve  oscillator  is  a  modified  Hopf  oscillator  that  can  learn  the   frequency  ω(t),  amplitude  α1(t)  and  offset  α0(t):   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   26  
  • 27. Results:  adapDve  oscillator  tracks  the  actual  joint   angle   AdapDve  oscillator  tracks  elbow  joint  angle  with  no  delay   True  signal  in  black,  oscillator-­‐based  esDmate  in  dashed  gray  
  • 28. 1st  case  (frequency  constant):  EMG   profile   ReducDon  of  EMG  acDvity,  for  both  biceps  and  triceps,  is  more  evident  if  we   look  at  the  single-­‐cycle  EMG  profile  averaged  over  all  subjects  and  cycles   no-­‐exoskeleton   no-­‐assistance  (k=0)   low-­‐  assistance  (k=0.33)   high  assistance  (k=0.5)   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   28  
  • 29. Assistance  through  Powered   •  The  big  challenge   Exoskeletons   –  understand  the  intenDon  of  the  user  and  react   appropriately  to  provide  the  required  assistance  in   Dme   •  The  know  strategy   1.  Es0mate  with  the  best  possible  accuracy  the  torque   needed  to  perform  the  desired  movement   2.  Provide  a  constant  fracDon  of  that  torque  to  the   user   •  The  open  quesDons   –  Is  accuracy  the  “holy  grail”  of  robot-­‐mediated   assistance?   –  Is  the  “constant  fracDon”  paradigm  strictly  needed  for   assisDng  effecDvely  humans?   –  How  to  take  into  account  the  user’s  reacDon?   •  What    does  it  mean  assistance  from  a  Motor  Learning   perspecDve?   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   29  
  • 30. The  ProporDonal  EMG  controller   •  Our  hypothesis   –  motor  learning  can  compensate  for  torque  esDmate  imprecision,   without  adding  further  cogniDve  effort  to  the  user   •  Our  goal   –  Verify  the  closed-­‐loop  usability  of  a  simplified  assisDve  controller     •  proporDonal  EMG  control   •  preferred  gain  directly  chosen  by  subjects     The  NEUROExos  elbow  exoskeleton   Block  diagram  of  the  simplified  assisDve  controller   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   30  
  • 31. Experimental  Procedure  (1/2)   1.  PreparaDon  (electrodes  placement)   –  sEMG  from  the  biceps  brachii  and   triceps  brachii   •  pre-­‐gelled  Ag/AgCl  (Pirronse&Co.,  Italy)   •  digiDzed  @1Khz  with  internal  band-­‐pass   filter  (10-­‐500Hz)  (Noraxon)   2.  Preferred  gain  selecDon   –  Subjects  don  NEUROExos    and  perform   unconstrained  flexion-­‐extension   movement   –  Subjects  increase  the  gains  gradually   using  a  knob  as  long  as  they  feel   comfortable  with  assistance   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   31  
  • 32. Experimental  Procedure  (2/2)   3.  Behavioral  experiments   –  Rhythmic  flexion/extension   movement  against  gravity  at  a  target   pace  and  amplitude  supplied   through:   •  augmented  visual  feedback   •  acousDc  cueing   –  Variable  assistance  level   •   50%-­‐100%-­‐150%  of  the  preferred  gain   previously  chosen   –  Different  movement  condiDon   •  hand-­‐free  movement  (trial  1)   •  dumb-­‐bell  licing  (trial  2)   •  variable  target  pace  (trial  3)   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   32  
  • 33. Results  (1/2)   •  PosiDon  velocity  and   acceleraDon  profiles  are  not   altered  by  the  assistance   •  LE  decrease  with  the   assistance  indicaDng  an   effecDve  effort  reducDon   Steady-­‐state  profiles  of  posiDon  (A),  velocity  (B)  ,  acceleraDon  (C)  and  biceps  linear   envelope  (D)  for  one  representaDve  subject.     Profiles  were  obtained  by  resampling  the  actual  trajectories  over  1000  equally  spaced   samples  for  each  cycle,  then  averaging  on  the  steady-­‐state  cycles  of  each  gain  separately.   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   33  
  • 34. Discussion   •  Subjects  could  keep  the  full  control  of  their  arm  movement  despite  the   acDon  of  the  EMG-­‐proporDonal  assisDve  controller.     –  with  the  EMG  assistance  on,  parDcipants  successfully  performed  the  rhythmic   task  independently  of  the  presence  of  an  addiDonal  weight  and  the  required   movement  pace   •  In  all  tested  condiDons  parDcipants  could  reduce  the  effort  spent  for   generaDng  the  arm  movement  as  shown  by  the  considerable  biceps  IEMGs   drop  off   •  Very  fast  adapta0on  of  subjects  to  the  disturbances  induced  by  the  EMG   controller.   –  all  parDcipants  could  recover  the  target  movement  pace  and  amplitude  within   3  cycles  acer  an  abrupt  assistance  acDvaDon,  regardless  of  the  specific   movement  condiDon  experienced  during  the  trials.     –  IEMG  recordings  reached  a  staDonary  level  within  the  same  number  of  cycles   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   34  
  • 35. Design  goals  for  Handexos   •  Development  of  an  exoskeleton  for  rehabilitaDon   and  funcDonal  recovery  of  the  human  hand   •  System  requirements   –  Matching  the  kinemaDc  requirements  of  the  human   hand   •  Inter-­‐subjects  anthropometric  variability   –  Comfortable  physical  human-­‐robot  interacDon   –  Minimum  encumbrance   –  Low  inerDa  of  the  moving  parts   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   35  
  • 36. HANDEXOS:  1st  prototype     Shell-­‐like  structures  for  the  link     MinimizaDon  of  the  overall  size     Comfortable  distributed  physical   human-­‐robot  interface     Proximal  slider  crank-­‐like   mechanism  to  transmit  the   driving  torque  onto  the  human   MCP  joint  while  minimizing  the   undesired  forces  loading  the  MCP   arDculaDon     Underactuated  remote  actuaDon     Free  palm  area     Chiri et al., IROS, 2009 13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza     Chiri ert al., IEEE Transactions on Mechatronics, 2011 36     S. Roccella et al., Wearable Mechatronic Device, Pub. No.: WO/2009/016478
  • 37. Index  finger  module   Finger  mechanism,  exploded  view     3   acDve   rotaDonal   joints   for   finger   flexion/ extension     1   passive   rotaDonal   joint   for   finger   abducDon   adducDon     1   passive   translaDonal   joint   for   the   kinemaDc   coupling  of  the  human/exoskeleton  MCCP  aCarrozza   13-­‐10-­‐2011   ©  Maria   hiara   xes   37  
  • 38. ActuaDon  System     Light  weight     Modular      Simply  reconfigurable     Remotely   located   with   respect   to   the   hand     It  is  composed  of  an  actuated  extension   unit  (top  blue  box)  and  a  passive  flexion   module  (down  red  box)     The   transmission   system   is   based   on   steel   wire   ropes   routed   through   spiral-­‐ spring  Bowden  cables     external  diameter  1.6  mm     internal  diameter  0.8  mm     The   tendon   cable   is   pulled   by   a   linear   slider   driven   by   a   dc   motor   (18.10   W)   through   a   planetary   gear   with   a   reducDon  raDo  of  43     The   moDon   is   transmi@ed   to   a   lead   screw   (pitch   0.5   mm)   by   means   of   spur   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   38   gears  
  • 39. Sensors    Lower   shells   are   equipped   with   three   force   sensors   to   sense   the   interacDon   force   onto  the  palmar  side    The   extension   unit   is   equipped   with   two   Hall   sensors  which  serve  as  limit   switches    Cable   force   is   sensed   through  strain  gauges   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   39  
  • 40. Control  System     The  low-­‐level  layer  running  at  5  kHz  on  a  standalone  moDon  controller  implements  the  posiDon   control  of  the  linear  slider     The   high-­‐level   layer   running   on   a   remote   PC   at   100   Hz   sets   the   desired   posiDon   of   the   linear   slider   in   accordance   with   the   rehabilitaDve   task   to   be   performed,   and   it   monitors   the   cable   force  for  reverDng  the  slider  moDon  in  the  case  of  force  overload   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   40  
  • 41. (11) Experimental  results   Comparison  of  finger  kinema0cs  with  and  without  wearing  HANDEXOS     All   subjects   could   easily   wear   HANDEXOS   and  perform  extension/flexion  tasks     The   level   of   similarity   of   joint   trajectories   between  NE  and  NA  modes  was  assessed   by   calculaDng   the   Pearson   product   moment  correlaDon       Thanks   to   its   passive   DOFs,   HANDEXOS   could  fit  the  hand  anthropometry  of  each   subject,   and   none   of   them   reported   any   discomfort  in  wearing  the  device   Human  MCP,  PIP  and  DIP  trajectories  acquired  during  NA  (no   acDon,  dashed  line)  and  NE  (no  exoskeleton,  solid  line)  modes   for  subject  #1.   Wearing  HANDEXOS  does  not  modify  the   finger  extension/flexion  mo0on   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   41  
  • 42. Experimental  results   Evalua0on  of  the  undesired  transla0onal  force  ac0ng  on  the  human  MCP  ar0cula0on     Small  undesired  reciprocal  translaDon   exists   between   the   device   and   the   user’s   hand   during   flexion-­‐extension   moDon  tasks     The  maximum  esDmated  translaDons   force   acDng   on   the   human   MCP   Acquired  (θ1  in  solid  black  line)  and  esDmated  (θ’1  in  dashed   arDculaDon   in   a   task   of   assisted   black  line)  HANDEXOS  MCP  trajectories  for  subject  #1.  The   extension  was  about  8  N   grey  line  represents  the  human  MCP  trajectory  (q1).   AVERAGE  AND  STANDARD  DEVIATION  OF  RMS  AND  MAX  ERR   FOR  EACH  SUBJECT   HANDEXOS  does  not  overload  MCP  aMaria  Chiara  Carrozza   than  the  ac0vi0es  of  daily  living   13-­‐10-­‐2011   ©   r0cula0on  more   42  
  • 43. Content   •  Symbiosis   •  AcDons  &  FuncDons   •  Hand  and  Brain   •  RehabilitaDon  and  Assistance   •  Future  perspecDves  (and  lower  limb)       13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   43  
  • 44. Work  on  lower  limb:  measurement  of   HRI  force   •  The  need  for  measuring  interacDon   –  How  the  machine  is  dynamically   interacDng  with  the  user   •  How  interacDon  is  transmi@ed   –  Cuffs   –  Orthoses   •  How  interacDon  is  measured   HAL-­‐5   MIT-­‐leg  exos   Lokomat   –  InteracDve  torque   •  Model  –  based  approaches   –  InteracDve  force   •  Load  cells    (Lokomat)   •  Spring-­‐based  force  sensors  (MIT   Exoskeleton)   •  Strain  gauges  (HAL)   Michingan  AFO   MIT  AFO   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   44  
  • 45. Sensorized  cuff   Shielded  cable   Rigid  plasDc  frame   Connector   Flexible  belt   Skilsens  pad   •  Soc  tacDle  sensor  does  not  affect  the  comfort   •  The  posiDon  and  number  of  sensors  can  be  changed   •  Adaptable  to  all  cuff  sizes   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   45  
  • 46. The  Skilsens  tacDle  sensing  technology   •  Skilsens  technology   •  Each  sensor  can  be  adapted:   –  Size  and  shape   –  Force  range   –  SpaDal  resoluDon   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   46  
  • 47. Results:  walking  experiments   •  This  sensory  apparatus  can  discriminate   between  two  walking  condiDons:   –  Zero-­‐torque  control   –  Viscous  field:  10  Nm/rad·∙s-­‐1   Increased  local   30  kPa  peaks   pressure   S.M.M.  De  Rossi,  N.  ViDello,  T.  Lenzi,  R.  Ronsse,  B.  Koopman,  A.  Persiche„,  F.  Vecchi,  A.J.  Ijspeert,  H.  van  der  Kooij,  M.C.  Carrozza,   “Sensing  pressure  distribuDon  on  a  Lower-­‐Limb  Exoskeleton  Physical  Human-­‐Machine  Interface”,  Sensors,  vol.  11(1),  pp.  207-­‐227,  2010.   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   47  
  • 48. Summary  of  features   •  New  Prototype  Pros:   •  Maximum  wearability  and  comfort     •  Allows  Long-­‐term  recordings  in  a  normal  shoe   •  Coverage  of  most  of  the  plantar  area   •  Allows  to  compute  relaDve  posiDon  of  CoP  and   total  GRF   •  Good  single-­‐cell  esDmaDon  accuracy   •  High  temporal  resoluDon  for  high-­‐  and  low-­‐level   data   •  Possible  improvements:   •  Decrease  sensor  size   •  Reduce  size  of  onboard  electronics   •  Integrate  electronics  on  the  sensor  board   •  On-­‐board  data  logging   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   48  
  • 49. Acknowledgments   •  NANOBIOTACT:  Nanoengineering  BiomimeDc  TacDle   Sensors  (Project  EU-­‐FP6-­‐NMP-­‐033287)   •  NANOBIOTOUCH:  Nano-­‐resolved  mulD-­‐scale   invesDgaDons  of  human  tacDle  sensaDons  and  Dssue   engineered  nanobiosensors  (Project  EU-­‐FP7-­‐ NMP-­‐228844)   •  WAY  Wearable  interfaces  hAnd  funcDon  recoverY   FP7-­‐ICT-­‐2011-­‐  288551   •  The  EVRYON  CollaboraDve  STREP  Project:  “EVolving   MoRphologies  for  Human-­‐Robot  SYmbioDc   InteracDON”,  FP7-­‐ICT-­‐2007-­‐3-­‐231451   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   49  
  • 50. NeuroroboDcs  @  The  BioroboDcs  InsDtute   ChrisDan  Cipriani  (Assistant  Professor)   Fabrizio  Vecchi  (Research  manager)   Stefano  Roccella  (Senior  research  assistant)   Nicola  ViDello  (Post-­‐Doc)   Alessandro  Persiche„    (Post-­‐Doc)   Michela  Aquilano  (Post-­‐Doc)   Filippo  Cavallo  (Post-­‐Doc)   Calogero  Oddo  (Post-­‐Doc)   Marco  Controzzi  (PhD  student)   Manuele  Bonaccorsi  (PhD  Student)   Tommaso  Lenzi  (PhD  student)   Stefano  De  Rossi  (PhD  student)   Azzurra  Chiri  (PhD  student)   Marco  Cempini  (PhD  Student)   Maria  Laura  Blefari  (PhD  Student)   Gunter  Kanitz  (PhD  Student)   Marco  D’Alonzo  (PhD  Student)   Francesco  Giovacchini  (Research  assistant)   Marco  DonaD  (Research  assistant)   13-­‐10-­‐2011   ©  Maria  Chiara  Carrozza   50