Africa – The Future Communications Galaxy
Performance Evaluation of Channel Assembling
Strategies with Multi-Class Secondary Users in
Cognitive Radio Networks
Ebenezer Esenogho and Tom Walingo
Centre for Radio Access and Rural Technologies.
Discipline of Electrical, Electronic and Computer
Engineering.
University Of KwaZulu-Natal.
OUTLINE
 INTRODUCTION
 Cognitive Radio.
 Cognitive Radio Network.
 Channel Assembling.
 CHANNELASSEMBLING STRATEGIES & RELATED WORK
 MOTIVATION
 SYSTEM MODEL/ARCHITECTURE
 ALGORITHMS
 RESULTS AND DISCUSSIONS
 CONCLUSION
 FUTURE WORK
2
INTRODUCTION
 Cognitive Radio.
 Cognitive Radio Network.
 Channel Assembling.
3
RELATED WORK AND PROPOSED CHANNELASSEMBLING
STRATEGIES
RELATED WORK
 Lei Jiao, Frank Y. Li, and Vicent Pla “Dynamic Channel Aggregation Strategies
in Cognitive Radio Networks with Spectrum Adaptation” IEEE Globecom 2011
proceedings. 2011 pp.1-6 (Static and Dynamic)
PROPOSED CHANNEL ASSEMBLING STRATEGIES
 Immediate Blocking Strategy (IBS)
 Reassignment Based Strategy (RBS)
 Queuing Based Strategy (QBS)
4
MOTIVATION
Realistic channel assembling (CA) strategies need :
 To consider different traffic class (real time and non-real time users)
 Consider the varying nature of a wireless link and mitigate schemes like
adaptive modulation and coding (AMC)
5
SYSTEM MODEL/ARCHITECTURE
Primary
User (TV)
class 0
Buffer
Primary
User (TV)
class 0
PU TV
mast
SU class 2
SU class 1
SU class 1
CRBS
SU class 2
Fig. 1 System Model/Architecture
6
CONT. WIRELESS CHANNEL MODELAND AMC
Fig. SNR Partitioning
Fig. 2 Wireless frame utilization
SNR Partitioning
Outage R2R1 R3
Bad Moderate Good
OFF
Frame
Duration
Ch 1/ PU1
Ch 1/ PU2
Ch 1/ PU3
Ch 1/
PU1
:
:
:
:
:
:
:
:
:
Ch M/PU M
PU ON PU OFF
Slo1………………………………………………………...S
ON frame OFF frame (Tf)
7
CONT.
ON
(Buzy)
OFF
(Idle)
Fig. 4. The ON-OFF channel usage model for primary users
The PU’s slot capacity, 𝜃 𝑝𝑢, is given as
𝜃 𝑝𝑢 = 𝑆 𝑛.
𝑖=1
𝑀
𝑃𝑖
𝛽𝑖
𝛽𝑖 + 𝛼𝑖
(3)
Where 𝑃𝑖=
1, 𝑖 ≤ 𝜃𝑠𝑢 ≤ 𝑀 ∗ 𝑆
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, Note that 𝛿𝑖 = 𝛽𝑖 𝛽𝑖 + 𝛼𝑖 is the channel
utilization ratio. The SU system capacity (slot capacity/OFF capacity) 𝜃𝑠𝑢 , is given
by
𝜃𝑠𝑢 = (𝑀 ∗ 𝑆 𝑛) − 𝜃 𝑝𝑢
8
ALGORITHM FOR IBS
• 𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏
𝑲
𝜽𝒊 ); // test for 𝑆𝑈𝑖 resources
• 𝑺𝑼 𝟏_Admit = true; // admit 𝑆𝑈1
• Else
• 𝑺𝑼 𝟏_Admit =false; // block 𝑆𝑈1
• 𝐢𝐟 [(𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊 ) − (𝜽 𝒑𝒖)];// PU arrival, pre-empt 𝑆𝑈1
• 𝑺𝑼 𝟏_𝐝𝐫𝐨𝐩 = true; // forced terminate on − going 𝑆𝑈1
• 𝐢𝐟 (𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊 ≥ 𝒋=𝟏
𝑳
𝜽𝒋 ) ;// enough resources
• 𝑺𝑼 𝟐_Admit = true: // admit 𝑆𝑈2
• Else
• 𝑺𝑼 𝟐_Admit = false; // block 𝑆𝑈2
• 𝐢𝐟 [[(𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊 ) ≥ 𝒋=𝟏
𝑳
𝜽𝒋
𝒎𝒊𝒏
] − (𝜽 𝒑𝒖)]; // PU arrival, pre-empt 𝑆𝑈2
• 𝑺𝑼 𝟐_𝐝𝐫𝐨𝐩 = true; // dropp 𝑆𝑈2
• end if
• Go to start
9
ALGORITHM FOR RBS
• 𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏
𝑲
𝜽𝒊
𝒎𝒊𝒏
); // test for 𝑆𝑈𝑖 resources
• 𝑺𝑼𝒊_Admit = true; // admit 𝑆𝑈𝑖
• else
•
𝐢𝐟 𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊
𝒎𝒊𝒏
) < 𝜽𝒊𝒏𝒆𝒘
𝒎𝒊𝒏
)
𝒐𝒓
𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊
𝒎𝒊𝒏
) − (𝜽 𝒑𝒖)
;// test for new arrival or PU arrival
• do 𝜽𝒋
𝒎𝒂𝒙
− 1 , ++ j: // adjusting and iterate over 𝑗 user resources
• 𝑺𝑼𝒊,𝒋_Admit = true: // admit 𝑆𝑈𝑖,𝑗
• Else
• 𝑺𝑼𝒊,𝒋_Admit = false; // block 𝑆𝑈𝑖,𝑗
• 𝐢𝐟 (𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊
𝒎𝒊𝒏
≥ 𝒋=𝟏
𝑳
𝜽𝒋
𝒎𝒊𝒏
); // test for 𝑆𝑈𝑗 resources
• 𝑺𝑼 𝟐_admit = true; // admit 𝑆𝑈2
• Else
• go step 6
• if all condition can not be meet
• 𝑺𝑼𝒊,𝒋_𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 = false; // dropp 𝑆𝑈𝑖,𝑗
• end if
10
ALGORITHM FOR QBS
• 𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏
𝑲
𝜽𝒊 ); // test for 𝑆𝑈𝑠1 resources
• 𝑺𝑼 𝟏_admit = true; // admit 𝑆𝑈1
• else
• if ( 𝑲 𝒔𝒖𝟏 < 𝑄𝑠𝑢1)
• 𝑺𝑼 𝟏_admit_queue = true (queue not full)
• else
• 𝑺𝑼 𝒔𝟏_admit = false ;// queue full (block)
• 𝐢𝐟(𝜽 𝒔𝒖 − 𝒊=𝟏
𝑲
𝜽𝒊 ≥ 𝒋=𝟏
𝑳
𝜽𝒋); // enough resources
• 𝑺𝑼 𝒔𝟐_admit = true; // admit 𝑆𝑈𝑠2
• else
• if ( 𝑳 𝒔𝒖𝟐 < 𝑸 𝒔𝒖𝟐)
• 𝑺𝑼 𝟐_admit queue = true ;// (queue not full)
• else
• 𝑺𝑼 𝟐_admit = false ;// queue full (block)
• if ( 𝝏 𝒔𝒖𝟏 > 𝝏 𝒕 𝒔𝒖𝟏
)
• 𝑺𝑼 𝟏_drop queue = true
• if ( 𝝏 𝒔𝒖𝟐 > 𝝏 𝒕 𝒔𝒖𝟐
)
• 𝑺𝑼 𝟐_drop queue = true
• End if
11
RESULTS AND DISCUSSIONS
12
CONT.
13
CONCLUSION
• In this work, compared the performance of three channel assembling
techniques for cognitive radio network considering the dynamics of a
wireless link with AMC in a multiclass SU traffic.
• The result obtained from our simulation shows that; the QBS scheme
outperformed the RBS and IBS scheme amidst multiclass SUs in the sense
that, it shows lower blocking and force termination probabilities.
• It demonstrates that AMC with queueing technique is a robust approach in
improving dynamic channel allocation schemes.
14
Assembling many slots/channels irrespective of the channel state can affect
PER/BER especially in a dynamic wireless link. This forms the basis for our
future work.
FUTURE WORK
15
MAIN REFERENCES
 Lei Jiao, Frank Y. Li, and Vicent Pla “Dynamic Channel Aggregation
Strategies in Cognitive Radio Networks with Spectrum Adaptation” IEEE
Globecom 2011 proceedings. 2011 pp.1-6
 Indika A. M. Balapuwaduge, Lei Jiao, Frank Y. Li, and Vicent Pla
“Channel Assembling with Priority-Based Queue in Cognitive Radio
Network: Strategy and Performance” IEEE Transaction on wireless
Communication, vol.13, NO. 2, FEBUARY 2014, Pp.630-644
 Qingwen Liu, Shengli Zhou, and Georgios B. Giannakis, “Queuing With
Adaptive Modulation and Coding Over Wireless Links: Cross-Layer
Analysis and Design” IEEE Transactions On Wireless Communications,
vol. 4, no. 3, May 2005.pp.
16
THANK YOU
17

SATNAC PRESENTATION FINAL

  • 1.
    Africa – TheFuture Communications Galaxy Performance Evaluation of Channel Assembling Strategies with Multi-Class Secondary Users in Cognitive Radio Networks Ebenezer Esenogho and Tom Walingo Centre for Radio Access and Rural Technologies. Discipline of Electrical, Electronic and Computer Engineering. University Of KwaZulu-Natal.
  • 2.
    OUTLINE  INTRODUCTION  CognitiveRadio.  Cognitive Radio Network.  Channel Assembling.  CHANNELASSEMBLING STRATEGIES & RELATED WORK  MOTIVATION  SYSTEM MODEL/ARCHITECTURE  ALGORITHMS  RESULTS AND DISCUSSIONS  CONCLUSION  FUTURE WORK 2
  • 3.
    INTRODUCTION  Cognitive Radio. Cognitive Radio Network.  Channel Assembling. 3
  • 4.
    RELATED WORK ANDPROPOSED CHANNELASSEMBLING STRATEGIES RELATED WORK  Lei Jiao, Frank Y. Li, and Vicent Pla “Dynamic Channel Aggregation Strategies in Cognitive Radio Networks with Spectrum Adaptation” IEEE Globecom 2011 proceedings. 2011 pp.1-6 (Static and Dynamic) PROPOSED CHANNEL ASSEMBLING STRATEGIES  Immediate Blocking Strategy (IBS)  Reassignment Based Strategy (RBS)  Queuing Based Strategy (QBS) 4
  • 5.
    MOTIVATION Realistic channel assembling(CA) strategies need :  To consider different traffic class (real time and non-real time users)  Consider the varying nature of a wireless link and mitigate schemes like adaptive modulation and coding (AMC) 5
  • 6.
    SYSTEM MODEL/ARCHITECTURE Primary User (TV) class0 Buffer Primary User (TV) class 0 PU TV mast SU class 2 SU class 1 SU class 1 CRBS SU class 2 Fig. 1 System Model/Architecture 6
  • 7.
    CONT. WIRELESS CHANNELMODELAND AMC Fig. SNR Partitioning Fig. 2 Wireless frame utilization SNR Partitioning Outage R2R1 R3 Bad Moderate Good OFF Frame Duration Ch 1/ PU1 Ch 1/ PU2 Ch 1/ PU3 Ch 1/ PU1 : : : : : : : : : Ch M/PU M PU ON PU OFF Slo1………………………………………………………...S ON frame OFF frame (Tf) 7
  • 8.
    CONT. ON (Buzy) OFF (Idle) Fig. 4. TheON-OFF channel usage model for primary users The PU’s slot capacity, 𝜃 𝑝𝑢, is given as 𝜃 𝑝𝑢 = 𝑆 𝑛. 𝑖=1 𝑀 𝑃𝑖 𝛽𝑖 𝛽𝑖 + 𝛼𝑖 (3) Where 𝑃𝑖= 1, 𝑖 ≤ 𝜃𝑠𝑢 ≤ 𝑀 ∗ 𝑆 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , Note that 𝛿𝑖 = 𝛽𝑖 𝛽𝑖 + 𝛼𝑖 is the channel utilization ratio. The SU system capacity (slot capacity/OFF capacity) 𝜃𝑠𝑢 , is given by 𝜃𝑠𝑢 = (𝑀 ∗ 𝑆 𝑛) − 𝜃 𝑝𝑢 8
  • 9.
    ALGORITHM FOR IBS •𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏 𝑲 𝜽𝒊 ); // test for 𝑆𝑈𝑖 resources • 𝑺𝑼 𝟏_Admit = true; // admit 𝑆𝑈1 • Else • 𝑺𝑼 𝟏_Admit =false; // block 𝑆𝑈1 • 𝐢𝐟 [(𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 ) − (𝜽 𝒑𝒖)];// PU arrival, pre-empt 𝑆𝑈1 • 𝑺𝑼 𝟏_𝐝𝐫𝐨𝐩 = true; // forced terminate on − going 𝑆𝑈1 • 𝐢𝐟 (𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 ≥ 𝒋=𝟏 𝑳 𝜽𝒋 ) ;// enough resources • 𝑺𝑼 𝟐_Admit = true: // admit 𝑆𝑈2 • Else • 𝑺𝑼 𝟐_Admit = false; // block 𝑆𝑈2 • 𝐢𝐟 [[(𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 ) ≥ 𝒋=𝟏 𝑳 𝜽𝒋 𝒎𝒊𝒏 ] − (𝜽 𝒑𝒖)]; // PU arrival, pre-empt 𝑆𝑈2 • 𝑺𝑼 𝟐_𝐝𝐫𝐨𝐩 = true; // dropp 𝑆𝑈2 • end if • Go to start 9
  • 10.
    ALGORITHM FOR RBS •𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏 𝑲 𝜽𝒊 𝒎𝒊𝒏 ); // test for 𝑆𝑈𝑖 resources • 𝑺𝑼𝒊_Admit = true; // admit 𝑆𝑈𝑖 • else • 𝐢𝐟 𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 𝒎𝒊𝒏 ) < 𝜽𝒊𝒏𝒆𝒘 𝒎𝒊𝒏 ) 𝒐𝒓 𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 𝒎𝒊𝒏 ) − (𝜽 𝒑𝒖) ;// test for new arrival or PU arrival • do 𝜽𝒋 𝒎𝒂𝒙 − 1 , ++ j: // adjusting and iterate over 𝑗 user resources • 𝑺𝑼𝒊,𝒋_Admit = true: // admit 𝑆𝑈𝑖,𝑗 • Else • 𝑺𝑼𝒊,𝒋_Admit = false; // block 𝑆𝑈𝑖,𝑗 • 𝐢𝐟 (𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 𝒎𝒊𝒏 ≥ 𝒋=𝟏 𝑳 𝜽𝒋 𝒎𝒊𝒏 ); // test for 𝑆𝑈𝑗 resources • 𝑺𝑼 𝟐_admit = true; // admit 𝑆𝑈2 • Else • go step 6 • if all condition can not be meet • 𝑺𝑼𝒊,𝒋_𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞 = false; // dropp 𝑆𝑈𝑖,𝑗 • end if 10
  • 11.
    ALGORITHM FOR QBS •𝐢𝐟 (𝜽 𝒔𝒖 ≥ 𝒊=𝟏 𝑲 𝜽𝒊 ); // test for 𝑆𝑈𝑠1 resources • 𝑺𝑼 𝟏_admit = true; // admit 𝑆𝑈1 • else • if ( 𝑲 𝒔𝒖𝟏 < 𝑄𝑠𝑢1) • 𝑺𝑼 𝟏_admit_queue = true (queue not full) • else • 𝑺𝑼 𝒔𝟏_admit = false ;// queue full (block) • 𝐢𝐟(𝜽 𝒔𝒖 − 𝒊=𝟏 𝑲 𝜽𝒊 ≥ 𝒋=𝟏 𝑳 𝜽𝒋); // enough resources • 𝑺𝑼 𝒔𝟐_admit = true; // admit 𝑆𝑈𝑠2 • else • if ( 𝑳 𝒔𝒖𝟐 < 𝑸 𝒔𝒖𝟐) • 𝑺𝑼 𝟐_admit queue = true ;// (queue not full) • else • 𝑺𝑼 𝟐_admit = false ;// queue full (block) • if ( 𝝏 𝒔𝒖𝟏 > 𝝏 𝒕 𝒔𝒖𝟏 ) • 𝑺𝑼 𝟏_drop queue = true • if ( 𝝏 𝒔𝒖𝟐 > 𝝏 𝒕 𝒔𝒖𝟐 ) • 𝑺𝑼 𝟐_drop queue = true • End if 11
  • 12.
  • 13.
  • 14.
    CONCLUSION • In thiswork, compared the performance of three channel assembling techniques for cognitive radio network considering the dynamics of a wireless link with AMC in a multiclass SU traffic. • The result obtained from our simulation shows that; the QBS scheme outperformed the RBS and IBS scheme amidst multiclass SUs in the sense that, it shows lower blocking and force termination probabilities. • It demonstrates that AMC with queueing technique is a robust approach in improving dynamic channel allocation schemes. 14
  • 15.
    Assembling many slots/channelsirrespective of the channel state can affect PER/BER especially in a dynamic wireless link. This forms the basis for our future work. FUTURE WORK 15
  • 16.
    MAIN REFERENCES  LeiJiao, Frank Y. Li, and Vicent Pla “Dynamic Channel Aggregation Strategies in Cognitive Radio Networks with Spectrum Adaptation” IEEE Globecom 2011 proceedings. 2011 pp.1-6  Indika A. M. Balapuwaduge, Lei Jiao, Frank Y. Li, and Vicent Pla “Channel Assembling with Priority-Based Queue in Cognitive Radio Network: Strategy and Performance” IEEE Transaction on wireless Communication, vol.13, NO. 2, FEBUARY 2014, Pp.630-644  Qingwen Liu, Shengli Zhou, and Georgios B. Giannakis, “Queuing With Adaptive Modulation and Coding Over Wireless Links: Cross-Layer Analysis and Design” IEEE Transactions On Wireless Communications, vol. 4, no. 3, May 2005.pp. 16
  • 17.