SlideShare a Scribd company logo
1 of 93
Download to read offline
REPUBLIC OF ALBANIA
EPOKA UNIVERSITY
FACULTY OF ARCHITECTURE AND ENGINEERING
DEPARTMENT OF CIVIL ENGINEERING
Structural Analysis of 8 story building in
Sap 2000
Transportation Systems Engineering CE 282
Transportation Systems Engineering CE 282
Name Surname: Tafjon Morina
TIRANA, June 2016
1
FACULTY OFARCHITECTURE AND ENGINEERING
CIVIL ENGINEERING DEPARTMENT
Structural Analysis of 8 story building in
Sap 2000
-CE 399-
MICROTHESIS
Prepared by: Tafjon Morina
Student ID: 02031305
Bachelor of Science in Civil Engineering
Epoka University
Tirana, June 2016
2
ABSTRACT
In this studying is shown structural analysis of an eight floor building in SAP2000 .It is located in
Shkodra ,and will be used as place of residence .The purpose was modelling in SAP2000 verison
18 and testing from external factors (Wind,Earthquakes) and internal factors such as living and
dead loads .Modeling with concrete and steel gives us the result if forces and strains that have
aceted upon it .
Keywords: Sap2000, Wind, Earthquake, Live Load, Dead load, Forces Stresses
3
ABSTRAKT
Ne kete Studim eshte prezantuar analiza Strukurore e nje ndertese 8 kateshe ne Sap200 .
Ndertesa ndodhet ne Shkoder , ndertesa do sherbej si objek banimi .Qëllimi ishte Modelimi në
Sap2000 dhe testimi nga faktorë të jashtëm ( Era , Tërmetet ) dhe faktoret e brendshëm si
ngarkesat e gjalla dhe ngarkesës se vdekur . Modelimi me betoni dhe Celik na jep rezultatet si
Forcat dhe Sforcime qe ka vepruar mbi të.
Fjale kyce: Sap2000, Era, Termetet, Ngarkesa e gjalle, Ngarkesa e vdekur, Forcat, Sforcime
4
ACKNOWLEDGEMENTS
I would like to thank Epoka Staff that made possible my education in Civil engineering field . I
would also like to thank Dr. Enea Mustafaraj who has helped in thesis project , Structure Analysis.
I would also thank all friends who helped me till now
Tafjon Morina
5
DECLARATION
I hereby declare that the project is based on my original work except for quotations and citations
which have been duly acknowledged. I also declare that the topic of this study has been the
genuine idea of my supervisor and may be used by him in the future works. This study has not
been previously or concurrently submitted for any other degree at Epoka University or other
institutions.
Tafjon Morina
Date : 21/06/2016
6
CONTENT
ABSTRACT…………………………………………………………………………………………………………………………………… ………….2
ABSTRAKT………………………………………………………………………………………………………………………………………………..3
ACKNOWLEDGEMENTS…………………………………………………………………………………………………………………………… 4
DECLARATION………………………………………………………………………………………………………………………………………….5
LIST OF FIGURE ………………………………………………………………………………………………………………………………….8-10
INTRODUCTION
 What is SAP2000………….…………………………………………………………………………………………………………..11
 Sap 2000…………………….…………………………………………………………………………………………………………….11
Construct Material
1. Concrete
 Avantages……………………………………………………………………………………………………………..……………13
 Disavantages………………………………………………………………………………………………………………………13
 Propertes if fresh concrete…………………………………………………………………………………………………13
 Workability…………………………………………………………………………………………………………………………14
 Factors affecting workability…………………………………………………………………………………………..….14
 Consistency…………………………………………………………………………………………………………………………14
 Segregation…………………………………………………………………………………………………………………………15
 Bleeding..……………………………………………………………………………………………………………………………16
 Mixing of concrete………………………………………………………………………………………………………………17
 Properties of hardened concrete………………………………………………………………………………………..17
 Factors affection the strength of concrete………………………………………………………………………….19
 Durability……….…………………………………………………………………………………………………………………..19
 Corrosion………………………………………..………………………………………………………………………………….19
 Abrasion……………………………………………………………………………………………………………………………..19
2. Steel
 Mild steel bars ………………………………………………………………………….…........................................20
 Deformed steel bars………………………………………………………..……………………………………………….…20
 Various Grades of Mild Steel Bars…………………………………….…………………………………………………20
 Avantages of Steel………………………………………………………………………………………………………………21
 Disavantages………………………………………………………………………………………………………………………21
 Physical Requirement…………………………………………………………………………………………………………21
7
 Standard Steels…………………………………………………………………………………………………………………..22
 The typical shapes and their sizes……………………………………………………………………………..…..23-25
3. Columns
 Type of column…………………………………………………………………………………………………………………..26
4. Shear walls
 Type of Shear Wall………………………………………………………………………………………………………………27
5. Beams
 Type of beam……………………………………………………………………………………………………………………..28
6. Slabs
 Type of slabs……………………………………………………………………………………………………………………….29
 Deformations……………………………………………………………………………………………………………………..29
 Conditions…………………………………………………………………………………………………………………………..30
 Advantages of ribbed slabs…………………………………………………………………………………………………30
 Disadvantage of ribbed slabs……………………………………………………………………………………………...30
7. Foundation
 Type of foundation…………………….………………………………………………………………………………………31
8. Plan of the Structure ………………………………………………………………………………………………………………..32
9. Step by step Approach for the selected project
 Step 1. File – New model – Select the units to KN,m,C – Grid only……………………………………………………..33
 Step 2 .Fill the Quick Grid Lines table, with the data from the selected project ………………………………….33
 Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected
project.……………………………………………………………………………………………………………………………………………..34
 Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete……………………………………34
 Step 5. Continued .Add New Material – Rebar……………………………………………………………………………………35
 Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns …….35
 Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam ………………………………………36
 Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell
Thin Type ………………………………………………………………………………………………………………………………………….36
 Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column…………..37
 Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams…………….37
 Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab…………37
8
 Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to
Assign – Joint – Restraints – Select Fixed condition…………………………………………………………………………….38
 Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign
– Area Load – Uniform Shell ………………………………………………………………………………………………………………38
 Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign –
Area Load – Uniform Shell ………………………………………………………………………………………………………………..39
 Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame
Load – Distributed……………………………………………………………………………………………………………………………..39
 Step 17 . Go to Main Menu – Define load Patterns ……………………………………………………………………………40
 Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New
Function……………………………………………………………………………………………………………………………………………40
 Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases .41
 Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN –
1992) –Concrete Frame Design …………………………………………………………………………………………………………42
 Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects ……...42
 Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame ………………………………………43
 Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source …………………………….43
 Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm …………………………….44
 Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2
2004………………………………………………………………………………………………………………………………………………….44
 Step 26 .Run analysis ………………………………………………………………………………………………………………….......45
 Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal
Information ………………………………………………………………………………………………………………………………………45
 Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint
Displacement…………………………………………………………………………………………………………………………………….46
 Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure..46
 Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed ……………...46
 Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints ……………………….50
 Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal …………………………………….50
 Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal
Information ……………………………………………………………………………………………………………………………......51-53
 Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells……………………………..53
 Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons….54-57
 Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables ………………………………………………58-66
10. List of figure
 Figure 1 Architectual plan of the project structure take in consideration ....................................32
 Figure 2 New Modal.......................................................................................................................33
 Figure 3 Grid LInes .........................................................................................................................33
 Figure 4 Edit Grid Data...................................................................................................................34
 Figure 5 Define Material ................................................................................................................34
 Figure 6 Add New Material............................................................................................................35
 Figure 7 Create Colums..................................................................................................................35
 Figure 8 Create Beam.....................................................................................................................36
 Figure 9 Create Slab.......................................................................................................................36
 Figure 10 Plan XZ – ZY....................................................................................................................37
 Figure 11 Joint Restaints................................................................................................................38
9
 Figure 12 Area Load .......................................................................................................................38
 Figure 13 Live Load ........................................................................................................................39
 Figure 14 Dead Load ......................................................................................................................39
 Figure 15 Define load Patterns ......................................................................................................40
 Figure 16 Response Spectrum .......................................................................................................40
 Figure 17 Response Spectrum EQ-X , EQ-Y....................................................................................41
 Figure 18 Load Combination..........................................................................................................42
 Figure 19 Divide Areas ...................................................................................................................42
 Figure 20 Space Frame...................................................................................................................43
 Figure 21 Mass Source...................................................................................................................43
 Figure 22 Diaphragm......................................................................................................................44
 Figure 23 View Revise Preferences................................................................................................44
 Figure 24 Run Analysis...................................................................................................................45
 Figure 25 Modal Information.........................................................................................................45
 Figure 26 Check of the Structure ...................................................................................................46
 Figure 27 Verify all member passed ..............................................................................................46
 Figure 28 Rebar Percentage...........................................................................................................47
 Figure 29 Column Details...............................................................................................................48
 Figure 30 Beam Details ..................................................................................................................49
 Figure 31 Show Forces...................................................................................................................50
 Figure 32 Modal.............................................................................................................................50
 Figure 33 Modal 1 ..........................................................................................................................51
 Figure 34 Modal 2 ..........................................................................................................................51
 Figure 35 Modal 3 ..........................................................................................................................52
 Figure 36 Modal 4..........................................................................................................................52
 Figure 37 Modal 5 ..........................................................................................................................53
 Figure 38 Modal Period and Frequencies......................................................................................53
 Figure 39 Member Force Diagram.................................................................................................54
 Figure 40 - S11 ...............................................................................................................................55
 Figure 41 – S22...............................................................................................................................55
 Figure 42 - S12 ...............................................................................................................................55
 Figure 43 - SMax ............................................................................................................................56
 Figure 44 SMin ...............................................................................................................................56
 Figure 45 - SVM..............................................................................................................................56
 Figure 46 - S13 ...............................................................................................................................57
 Figure 47 - S23 ...............................................................................................................................57
 Figure 48 - Smaxv..........................................................................................................................57
 Figure 49 Display Forces / Stresses................................................................................................58
 Figure 50 Axial Forces ....................................................................................................................59
 Figure 51 Shear 2-2........................................................................................................................59
 Figure 52 Shear 3-3........................................................................................................................60
 Figure 53 Torsion ...........................................................................................................................60
 Figure 54 Moment 2-2 ...................................................................................................................61
10
 Figure 55 Moment 3-3 ...................................................................................................................61
 Figure 56 Moment 3-3 ...................................................................................................................62
 Figure 57 - S11 ...............................................................................................................................63
 Figure 58 - S12...............................................................................................................................63
 Figure 59 - S13 ...............................................................................................................................64
 Figure 60 S13..................................................................................................................................64
 Figure 61 - Smin .............................................................................................................................65
 Figure 62 – Smax............................................................................................................................65
 Figure 63 – SMV.............................................................................................................................66
11. Table of Analysis Display
 Base Reactions …………………………………..…………………………………………………………………………………...67
 Element Forces - Area Shell………………………………………………………………………………………….……...68-69
 Element Forces – Frames……………………..………………………………………………………………………………70-71
 Element Joint Forces – Area ……………………………………………………………………………………….…..……72-75
 Element Joint Forces – Frames …………………………………………………………………………………..………..76-77
 Element Stresses – Area Shells ……………………………………………………………………………………………..78-79
 Joint Reactions …………………………………………………………………………………………………………………….80-81
 Modal Periods And Frequencies ……………………………………………………………………………………………….82
 Object And Elements – Area ………………………………………………………………………………………………..83-84
 Object And Elements – Frames…………………………………………………………………………………………….85-86
 Object And Elements – Jonits ……………………………………………………………………………………………….87-88
 Response Spectrum Modal Information ……………………………………………………………………………….89-90
12. Referenca……………..………………………………………………………………………………………………………………….91
11
CHAPTER 1
INTRODUCTION
1.1 What is SAP2000 and why is used?
The SAP name has been synonymous with state-of-the-art analytical methods since its introduction
over 30 years ago. SAP2000 follows in the same tradition featuring a very sophisticated, intuitive
and versatile user interface powered by an unmatched analysis engine and design tools for
engineers working on transportation, industrial, public works, sports and other facilities.
From a simple small 2D static frame analysis to a large complex 3D nonlinear dynamic analysis,
Sap200 is the easiest, most productive solution for your structural analysis and design needs.
Problem statement
1.2 SAP2000
SAP2000 is general-purpose civil-engineering software ideal for the analysis and design of any
type of structural system. Basic and advanced systems, ranging from 2D to 3D, of simple geometry
to complex, may be modeled, analyzed, designed, and optimized using a practical and intuitive
object-based modeling environment that simplifies and streamlines the engineering process. The
SAPFire Analysis Engine integral to SAP2000 drives a sophisticated finite-element analysis
procedure. An additional suite of analysis features are available to users engaging state-of-the-art
practice with nonlinear and dynamic consideration. Created by engineers for effective engineering
SAP2000 is the ideal software tool for users of any experience level, designing any structural
system..(CSI America)
12
Concrete
Concrete is one of the most commonly used building materials.
Concrete is a composite material made from several readily available constituents (aggregates,
sand, cement, water).
Concrete is a versatile material that can easily be mixed to meet a variety of special needs and
formed to virtually any shape.
Advantages
Ability to be cast
Economical
Durable
Fire resistant
Energy efficient
On‐site fabrication
Disavantages
Low tensile strength
Low ductility
Volume instability
Low strength to weight ratio
Propertes of Fresh Concrete
Workability
Consistency
Segregation
Bleeding
Setting Time
Unit Weight
Uniformity
13
Workability
Workability is the most important property of freshly mixed concrete.
There is no single test method that can simultaneously measure all the properties involved in
workability.
It is determined to a large extent by measuring the “consistency” of the mix.
It is desirable that freshly mixed concrete be relatively easy to transport, place, compact and
finish without harmful segregation.
A concrete mix satisfying these conditions is said to be workable
Factors Affecting workability
Method and duration of transportation
Quantity and characteristics of cementing materials
Aggregate grading, shape and surface texture
Quantity and characteristics of chemical admixtures
Amount of water
Amount of entrained air
Concrete & ambient air temperature
Consistency
Consistency is the fluidity or degree of wetness of concrete.
It is generally dependent on the shear resistance of the mass.
It is a major factor in indicating the workability of freshly mixed concrete
Test methods for measuring consistency are:
Flow test → measures the amount of flow
Kelly‐Ball test → measures the amount of penetration
Slump test (Most widely used test!)
Slump Test is related with the ease with which concrete flows during placement
14
The slump cone is filled in 3 layers. Every layer is evenly rodded 25 times
Measure the slump by determining the vertical difference between the top of
the mold and the displaced original center of the top surface of the specimen
Segregation
Segregation refers to a separation of the components of fresh concrete, resulting in a non‐
uniform mix .
The primary causes of segregation are differences in specific gravity and size of constituents of
concrete.
Moreover, improper mixing, improper placing and improper consolidation also lead to
segregation.
15
Sp.Gr. Size
Cement 3-3.15 5-80 m
C.Agg. 2.4-2.8 5-40 mm
F.Agg. 2.4-2.8 < 5 mm
Some of the factors affecting segregation
Larger maximum particle size (25mm) and proportion of the
larger particles.
High specific gravity of coarse aggregate.
Decrease in the amount of fine particles.
Particle shape and texture.
Water/cement ratio.
Bleeding
Bleeding is the tendency of water to rise to the surface of freshly placed concrete.
It is caused by the inability of
solid constituents of the mix
to hold all of the mixing water
as they settle down.
16
Mixing of concrete
Ready‐Mix concrete: In this type ingredients are introduced into a mixer truck and mixed during
transportation to the site.
• Wet – Water added before transportation
• Dry – Water added on site
Mixing at the site
• Handmixed
• Mixermixed
Mixing time should be sufficient to produce a uniform concrete. The time of mixing depends on
the type of mixer and also to some properties of fresh concrete.
Undermixing → non‐homogeneity
Overmixing → danger of water loss, brekage of aggregate particles
Properties of hardened concrete
The principal properties of hardened concrete which are of practical importance can be listed as:
1. Strength
2. Permeability & durability
3. Shrinkage & creep deformations
4. Response to temperature variations
Of these compressive strength is the most important property of concrete.
Of the abovementioned hardened properties compressive strength is one of the most important
property that is often required, simply because
1. Concrete is used for compressive loads
2. Compressive strength is easily obtained
3. It is a good measure of all the other properties
17
The strength of a concrete specimen prepared, cured and tested under specified conditions at a
given age depends on:
1. w/c ratio
2. Degree of compaction
Compressive Strength is determined by loading
properly prepared and cured cubic, cylindrical or
prismatic specimens under compression.
18
Factors Affection the strength of concrete
– Type of cement
– Type of agg.
– Degree of compaction
– Mix proportions
– Type of curing
– Type of stress situation
Durability
A durable concrete is the one which will withstand in a satisfactory degree, the effects of service
conditions to which it will be subjected.
Factors Affecting Durability:
External → Environmental
Internal → Permeability, Characteristics of ingredients, Air‐Void System...
Corrosion
Electrochemical reactions in the steel rebars of a R/C structure results in corrosion products
which have larger volumes than original steel
Abrasion
Aggregates have to be hard & resistant to wear.
Bleeding & finishing practices are also important
19
Steel
Steel is the common name for a large family of iron alloys which are easily malleable after the
molten stage. Steels are commonly made from iron ore, coal, and limestone
Mild steel bars
Mild steel bars are used for tensile stress of RCC (Reinforced cement concrete) slab beams etc.
in reinforced cement concrete work. These steel bars are plain in surface and are round sections
of diameter from 6 to 50 mm. These rods are manufactured in long lengths and can be cut quickly
and be bent easily without damage.
Deformed steel bars
As deformed bars are rods of steels provided with lugs, ribs or deformation on the surface of bar,
these bars minimize slippage in concrete and increases the bond between the two materials.
Deformed bars have more tensile stresses than that of mild steel plain bars. These bars can be
used without end hooks. The deformation should be spaced along the bar at substantially
uniform distances.
Various Grades of Mild Steel Bars
Reinforcement bars in accordance with standard IS No. 432 part-I can be classified into
following types.
Mild Steel Bars: Mild steel bars can be supplied in two grades
Mild steel bars grade-I designated as Fe 410-S or Grade 60
Mild steel bars grade-II designated as Fe-410-o or Grade 40
Medium Tensile Steel Bars designated as Fe- 540-w-ht or Grade 75
20
Avantages of Steel
1. Good in Strength in tension
2. Good in strength in compression
3. Good in strength shear
Disavantages
1. It is fair in durability “Corrodes if unprotected”
2. It is poor in resistance to fire “High Temperature”
Physical Requirement
S.No
Types of nominal size of
bars
Ultimate Tensile Stress
N/mm2
minimum
Yield Stress
N/mm2
Elongation
Percent minimum
1.
Mild Steel Grade I or Grade
60
For bars up to 20mm 410 250 23
For bars above 20mm upto
50 mm
410 240 23
2.
Mild Steel Grade-II or Grade
40
For bar up to 20mm 370 225 23
For bars above 20mm upto
50 mm
370 215 23
3.
Medium Tensile Steel
Grade-75
21
Standard Steels
According to the chemical compositions, standard steels can be classified
into three major groups: carbon steels, alloy steels, and stainless steels
for bars up to 16mm 540 350 20
for bars above 16 mm up to
32 mm
540 340 20
for bars above 32 mm up to
50 mm
510 330 20
22
The typical shapes and their sizes
Steels Compositions
Carbon Steels Alloying elements do not exceed these limits: 1% carbon, 0.6% copper, 1.65%
manganese, 0.4% phosphorus, 0.6% silicon, and 0.05% sulfur.
Alloy Steels Steels that exceed the element limits for carbon steels. Also includes steels that
contain elements not found in carbon steels such as nickel, chromium (up to 3.99%),
cobalt, etc.
Stainless Steels
Contains at least 10% chromium, with or without other elements. Based on the
structures, stainless steels can be grouped into three grades:
Austenitic:
Typically contains 18% chromium and 8% nickel and is widely known as 18-8.
Nonmagnetic in annealed condition, this grade can only be hardened by cold
working.
Ferritic:Contains very little nickel and either 17% chromium or 12% chromium with
other elements such as aluminum or titanium. Always magnetic, this grade can be
hardened only by cold working.
Martensitic: Typically contains 12% chromium and no nickel. This grade is
magnetic and can be hardened by heat treatment.
23
W section steel property table M section steel property table S section steel property table
HP section steel property table C section steel property table MC section steel property table
L section steel property table WT section steel property table MT section steel property table
24
ST section steel property table HSS (round) section steel table HSS (rect) section steel table
Pipe section steel property table 2L section steel property table
25
Columns
The vertical load bearing elements of the structural frame are usually called with their common
name, columns.
Columns are the rectangular elements in which the larger dimension is lesser than 4 times the
smaller dimension e.g.40/40, 40/60, 25/90, etc.
The columns category includes circular sections, too for example D=50 and quadrilateral sections
like 50/60 with an inside angle equal to 60˚
.
Type of column
The column are in form “Γ”, “T” or “Z” cross‐sections, in which the dimension ratio of their
orthogonal parts is lesser than 4. e.g.
“Γ” cross‐ section 40/80/25/25,
“T”cross‐section 70/50/25/25,
“Z” crosssection 60/70/90/25, etc.
Type of form columns
26
Shear walls
Shear walls are rectangular elements with a length to thick‐ ness ratio greater or equal to 4
e.g. cross‐sections 100/25,150/30.
Composite elements are comprised by one or more rectangular elements, at least one of which
must be a shear wall
Type of Shear Wall
27
Beams
Beams are the vertical or sloping bearing elements of the structural system that connect columns
and support slabs.
When beams support slabs, they work together thus forming a “T” section beam.
The level of the slabs compared to the level of the beams results in the formation of rectangular
beams, inverted beams or “Z” beams
Generally, beams are supported by columns (beam to column connection).
Sometimes one or both beam ends are supported by another beam (beam to beam connection)
and other times only one end is supported by a column or beam while the other end has no
support at all.
The beam supported only in one end is called cantilever.
The beam to column connection is called direct support and the beam to beam connection is
called indirect support.
The most commonly used beam is the one supported by two columns and the most scarcely used
is the cantilever beam.
Type of beam
28
Slabs
Slabs are surface plane elements that bear loads transverse to their plain.
`
Type of slabs
One‐way slabs (Simply supported)
‐ supported on two out of four, opposite sides.
Two‐way slabs
‐ supported on all four sides.
Cantilever slabs
‐ a fixed support on only one out of four sides.
Two‐way three support slabs
‐ supported on three out of four sides.
Two‐way two support slabs
‐ supported on two adjacent sides, like S6 of the above example.
Deformations, in a large scale but proportionate to one another, for three different types of slab
continuity. It is obvious that continuous slabs suffer lighter deflections thus they have better
elastic stability (stiffness).
Deformation
29
Conditions
In common structures, for slab thickness equal to 15cm, the slab’s span may vary between 3.60m
and 6.00m and the cantilever spans may be up to 1.50m.
For slab thickness equal to 20cm the slab’s span may range from 4.80m to 8.0m and the cantilever
spans may be up to 2.0m.
The 15cm thick slab has a self weight equal to 0.15m*25 kN/m³=3.75 kN/m² while the live load
due to human use, furniture etc that it is called to bear, is equal to 2.0 kN/m² only.
If the slab has a thickness equal to 20cm its self weight is 5.0 kN/m², and if it is equal to 30cm its
self weight is 7.50 kN/m² whereas the live loads remain the same.
Therefore for large spans ribbed slabs (waffle slabs) (Zoellner, sandwich) can be used, like the
one shown in the figure below. A ribbed slab with total thickness of 30cm may have a self weight
equal to
3.75kN/m², which corresponds to the self weight of a 15cm thick solid slab.=
Advantages of ribbed slabs
‐ their large effective thickness provides them with a high level of elastic stability (stiffness),
‐they have low dead weight consequently they apply relatively light stresses,
‐they do not overload the structural frame and the foundation
‐because of their large effective thickness they comparably need lesser amount of reinforcement
Disadvantage of ribbed slabs
‐Their construction is more challenging and therefore they require highly accurate reinforcement
detailing.
30
Foundation
A foundation (or, more commonly, foundations) is the element of an architectural
structure which connects it to the ground, and transfers loads from the structure to the ground.
Foundations are generally considered either shallow or deep. Foundation engineering is the
application of soil mechanics and rock mechanics (Geotechnical engineering) in the design of
foundation elements of structures.
The same way humans have their feet to transfer their self weight and other loads, softly to the
ground, foundations carry with light pressures the structural frame loads to the underlying soil.
Foundation generally includes the footings and the pedestals. The simplest type of foundation is
the spread foundation (pad foundation) i.e. isolated column footings.
Type of foundation
1.Shallow foundations are also called spread footings or open footings. The 'open' refers to the
fact that the foundations are made by first excavating all the earth till the bottom of the footing,
and then constructing the footing
2. Individual footings are one of the most simple and common types of foundations. These are
used when the load of the building is carried by columns
3. Strip footings are commonly found in load-bearing masonry construction, and act as a long
strip that
supports the weight of an entire wall.
4. Raft Foundations, also called Mat Foundations, are most often used when basements are to
be constructed. In a raft, the entire basement floor slab acts as the foundation; the weight of the
building is spread evenly over the entire footprint of the building
31
Introduction
The build take in consideration in order to perform the analysis with SAP 2000 version 18, is a
reinforced concrete structure . It consists an a moment resisting frame ,with 12 bay in x direction
and 7 in the y direction .The maperial properties and dimensions of the structural elements are
provided below :
Concrete : C20/25, C25/30
Rebar according to EN 1992
Columns : 400*700 mm , 400*600mm, 600*450 mm , 300*600 mm , 400*300mm, 500*500mm
,400*600mm, 600*450mm
Beam : 500*400mm
Shear Wall : 1600mm*300mm
Story height : 3.1 m
The Loads transmitted to the considered building are as follows :
Live Load : 2 KN/m2
Ceilings : 2.5 KN/m2
Infill walls : 3KN/ml.
A dynamic analysis is performed to the considered building .The response Spectrum features are
taken according to Albania Sesmic Map ,Shkodra region. This means that the peak ground
acceleration (PGA), is taken 0.25g , considering typer 1 of EN 1998 Spectra functions .The
behavior factor is taken manually , equal to 3.5 with a low margin of mistakes . Moreover , the
soli type is taken as C type , according to Shkodra region..
In order to be as close as possible with the Albania practice of reinforced concreter structures ,it
is chosen an un-braced frame .Since most of the structure up to 5 stories do not have lateral
resisting system (shear wall/braced structural elements), the simulation aims to understand
better the seismic behavior of these typ of reinforced concrete structure .
32
Figure 1 Architectual plan of the project structure take in consideration
33
Step by step Approach for the selected project
Step 1. File – New model – Select the units to KN,m,C – Grid only
Figure 2 New Modal
Step 2 .Fill the Quick Grid Lines table, with the data from the selected project .
Figure 3 Grid LInes
34
Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected
project.
Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete
Figure 5 Define Material
Figure 4 Edit Grid Data
35
Step 5. Continued .Add New Material – Rebar
Figure 6 Add New Material
Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns
Figure 7 Create Colums
36
Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam
Figure 8 Create Beam
Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell
Thin Type .
Continued We can Create Shear Wall With the same way .
Figure 9 Create Slab
37
Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column.
Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams.
Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab.
A 3D view for the above three steps is shown below .
Figure 10 Plan XZ – ZY
38
Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to Assign
– Joint – Restraints – Select Fixed condition
Figure 11 Joint Restaints
Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign –
Area Load – Uniform Shell
Figure 12 Area Load
39
Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign –
Area Load – Uniform Shell
Figure 13 Live Load
Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame
Load – Distributed.
Figure 14 Dead Load
40
Step 17 . Go to Main Menu – Define load Patterns
Figure 15 Define load Patterns
Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New
Function.
Figure 16 Response Spectrum
41
Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases .
Figure 17 Response Spectrum EQ-X , EQ-Y
42
Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN –
1992) –Concrete Frame Design
Figure 18 Load Combination
Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects .
Repeat the same step for all the slabs .
Figure 19 Divide Areas
43
Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame .
Figure 20 Space Frame
Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source .
Figure 21 Mass Source
44
Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm .
Repeat the same step for all other floors.
Figure 22 Diaphragm
Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2
2004
Figure 23 View Revise Preferences
45
Step 26 .Run analysis .
Figure 24 Run Analysis
Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal
Information
Figure 25 Modal Information
46
Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint Displacement
(IT can be found in Excel Sheets ,soft copy).
Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure .
Figure 26 Check of the Structure
Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed
Figure 27 Verify all member passed
47
Run Analysis—Design-Concrete Frame Design-Start Design/Check Structure-Display Concrete design
Figure 28 Rebar Percentage
48
Column Details(example)
Figure 29 Column Details
49
Beam Details(Example)
Figure 30 Beam Details
50
Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints
Figure 31 Show Forces
Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal
Figure 32 Modal
51
Figure 33 Modal 1
Figure 34 Modal 2
52
Figure 35 Modal 3
Figure 36 Modal 4
53
Figure 37 Modal 5
Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal
Information .
Figure 38 Modal Period and Frequencies
54
Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells
o S11: Direct stress (force per unit area) acting on the positive and negative 1 faces in the 1-axis
direction.
o S22: Direct stress (force per unit area) acting on the positive and negative 2 faces in the 2-axis
direction.
o S12: Shearing stress (force per unit area) acting on the positive and negative 1 faces in the 2-
axis direction and acting on the positive and negative 2 faces in the 1-axis direction.
o SMax: Maximum principal stress (force per unit area). Note that by definition principal stresses
are oriented such that the associated shearing stress is zero.
o S Min: Minimum principal stress (force per unit area). Note that by definition principal stresses
are oriented such that the associated shearing stress is zero.
o SVM: Von Mises principal stress (force per unit area).
o S13: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 1
faces in the 3-axis direction.
o S23: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 2
faces in the 3-axis direction.
o SMaxV: Maximum principal shearing stress (force per unit area). Note that by definition
principal shearing stresses are oriented on faces of the element such that the associated
shears per unit length on perpendicular faces are zero.[]
Figure 39 Member Force Diagram
55
Figure 40 - S11
Figure 41 – S22
Figure 42 - S12
56
Figure 43 - SMax
Figure 44 SMin
Figure 45 - SVM
57
Figure 46 - S13
Figure 47 - S23
Figure 48 - Smaxv
58
Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons
Stresses: Axial stress S11 is available for all frame and cable sections. The shear stresses S12 and S13 are
available for certain types of frame sections. When shear stresses are available, principal stresses Smax
and SMin and von Mises stress SVM are also available for algebraic (non-envelope) load cases and
combinations.
Figure 49 Display Forces / Stresses
59
Figure 50 Axial Forces
Figure 51 Shear 2-2
60
Figure 52 Shear 3-3
Figure 53 Torsion
61
Figure 54 Moment 2-2
Figure 55 Moment 3-3
62
Figure 56 Moment 3-3
63
Figure 57 - S11
Figure 58 - S12
64
Figure 59 - S13
Figure 60 S13
65
Figure 61 - Smin
Figure 62 – Smax
66
Figure 63 – SMV
67
Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables
TABLE: Base
Reactions
OutputCase CaseType StepType StepNum GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY GlobalMZ
Text Text Text Unitless KN KN KN KN-m KN-m KN-m
DEAD LinStatic 1.465E-10 6.528E-11 34896.067 339862.3046 -481633.86 -8.647E-10
MODAL LinModal Mode 1 993.719 1869.437 -4.046 -33005.7466 17355.9829 38610.0627
MODAL LinModal Mode 2 891.298 -2637.097 7.858 46606.9822 15398.7902 -27793.3571
MODAL LinModal Mode 3 4000.918 135.917 4.035 -2391.5235 71005.9827 -54270.0739
MODAL LinModal Mode 4 -4168.414 -1849.418 -33.495 -2945.7403 15986.7107 -76317.2804
MODAL LinModal Mode 5 1075.163
-
12786.407 -199.832 -26619.7677 1345.5644 -170110.557
MODAL LinModal Mode 6 17338.296 352.937 -97.117 1715.6388 -21961.2327 -231038.246
MODAL LinModal Mode 7 -7163.645 -1558.334 18.806 6614.4805 -38713.5074 -119982.895
MODAL LinModal Mode 8 1045.786
-
28366.458 832.536 146491.6798 -11845.7021 -387599.8
MODAL LinModal Mode 9
-
35722.809 -497.515 -1133.179 -392.3455 -170073.474 477792.2737
MODAL LinModal Mode 10
-
11610.704 -1533.432 -381.706 -3506.9412 97087.4411 -156633.705
MODAL LinModal Mode 11 1058.336 -2750.991
-
209283.883 -2130943.52 2610967.328 -52278.2636
MODAL LinModal Mode 12 814.019 14270.979 -22192.679 711423.7711 -263972.188 176275.977
LIVE LinStatic
-7.148E-
11
-9.499E-
11 -38538.315 -380567.68 538195.3962 -2.277E-10
EQ-X LinRespSpec Max 40713.23 3262.115 223.27 57272.6638 709376.2651 507700.2268
EQ-Y LinRespSpec Max 3262.116 45084.677 345.197 785639.548 56789.8372 631865.2931
dead 1.35 Combination 1.978E-10 8.813E-11 47109.691 458814.1113 -650205.72 -1.167E-09
Dead 1.35 ,
Live 1.5 Combination 9.058E-11
-5.435E-
11 -10697.782 -112037.403 157087.3767 -1.509E-09
Dead 1, Live
0.3, EQ-x 1 Combination Max 40713.23 3262.115 23557.842 282964.6657 389201.0191 507700.2268
Dead 1, Live
0.3, EQ-x 1 Combination Min -40713.23 -3262.115 23111.303 168419.338 -1029551.51 -507700.23
Dead 1 , Live
0.3, Eq-y 1 Combination Max 3262.116 45084.677 23679.77 1011331.55 -263385.409 631865.2931
Dead 1 , Live
0.3, Eq-y 1 Combination Min -3262.116
-
45084.677 22989.376 -559947.55 -376965.08 -631865.29
Dead 1 , Eq X
1 Combination Max 40713.23 3262.115 35119.337 397134.9685 227742.4002 507700.2268
Dead 1 , Eq X
1 Combination Min -40713.23 -3262.115 34672.798 282589.6408 -1191010.13 -507700.23
Dead 1, Eq-y
1 Combination Max 3262.116 45084.677 35241.264 1125501.853 -424844.03 631865.2931
Dead 1, Eq-y
1 Combination Min -3262.116
-
45084.677 34550.87 -445777.24 -538423.7 -631865.29
68
TABLE: Element Forces - Area Shells
Area Joint OutputCase F11 F22 F12 FMax FMin FAngle
Text Text Text KN/m KN/m KN/m KN/m KN/m Degrees
5 86 DEAD 96.17 87.17 38.78 130.71 52.63 41.687
5 716 DEAD 82.04 16.51 -15.57 85.56 13 -12.71
5 717 DEAD -14.83 -2.86 -37.07 28.7 -46.39 -49.585
5 718 DEAD -0.7 67.79 17.28 71.91 -4.81 76.609
5 86 MODAL -178.55 -140.39 -132.68 -25.43 -293.52 -49.091
5 716 MODAL -141.12 46.75 -29.07 51.15 -145.52 -81.403
5 717 MODAL 16.57 78.29 26.41 88.05 6.81 69.724
5 718 MODAL -20.86 -108.85 -77.21 24.01 -153.72 -30.161
5 86 MODAL -167.19 -431.86 -284.5 14.25 -613.3 -32.527
5 716 MODAL -36.98 219.2 -160.99 296.84 -114.62 -64.254
5 717 MODAL 27.93 232.19 17.79 233.72 26.39 85.06
5 718 MODAL -102.28 -418.88 -105.73 -70.22 -450.94 -16.869
5 86 MODAL 593.36 266.94 327.23 795.83 64.48 31.746
5 716 MODAL 529.24 -53.69 18.79 529.84 -54.29 1.845
5 717 MODAL -44.45 -168.42 -66.03 -15.87 -197 -23.404
5 718 MODAL 19.68 152.21 242.41 337.25 -165.36 52.644
5 86 MODAL 426.83 510.83 434.83 905.69 31.98 47.759
5 716 MODAL 279.22 -227.24 202.37 350.15 -298.17 19.315
5 717 MODAL -68.14 -296.71 -79.04 -43.46 -321.38 -17.334
5 718 MODAL 79.48 441.36 153.42 497.65 23.19 69.853
5 86 MODAL -174.26 -621.8 -407.88 67.2 -863.26 -30.625
5 716 MODAL 20.89 353.93 -265.24 500.59 -125.77 -61.06
5 717 MODAL 42.94 358.34 23.4 360.07 41.21 85.78
5 718 MODAL -152.21 -617.39 -119.24 -123.43 -646.17 -13.571
5 86 MODAL 1294.78 489.31 690.04 1691.02 93.08 29.865
5 716 MODAL 1178.73 -90.97 20.92 1179.07 -91.31 0.944
5 717 MODAL -98.54 -346.42 -182.27 -2.07 -442.9 -27.892
5 718 MODAL 17.51 233.86 486.85 624.41 -373.04 51.263
5 86 MODAL -272.01 -482.18 -257.92 -98.59 -655.6 -33.916
5 716 MODAL -141.51 170.31 2.7 170.33 -141.54 89.504
5 717 MODAL -31.15 192.38 -50.91 203.43 -42.19 -77.755
5 718 MODAL -161.64 -460.1 -311.53 34.55 -656.3 -32.202
5 86 MODAL 83.61 243.39 75.88 273.69 53.32 68.236
5 716 MODAL 33.66 -6.35 34.22 53.3 -25.99 29.843
5 717 MODAL -0.84 -13.25 26.32 19.99 -34.09 38.366
5 718 MODAL 49.11 236.49 67.98 258.55 27.04 72.018
5 86 MODAL 223.07 342.02 173.84 466.27 98.81 54.444
5 716 MODAL 151.45 -16.03 45.32 162.93 -27.51 14.211
69
5 717 MODAL -28.07 -51.94 103.65 64.34 -144.34 41.716
5 718 MODAL 43.55 306.12 232.17 441.55 -91.89 59.744
5 86 MODAL -1347.23 -1917.5 -1432.11 -172.15 -3092.58 -39.37
5 716 MODAL -785.36 891.84 -535.61 1048.3 -941.81 -73.717
5 717 MODAL 75.61 1064.04 -35.12 1065.28 74.36 -87.967
5 718 MODAL -486.26 -1745.31 -931.62 8.59 -2240.16 -27.976
5 86 MODAL -863.44 -398.25 -368.61 -194.98 -1066.71 -61.126
5 716 MODAL -802.25 -92.31 102.79 -77.72 -816.84 81.925
5 717 MODAL 83.93 84.93 206.77 291.2 -122.34 45.069
5 718 MODAL 22.74 -221.01 -264.64 192.22 -390.49 -32.636
5 86 MODAL 498.46 102.76 136.84 541.17 60.04 17.335
5 716 MODAL 509.83 159.63 -157.4 570.18 99.28 -20.976
5 717 MODAL -44 48.86 -194.54 202.44 -197.57 -51.712
5 718 MODAL -55.37 -8.01 99.7 70.79 -134.17 51.681
5 86 LIVE -132.31 -105.47 -57.43 -59.92 -177.87 -51.576
5 716 LIVE -115.93 -23.57 22.69 -18.29 -121.2 76.916
5 717 LIVE 21.01 3.82 52.64 65.76 -40.92 40.363
5 718 LIVE 4.63 -78.09 -27.48 12.93 -86.38 -16.799
5 86 EQ-X 5304.56 2788.65 3002.89 0 0 0
5 716 EQ-X 4786.12 988.48 692.83 0 0 0
5 717 EQ-X 399.91 1666.42 592.55 0 0 0
5 718 EQ-X 450.16 2094.67 2162.21 0 0 0
5 86 EQ-Y 728.9 3670.82 2131.82 0 0 0
5 716 EQ-Y 824 2046.94 1542.75 0 0 0
70
TABLE: Element Forces - Frames
Frame Station OutputCase P V2 V3 T M2 M3
Text m Text KN KN KN KN-m KN-m KN-m
1 0 DEAD -443.323 0.633 -0.354 -0.0032 -0.2138 0.4738
1 1.425 DEAD -439.05 0.633 -0.354 -0.0032 0.2911 -0.4283
1 2.85 DEAD -434.776 0.633 -0.354 -0.0032 0.796 -1.3304
1 0 MODAL -64.206 -28.458 10.08 -1.3158 16.2676 -53.041
1 1.425 MODAL -64.206 -28.458 10.08 -1.3158 1.9037 -12.4881
1 2.85 MODAL -64.206 -28.458 10.08 -1.3158 -12.4602 28.0648
1 0 MODAL 465.911 -23.073 26.989 -1.0041 44.2953 -42.4609
1 1.425 MODAL 465.911 -23.073 26.989 -1.0041 5.8361 -9.5823
1 2.85 MODAL 465.911 -23.073 26.989 -1.0041 -32.6231 23.2964
1 0 MODAL -325.786 -7.514 -9.776 0.6963 -15.8858 -15.3666
1 1.425 MODAL -325.786 -7.514 -9.776 0.6963 -1.9549 -4.6586
1 2.85 MODAL -325.786 -7.514 -9.776 0.6963 11.9759 6.0494
1 0 MODAL -143.523 116.856 -70.939 4.9964 -111.9618 210.6385
1 1.425 MODAL -143.523 116.856 -70.939 4.9964 -10.8732 44.119
1 2.85 MODAL -143.523 116.856 -70.939 4.9964 90.2155 -122.4005
1 0 MODAL -108.997 -24.306 72.417 -0.9154 114.06 -42.7085
1 1.425 MODAL -108.997 -24.306 72.417 -0.9154 10.8664 -8.0719
1 2.85 MODAL -108.997 -24.306 72.417 -0.9154 -92.3273 26.5648
1 0 MODAL 218.676 -37.783 -33.716 2.2223 -52.8153 -70.4635
1 1.425 MODAL 218.676 -37.783 -33.716 2.2223 -4.7704 -16.6221
1 2.85 MODAL 218.676 -37.783 -33.716 2.2223 43.2745 37.2193
1 0 MODAL -77.966 207.825 -129.419 8.4361 -202.9796 363.7035
1 1.425 MODAL -77.966 207.825 -129.419 8.4361 -18.5572 67.5532
1 2.85 MODAL -77.966 207.825 -129.419 8.4361 165.8653 -228.5971
1 0 MODAL 379.676 -23.526 122.547 -0.8517 192.1008 -39.7243
1 1.425 MODAL 379.676 -23.526 122.547 -0.8517 17.471 -6.1991
1 2.85 MODAL 379.676 -23.526 122.547 -0.8517 -157.1588 27.3261
1 0 MODAL 422.821 76.487 61.446 -3.9568 95.5932 139.4584
1 1.425 MODAL 422.821 76.487 61.446 -3.9568 8.0332 30.4643
1 2.85 MODAL 422.821 76.487 61.446 -3.9568 -79.5268 -78.5297
1 0 MODAL 90.872 311.256 -179.009 11.1832 -277.3863 520.3866
1 1.425 MODAL 90.872 311.256 -179.009 11.1832 -22.298 76.8474
1 2.85 MODAL 90.872 311.256 -179.009 11.1832 232.7904 -366.6919
1 0 MODAL 2421.356 -
0.004852
10.505 0.0666 14.5726 -1.4325
1 1.425 MODAL 2421.356 -
0.004852
10.505 0.0666 -0.3977 -1.4256
1 2.85 MODAL 2421.356 -
0.004852
10.505 0.0666 -15.3681 -1.4186
71
1 0 MODAL 3248.939 14.217 -55.465 0.6118 -87.3966 21.4892
1 1.425 MODAL 3248.939 14.217 -55.465 0.6118 -8.3587 1.2296
1 2.85 MODAL 3248.939 14.217 -55.465 0.6118 70.6792 -19.03
1 0 LIVE 402.603 -0.854 0.722 0.0039 0.5338 -0.6999
1 1.425 LIVE 402.603 -0.854 0.722 0.0039 -0.4945 0.5175
1 2.85 LIVE 402.603 -0.854 0.722 0.0039 -1.5227 1.7348
1 0 EQ-X 2899.217 244.681 147.045 10.0409 239.669 460.7164
1 1.425 EQ-X 2899.217 244.681 147.045 10.0409 30.1582 112.4894
1 2.85 EQ-X 2899.217 244.681 147.045 10.0409 179.4172 237.0467
1 0 EQ-Y 5674.238 85.374 220.768 3.8796 364.0263 157.507
1 1.425 EQ-Y 5674.238 85.374 220.768 3.8796 49.5035 36.2296
72
TABLE: Element Joint Forces - Areas
Joint OutputCase F1 F2 F3 M1 M2 M3
Text Text KN KN KN KN-m KN-m KN-m
86 DEAD -24.711 -26.505 12.543 4.4977 -4.0212 1.7887
716 DEAD 21.599 -15.646 -0.151 3.6507 -1.3365 -0.6286
717 DEAD 7.549 14.642 -5.577 -0.8952 -0.5181 -0.172
718 DEAD -4.437 27.508 -2.337 0.0227 -2.0911 2.2458
86 MODAL 71.461 49.556 -0.765 -2.3263 4.4803 -2.4537
716 MODAL -16.397 -18.506 -1.657 -0.5653 -0.3724 2.2337
717 MODAL -41.646 -18.195 7.752 0.5462 -0.8537 1.0707
718 MODAL -13.418 -12.856 -5.33 0.6098 2.8408 -3.6129
86 MODAL 100.715 153.447 10.121 -3.7397 2.7405 0.2928
716 MODAL 28.509 -53.61 -9.937 2.9187 0.1219 6.2326
717 MODAL -78.411 -44.927 15.813 0.1092 0.2716 2.6655
718 MODAL -50.813 -54.91 -15.996 0.8436 2.7413 -3.2647
86 MODAL -218.495 -94.6 10.5 5.7677 -15.3513 9.4908
716 MODAL 78.166 45.339 -2.477 3.128 1.6364 -4.166
717 MODAL 118.529 41.288 -16.953 -1.5303 3.3697 -2.5149
718 MODAL 21.8 7.972 8.93 -1.6157 -9.0851 11.1319
86 MODAL -184.711 -181.55 -5.896 6.6502 -10.6145 0.7699
716 MODAL 10.019 74.488 9.591 -1.8315 0.3208 -9.7472
717 MODAL 118.513 55.298 -26.357 -0.8064 1.2585 -3.0783
718 MODAL 56.179 51.764 22.662 -1.364 -7.7304 7.4652
86 MODAL 125.116 219.764 19.007 -4.611 1.966 2.7854
716 MODAL 57.994 -88.037 -16.475 6.1962 0.5329 9.792
717 MODAL -105.05 -56.279 23.172 -0.5103 1.0905 3.7555
718 MODAL -78.06 -75.449 -25.704 0.7397 3.1077 -3.2463
86 MODAL -461.756 -168.581 26.525 12.5167 -35.5087 19.8157
716 MODAL 187.282 97.136 -8.562 7.04 2.9398 -9.7083
717 MODAL 241.371 70.061 -37.606 -3.379 7.4331 -5.0597
718 MODAL 33.104 1.384 19.643 -3.3043 -21.0315 24.4615
86 MODAL 159.051 173.498 2.987 -3.5574 2.6493 -12.3441
716 MODAL 6.216 -28.601 -5.232 -1.3352 -0.4939 0.3209
717 MODAL -114.848 -74.284 8.172 1.2035 -0.4003 4.4997
718 MODAL -50.419 -70.612 -5.927 2.0805 1.1851 -8.0323
86 MODAL -45.222 -95.127 3.294 2.4085 -1.719 1.6102
716 MODAL -6.683 -19.941 -0.598 2.373 0.0006568 -0.3639
717 MODAL 36.342 55.988 -1.796 -1.3357 0.2175 -1.0266
718 MODAL 15.562 59.08 -0.9 -1.5135 -0.893 0.9316
73
86 MODAL -125.529 -146.293 -4.396 1.5722 0.1595 7.1698
716 MODAL -20.403 1.25 4.893 0.9812 1.3034 1.2805
717 MODAL 90.278 93.035 -2.558 -0.681 0.4241 -1.9877
718 MODAL 55.654 52.009 2.06 -1.5161 0.4485 3.8373
86 MODAL 700.179 702.223 38.8 -11.79 22.3788 -20.4931
716 MODAL 40.695 -275.49 -29.021 9.1302 -3.5598 21.566
717 MODAL -496.36 -245.066 59.899 2.2703 -4.2653 15.2023
718 MODAL -244.514 -181.667 -69.679 7.3981 16.3247 -26.6787
86 MODAL 266.915 126.145 -47.629 -19.3602 27.3738 -16.3387
716 MODAL -166.205 30.514 7.099 -16.3134 3.1019 4.5037
717 MODAL -113.12 -74.331 36.647 4.9825 -1.6191 2.1552
718 MODAL 12.41 -82.328 3.883 1.6442 14.8895 -18.6786
86 MODAL -123.268 -18.009 35.125 15.1555 -17.3777 11.6727
716 MODAL 135.651 -57.8 0.815 14.5128 -1.6128 -1.3326
717 MODAL 27.197 25.325 -27.451 -3.6976 1.4168 0.128
718 MODAL -39.58 50.484 -8.489 -0.2138 -9.0617 13.1323
86 LIVE 35.177 32.027 -15.859 -5.7083 5.5443 -2.663
716 LIVE -29.373 18.8 -0.93 -5.0829 1.8427 0.9165
717 LIVE -10.509 -18.069 8.272 1.2613 0.7946 0.2188
718 LIVE 4.705 -32.758 0.995 0.1933 2.9219 -3.3625
86 EQ-X 1950.397 988.424 113.821 52.0842 137.8587 86.5329
716 EQ-X 744.974 431.116 55.904 32.9469 15.0005 42.7544
717 EQ-X 1065.374 389.662 157.815 13.7905 30.8825 23.6097
718 EQ-X 268.137 248.003 98.19 14.4765 81.2213 99.5081
86 EQ-Y 596.485 1306.752 116.816 24.0095 15.1018 23.596
716 EQ-Y 442.868 449.241 95.966 36.5259 4.3836 51.4457
717 EQ-Y 553.68 355.729 115.576 3.531 9.9847 21.1971
718 EQ-Y 455.104 502.689 134.967 4.8844 12.122 13.8333
86 dead 1.35 -33.36 -35.782 16.933 6.072 -5.4286 2.4148
716 dead 1.35 29.158 -21.122 -0.204 4.9284 -1.8043 -0.8486
717 dead 1.35 10.192 19.767 -7.528 -1.2085 -0.6995 -0.2322
718 dead 1.35 -5.99 37.136 -3.155 0.0307 -2.823 3.0318
86
Dead 1.35 ,
Live 1.5 19.406 12.259 -6.856 -2.4905 2.8878 -1.5797
716
Dead 1.35 ,
Live 1.5 -14.901 7.078 -1.599 -2.6959 0.9597 0.5261
717
Dead 1.35 ,
Live 1.5 -5.572 -7.337 4.88 0.6835 0.4924 0.0961
718
Dead 1.35 ,
Live 1.5 1.067 -12.001 -1.663 0.3206 1.5599 -2.0119
86
Dead 1,
Live 0.3,
EQ-x 1 1936.239 971.527 121.606 54.8694 135.5008 87.5227
74
716
Dead 1,
Live 0.3,
EQ-x 1 757.761 421.11 55.473 35.0727 14.2168 42.4007
717
Dead 1,
Live 0.3,
EQ-x 1 1069.77 398.883 154.72 13.2737 30.6027 23.5034
718
Dead 1,
Live 0.3,
EQ-x 1 265.111 265.684 96.152 14.5572 80.0068 100.7451
86
Dead 1,
Live 0.3,
EQ-x 1 -1964.555 -1005.32 -106.036 -49.2989 -140.2167 -85.5431
716
Dead 1,
Live 0.3,
EQ-x 1 -732.187 -441.122 -56.334 -30.8211 -15.7842 -43.108
717
Dead 1,
Live 0.3,
EQ-x 1 -1060.977 -380.44 -160.91 -14.3073 -31.1622 -23.716
718
Dead 1,
Live 0.3,
EQ-x 1 -271.162 -230.323 -100.229 -14.3958 -82.4359 -98.271
86
Dead 1 ,
Live 0.3, Eq-
y 1 582.327 1289.856 124.601 26.7947 12.7439 24.5859
716
Dead 1 ,
Live 0.3, Eq-
y 1 455.655 439.235 95.536 38.6517 3.5999 51.0921
717
Dead 1 ,
Live 0.3, Eq-
y 1 558.077 364.95 112.481 3.0142 9.7049 21.0907
718
Dead 1 ,
Live 0.3, Eq-
y 1 452.078 520.37 132.928 4.9651 10.9075 15.0703
86
Dead 1 ,
Live 0.3, Eq-
y 1 -610.643 -1323.649 -109.031 -21.2242 -17.4597 -22.6062
716
Dead 1 ,
Live 0.3, Eq-
y 1 -430.081 -459.247 -96.396 -34.4001 -5.1673 -51.7994
717
Dead 1 ,
Live 0.3, Eq-
y 1 -549.283 -346.507 -118.671 -4.0478 -10.2644 -21.3034
718
Dead 1 ,
Live 0.3, Eq-
y 1 -458.129 -485.008 -137.006 -4.8037 -13.3366 -12.5962
86
Dead 1 , Eq
X 1 1925.686 961.919 126.364 56.5819 133.8375 88.3216
75
716
Dead 1 , Eq
X 1 766.573 415.47 55.752 36.5976 13.664 42.1258
717
Dead 1 , Eq
X 1 1072.923 404.304 152.238 12.8953 30.3644 23.4377
718
Dead 1 , Eq
X 1 263.7 275.512 95.853 14.4992 79.1302 101.7539
86
Dead 1 , Eq
X 1 -1975.108 -1014.929 -101.278 -47.5864 -141.88 -84.7442
716
Dead 1 , Eq
X 1 -723.375 -446.762 -56.055 -29.2962 -16.337 -43.383
717
Dead 1 , Eq
X 1 -1057.824 -375.02 -163.391 -14.6857 -31.4006 -23.7817
718
Dead 1 , Eq
X 1 -272.574 -220.495 -100.527 -14.4538 -83.3125 -97.2623
86
Dead 1, Eq-
y 1 571.774 1280.248 129.359 28.5072 11.0806 25.3848
76
TABLE: Element Joint Forces - Frames
OutputCase F1 F2 F3 M1 M2 M3
Text KN KN KN KN-m KN-m KN-m
DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032
DEAD 0.633 -0.354 -434.026 -0.8846 -1.4887 -0.0032
MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158
MODAL -28.458 10.08 -64.206 14.9801 35.1794 -1.3158
MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041
MODAL -23.073 26.989 465.911 39.3703 29.0645 -1.0041
MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963
MODAL -7.514 -9.776 -325.786 -14.4199 7.928 0.6963
MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964
MODAL 116.856 -70.939 -143.523 -107.9503 -151.6144 4.9964
MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154
MODAL -24.306 72.417 -108.997 110.4314 32.6414 -0.9154
MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223
MODAL -37.783 -33.716 218.676 -51.7034 46.6652 2.2223
MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361
MODAL 207.825 -129.419 -77.966 -198.2201 -280.5533 8.4361
MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517
MODAL -23.526 122.547 379.676 187.7956 33.2077 -0.8517
MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568
MODAL 76.487 61.446 422.821 94.8882 -97.6515 -3.9568
MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832
MODAL 311.256 -179.009 90.872 -277.5427 -444.5058 11.1832
MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666
MODAL -0.004852 10.505 2421.356 17.9944 -1.4174 0.0666
MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118
MODAL 14.217 -55.465 3248.939 -84.5455 -22.5843 0.6118
LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039
LIVE -0.854 0.722 402.603 1.7031 1.9484 0.0039
EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409
EQ-X 244.681 147.045 2899.217 216.1775 298.1601 10.0409
EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796
EQ-Y 85.374 220.768 5674.238 320.3785 107.4295 3.8796
dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044
dead 1.35 0.855 -0.478 -585.935 -1.1942 -2.0097 -0.0044
Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015
Dead 1.35 , Live 1.5 -0.427 0.604 17.969 1.3605 0.9129 0.0015
Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043
77
Dead 1, Live 0.3, EQ-x 1 245.058 146.907 2585.972 215.8038 297.2559 10.0389
Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389
Dead 1, Live 0.3, EQ-x 1 -244.305 -147.182 -3212.462 -216.5511 -299.0642 -10.043
Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817
Dead 1 , Live 0.3, Eq-y 1 85.751 220.63 5360.993 320.0048 106.5254 3.8775
Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775
Dead 1 , Live 0.3, Eq-y 1 -84.997 -220.906 -5987.483 -320.7522 -108.3337 -3.8817
Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442
Dead 1 , Eq X 1 245.314 146.69 2465.191 215.2929 296.6714 10.0377
Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377
78
TABLE: Element Stresses - Area Shells
Area ShellType Joint S11Top S22Top S12Top SMaxTop SMinTop SAngleTop SVMTop
Text Text Text KN/m2 KN/m2 KN/m2 KN/m2 KN/m2 Degrees KN/m2
5 Shell-Thin 86 1910.33 1395.48 187.25 1971.23 1334.58 18.016 1742.44
5 Shell-Thin 716 -317.9 583.72 -128.72 601.74 -335.91 -82.032 822.84
5 Shell-Thin 717 89.88 316.05 -157.17 396.59 9.34 -62.867 392.01
5 Shell-Thin 718 109.11 111.17 158.79 268.93 -48.66 45.186 296.27
5 Shell-Thin 86 -2256.95 -1314.4 -920.04 -751.95 -2819.4 -58.562 2528.71
5 Shell-Thin 716 -438.55 384.66 -366.89 524.44 -578.33 -69.144 955.41
5 Shell-Thin 717 -388.14 188.59 -55.91 193.96 -393.51 -84.514 518.45
5 Shell-Thin 718 -502.06 -532.78 -609.06 91.83 -1126.68 -44.278 1175.28
5 Shell-Thin 86 -1388.77 -3550.1 -2207.71 -11.42 -4927.45 -31.959 4921.74
5 Shell-Thin 716 -141.39 2541.84 -1693.64 3360.86 -960.41 -64.192 3930.08
5 Shell-Thin 717 210.62 874.99 -493.53 1137.72 -52.11 -61.972 1164.65
5 Shell-Thin 718 -1157.72 -1804.7 -1007.6 -422.95 -2539.47 -36.1 2356.63
5 Shell-Thin 86 7781.71 2658.72 2048.46 8500.08 1940.36 19.325 7715.12
5 Shell-Thin 716 1707.74 -97.71 265.42 1745.96 -135.92 8.192 1817.73
5 Shell-Thin 717 1572.57 -372.96 -138.86 1582.43 -382.82 -4.062 1804.56
5 Shell-Thin 718 1217.13 912.14 1644.18 2715.87 -586.61 42.351 3051.76
5 Shell-Thin 86 5159.91 4758.8 3252.8 8218.33 1700.38 43.236 7513.85
5 Shell-Thin 716 787.83 -2699.23 2088.19 1764.68 -3676.08 25.07 4807.78
5 Shell-Thin 717 479.59 -949.2 432.67 600.4 -1070.01 15.6 1465.55
5 Shell-Thin 718 1780.06 1944.54 1597.28 3461.69 262.91 46.474 3338.01
5 Shell-Thin 86 -962.62 -5157.23 -3296.01 846.79 -6966.64 -28.765 7426.33
5 Shell-Thin 716 32.17 4390.13 -2789.63 5750.92 -1328.62 -63.997 6517.6
5 Shell-Thin 717 658.05 1481.11 -825.06 1991.58 147.58 -58.255 1922.05
5 Shell-Thin 718 -1702.54 -2561.33 -1331.45 -732.96 -3530.91 -36.063 3227.47
5 Shell-Thin 86 17727.54 5383.88 4310.8 19083.96 4027.46 17.466 17422.92
5 Shell-Thin 716 3455.56 -35.61 425.8 3506.74 -86.79 6.854 3550.93
5 Shell-Thin 717 3644.13 -694.48 -465.41 3693.5 -743.85 -6.054 4116.14
5 Shell-Thin 718 2669.15 1527.43 3419.59 5565.2 -1368.63 40.261 6360.91
5 Shell-Thin 86 -2056.81 -2966.65 -1573.03 -874.23 -4149.23 -36.935 3788.53
5 Shell-Thin 716 -590.18 779.81 -339.53 859.34 -669.71 -76.817 1327.59
5 Shell-Thin 717 -340.04 635.12 -353.79 749.95 -454.88 -72.017 1053.8
5 Shell-Thin 718 -705.08 -2336.52 -1587.3 263.84 -3305.44 -31.401 3444.94
5 Shell-Thin 86 969.77 1443.04 320.87 1605.09 807.72 63.204 1390.06
5 Shell-Thin 716 30.23 423.16 87.54 441.78 11.61 77.992 436.09
5 Shell-Thin 717 159.5 169.07 56.6 221.08 107.49 47.415 191.49
5 Shell-Thin 718 260.89 1270.92 289.92 1348.22 183.59 75.07 1266.45
5 Shell-Thin 86 823.35 1741.69 972.35 2357.84 207.21 57.639 2261.36
5 Shell-Thin 716 1086.95 52.53 309.79 1172.63 -33.15 15.46 1189.56
79
5 Shell-Thin 717 -130.6 -195.62 426.71 264.83 -591.06 42.821 758.96
5 Shell-Thin 718 80.2 1634.18 1089.27 2195.18 -480.8 62.75 2470.92
5 Shell-Thin 86 -
12494.83
-
13362.07
-9975.75 -2943.28 -
22913.62
-43.756 21592.96
5 Shell-Thin 716 -3394.65 8748.74 -5656.64 10975.42 -5621.33 -68.513 14620.39
5 Shell-Thin 717 -1540.77 4216.48 -2012.93 4850.45 -2174.75 -72.518 6229.36
5 Shell-Thin 718 -5208.08 -8797.91 -6332.04 -421.47 -
13584.52
-37.087 13378.77
5 Shell-Thin 86 -
13558.28
-6005.83 -2094.38 -5463.92 -
14100.19
-75.493 12313.71
5 Shell-Thin 716 -539.43 -2805.7 613.65 -383.94 -2961.2 14.219 2789.12
5 Shell-Thin 717 -1936.62 -1147.16 720.62 -720.24 -2363.54 59.356 2098.27
80
TABLE: Joint Reactions
Joint OutputCase F1 F2 F3 M1 M2 M3
Text Text KN KN KN KN-m KN-m KN-m
1 DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032
1 MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158
1 MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041
1 MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963
1 MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964
1 MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154
1 MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223
1 MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361
1 MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517
1 MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568
1 MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832
1 MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666
1 MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118
1 LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039
1 EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409
1 EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796
1 dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044
1 Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015
1 Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043
1 Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389
1 Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817
1 Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775
1 Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442
1 Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377
1 Dead 1, Eq-y 1 84.741 221.122 6117.561 363.8125 157.0332 3.8829
1 Dead 1, Eq-y 1 -86.007 -220.414 -5230.914 -364.2401 -157.9808 -3.8764
3 DEAD 0.761 0.652 479.862 -0.5356 0.9282 0.0011
3 MODAL 36.678 -3.558 -41.023 5.5591 61.2778 1.3054
3 MODAL 29.773 -21.762 -417.708 35.8384 49.1908 1.0262
3 MODAL 10.837 6.314 87.846 -10.4532 18.6997 -0.7158
3 MODAL -145.925 42.972 -165.695 -68.0063 -239.7505 -5.0007
3 MODAL 29.163 -64.66 251.473 103.2696 47.5959 0.984
3 MODAL 50.813 21.3 -65.568 -34.1597 83.5035 -2.2791
3 MODAL -254.09 80.775 141.992 -127.6065 -409.961 -8.4312
3 MODAL 27.414 -113.585 -330.244 180.3599 43.6188 0.9615
3 MODAL -101.343 -39.214 -167.538 62.0426 -164.2364 4.0508
3 MODAL -364.485 113.51 -618.024 -176.8496 -573.3648 -11.1301
81
3 MODAL 1.961 -12.904 -3175.391 17.273 3.4557 -0.0332
3 MODAL -13.444 48.027 -4260.324 -77.9359 -20.5965 -0.6291
3 LIVE -0.929 -1.12 -444.465 0.9616 -1.0945
-
0.0007132
3 EQ-X 321.192 96.87 1665.921 158.4935 537.5791 10.1335
3 EQ-Y 109.994 213.776 4268.095 354.1738 182.198 3.9039
3 dead 1.35 1.028 0.88 647.814 -0.7231 1.2531 0.0015
3 Dead 1.35 , Live 1.5 -0.365 -0.8 -18.884 0.7194 -0.3886 0.000459
3 Dead 1, Live 0.3, EQ-x 1 321.675 97.186 2012.444 158.2463 538.179 10.1344
3 Dead 1, Live 0.3, EQ-x 1 -320.709 -96.554 -1319.399 -158.7406 -536.9793 -10.1326
3 Dead 1 , Live 0.3, Eq-y 1 110.477 214.092 4614.617 353.9267 182.7978 3.9048
82
TABLE: Modal Periods And Frequencies
OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue
Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2
MODAL Mode 1 0.924609 1.081537789 6.795502342 46.17885208
MODAL Mode 2 0.901943 1.108717337 6.966276481 48.52900802
MODAL Mode 3 0.779214 1.283344833 8.063493397 65.01992577
MODAL Mode 4 0.300944 3.32287609 20.87824623 435.9011656
MODAL Mode 5 0.282348 3.541727339 22.25332918 495.2106595
MODAL Mode 6 0.240496 4.158079647 26.12598494 682.5670892
MODAL Mode 7 0.174232 5.739486249 36.06225567 1300.486284
MODAL Mode 8 0.151979 6.579877485 41.34258954 1709.20971
MODAL Mode 9 0.13041 7.668109424 48.18015247 2321.327092
MODAL Mode 10 0.121433 8.234977489 51.74188956 2677.223136
MODAL Mode 11 0.110894 9.017606954 56.65929552 3210.275769
MODAL Mode 12 0.108252 9.23770203 58.04219367 3368.896246
83
TABLE: Objects And Elements - Areas
AreaElem AreaObject ElemJt1 ElemJt2 ElemJt3 ElemJt4
Text Text Text Text Text Text
40 40 42 103 106 107
41 41 107 106 108 111
42 42 111 108 112 78
43 43 103 117 118 106
44 44 106 118 119 108
45 45 108 119 120 112
46 46 117 121 122 118
47 47 118 122 123 119
48 48 119 123 124 120
49 49 121 44 125 122
50 50 122 125 126 123
51 51 123 126 79 124
52 52 32 127 128 129
53 53 129 128 130 131
54 54 131 130 132 133
55 55 133 132 134 135
56 56 135 134 103 42
57 57 127 136 137 128
58 58 128 137 138 130
59 59 130 138 139 132
60 60 132 139 140 134
61 61 134 140 117 103
62 62 136 141 142 137
63 63 137 142 143 138
64 64 138 143 144 139
65 65 139 144 145 140
66 66 140 145 121 117
67 67 141 34 146 142
68 68 142 146 147 143
69 69 143 147 148 144
70 70 144 148 149 145
71 71 145 149 44 121
72 72 34 150 151 146
73 73 146 151 152 147
74 74 147 152 153 148
75 75 148 153 154 149
76 76 149 154 155 44
77 77 150 156 157 151
84
78 78 151 157 158 152
79 79 152 158 159 153
80 80 153 159 160 154
81 81 154 160 161 155
82 82 156 162 163 157
83 83 157 163 164 158
84 84 158 164 165 159
85 85 159 165 166 160
86 86 160 166 167 161
85
TABLE: Objects And Elements - Frames
FrameElem FrameObject ElemJtI ElemJtJ
Text Text Text Text
1-1 1 1 2
2-1 2 3 4
3-1 3 5 6
4-1 4 7 8
5-1 5 9 10
6-1 6 11 12
7-1 7 13 14
8-1 8 49 48
10-1 10 19 20
11-1 11 21 22
12-1 12 23 24
13-1 13 25 26
14-1 14 27 47
17-1 17 33 34
18-1 18 35 36
19-1 19 37 38
22-1 22 43 44
23-1 23 45 46
26-1 26 51 52
27-1 27 53 54
38-1 38 6 585
38-2 38 585 586
38-3 38 586 12
43-1 43 20 539
43-2 43 539 533
43-3 43 533 72
44-1 44 8 534
44-2 44 534 524
44-3 44 524 73
46-1 46 10 572
46-2 46 572 571
46-3 46 571 4
50-1 50 54 238
50-2 50 238 237
50-3 50 237 236
50-4 50 236 235
50-5 50 235 74
56-1 56 42 107
86
56-2 56 107 111
56-3 56 111 78
57-1 57 44 125
57-2 57 125 93
57-3 57 93 126
57-4 57 126 79
58-1 58 46 80
59-1 59 52 81
61-1 61 56 627
87
TABLE: Objects And Elements - Joints
JointElem JointObject GlobalX GlobalY GlobalZ
Text Text m m m
1 1 2.15 0 0
2 2 2.15 0 3.1
3 3 6.15 0 0
4 4 6.15 0 3.1
5 5 11.15 0 0
6 6 11.15 0 3.1
7 7 2.15 2.3 0
8 8 2.15 2.3 3.1
9 9 6.15 2.3 0
10 10 6.15 2.3 3.1
11 11 11.15 2.3 0
12 12 11.15 2.3 3.1
13 13 16.95 2.3 0
14 14 16.95 2.3 3.1
18 18 25.95 2.3 3.1
19 19 2.15 7.3 0
20 20 2.15 7.3 3.1
21 21 6.15 7.3 0
22 22 6.15 7.3 3.1
23 23 11.15 7.3 0
24 24 11.15 7.3 3.1
25 25 16.95 7.3 0
26 26 16.95 7.3 3.1
27 27 21.95 7.3 0
30 30 25.95 7.3 3.1
32 32 2.15 12.45 3.1
33 33 6.15 12.45 0
34 34 6.15 12.45 3.1
35 35 11.15 12.45 0
36 36 11.15 12.45 3.1
37 37 16.95 12.45 0
38 38 16.95 12.45 3.1
40 40 25.95 12.45 3.1
42 42 2.15 17.45 3.1
43 43 6.15 17.45 0
44 44 6.15 17.45 3.1
45 45 11.15 17.45 0
46 46 11.15 17.45 3.1
88
51 51 16.95 17.45 0
52 52 16.95 17.45 3.1
53 53 21.95 17.45 0
54 54 21.95 17.45 3.1
56 56 25.95 17.45 3.1
62 62 12.825 12.45 3.1
64 64 15.175 12.45 3.1
66 66 12.825 10.475 3.1
68 68 15.175 10.475 3.1
89
TABLE: Response Spectrum Modal Information
OutputCas
e
ModalCas
e
StepTyp
e
StepNu
m Period
DampRati
o U1Acc U2Acc U3Acc
Text Text Text Unitless Sec Unitless m/sec2 m/sec2 m/sec2
EQ-X MODAL Mode 1
0.92460
9 0.05 9.81 0 0
EQ-X MODAL Mode 2
0.90194
3 0.05 9.81 0 0
EQ-X MODAL Mode 3
0.77921
4 0.05 9.81 0 0
EQ-X MODAL Mode 4
0.30094
4 0.05 9.81 0 0
EQ-X MODAL Mode 5
0.28234
8 0.05 9.81 0 0
EQ-X MODAL Mode 6
0.24049
6 0.05 9.81 0 0
EQ-X MODAL Mode 7
0.17423
2 0.05 9.81 0 0
EQ-X MODAL Mode 8
0.15197
9 0.05 9.81 0 0
EQ-X MODAL Mode 9 0.13041 0.05 9.81 0 0
EQ-X MODAL Mode 10
0.12143
3 0.05 9.81 0 0
EQ-X MODAL Mode 11
0.11089
4 0.05 9.81 0 0
EQ-X MODAL Mode 12
0.10825
2 0.05 9.81 0 0
EQ-Y MODAL Mode 1
0.92460
9 0.05 0 9.81 0
EQ-Y MODAL Mode 2
0.90194
3 0.05 0 9.81 0
EQ-Y MODAL Mode 3
0.77921
4 0.05 0 9.81 0
EQ-Y MODAL Mode 4
0.30094
4 0.05 0 9.81 0
EQ-Y MODAL Mode 5
0.28234
8 0.05 0 9.81 0
EQ-Y MODAL Mode 6
0.24049
6 0.05 0 9.81 0
EQ-Y MODAL Mode 7
0.17423
2 0.05 0 9.81 0
EQ-Y MODAL Mode 8
0.15197
9 0.05 0 9.81 0
EQ-Y MODAL Mode 9 0.13041 0.05 0 9.81 0
EQ-Y MODAL Mode 10
0.12143
3 0.05 0 9.81 0
90
EQ-Y MODAL Mode 11
0.11089
4 0.05 0 9.81 0
EQ-Y MODAL Mode 12
0.10825
2 0.05 0 9.81 0
91
Conclusion
A seismic analysis was performed to an – braced , 8 story reinforced concrete building.
Considering the output taken the modal analyses table , it can be seen that the value of the frist
fundamental period is 0.924 sec .The generated value is higher than the expected one , which
rangs from 0.5 to 0.6 sec .This difference is dedicated to the mass source chosen , where the live
load was reducted by 70% , which accounts for less mass and hight fundamental period .
After generating the design check with SAP 2000 , it was noticed that the level of risk failure for
the structure is considerably hight .This is also confirmed by the fact that four member of the
considered building failed in shear stress capacity .
It is necessary to emphasize that these types of structures suffer on dynamic loading conditions,
that’s why it is crucial to better research this topic in order to have a better seismic performance
92
References
 Advanced Materials and Techniques for Reinforced Concrete Structures
 Mohamed Abdallah El-Reedy, Ph.D, Mohamed El-Reedy Reference - 327 Pages
 The Roman Pantheon: The Triumph of Concrete. Romanconcrete.com. Retrieved on
2013-02-19.
 Lancaster, Lynne (2005). Concrete Vaulted Construction in Imperial Rome. Innovations in
Context. Cambridge University Press. ISBN 978-0-511-16068-4.
 Ashby, Michael F. & Jones, David R. H. (1992) [1986].Engineering Materials 2 (with
corrections ed.). Oxford: Pergamon Press. ISBN 0-08-032532-7.
 Duncan, Chester I. Soils and Foundations for Architects and Engineers. New York: Van
Nostrand Reinhold, 1992.
 "Column - Definition and More from the Free Merriam-Webster Dictionary". Merriam-
webster.com. 2012-08-31. Retrieved 2013-07-04.

More Related Content

What's hot

Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Vikas Mehta
 
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABS
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABSANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABS
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABSila vamsi krishna
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concreteJo Gijbels
 
Afes foundation design
Afes foundation designAfes foundation design
Afes foundation designHengkimhab
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysisKaran Patel
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIijtsrd
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile capPuspendu Ray
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Nada Zarrak
 
Training i-staad pro 2007
Training i-staad pro 2007Training i-staad pro 2007
Training i-staad pro 2007fazil64
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Hossam Shafiq II
 
Design of multistorey building
Design of multistorey buildingDesign of multistorey building
Design of multistorey buildingSivaji Djpk
 
Project 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsProject 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsDinesha Kuruppuarachchi
 
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...Bala Balaji
 

What's hot (20)

ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Lecture 7 strap footing
Lecture 7  strap  footingLecture 7  strap  footing
Lecture 7 strap footing
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABS
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABSANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABS
ANALYSIS AND DESIGN OF HIGH RISE BUILDING BY USING ETABS
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
 
Afes foundation design
Afes foundation designAfes foundation design
Afes foundation design
 
Stiffness method of structural analysis
Stiffness method of structural analysisStiffness method of structural analysis
Stiffness method of structural analysis
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak
 
Training i-staad pro 2007
Training i-staad pro 2007Training i-staad pro 2007
Training i-staad pro 2007
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Design of multistorey building
Design of multistorey buildingDesign of multistorey building
Design of multistorey building
 
Axially Loaded Column
Axially Loaded ColumnAxially Loaded Column
Axially Loaded Column
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
 
Project 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsProject 3 - Building design for seismic effects
Project 3 - Building design for seismic effects
 
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
 
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...
ANALYSIS AND DESIGN OF MULTI STOREY (G+5) COMMERCIAL BUILDING BY STAAD PRO AN...
 

Similar to SAP 2000 PROJEKTI

Machine_Learning_Blocks___Bryan_Thesis
Machine_Learning_Blocks___Bryan_ThesisMachine_Learning_Blocks___Bryan_Thesis
Machine_Learning_Blocks___Bryan_ThesisBryan Collazo Santiago
 
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfIMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfvenkatesh231416
 
Maxime Javaux - Automated spike analysis
Maxime Javaux - Automated spike analysisMaxime Javaux - Automated spike analysis
Maxime Javaux - Automated spike analysisMaxime Javaux
 
Modelling and Dynamics of Thermoelectric Generators
Modelling and Dynamics of Thermoelectric GeneratorsModelling and Dynamics of Thermoelectric Generators
Modelling and Dynamics of Thermoelectric GeneratorsFelipe Ferrari
 
Spi research paper
Spi research paperSpi research paper
Spi research paperQuyenVu47
 
Senior Project: Methanol Injection Progressive Controller
Senior Project: Methanol Injection Progressive Controller Senior Project: Methanol Injection Progressive Controller
Senior Project: Methanol Injection Progressive Controller QuyenVu47
 
BE Project Final Report on IVRS
BE Project Final Report on IVRSBE Project Final Report on IVRS
BE Project Final Report on IVRSAbhishek Nadkarni
 
Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2halfmann4
 
project Report on LAN Security Manager
project Report on LAN Security Managerproject Report on LAN Security Manager
project Report on LAN Security ManagerShahrikh Khan
 
Reynard Arlow Final Year Project
Reynard Arlow Final Year ProjectReynard Arlow Final Year Project
Reynard Arlow Final Year ProjectReynard Arlow
 
Design of a bionic hand using non invasive interface
Design of a bionic hand using non invasive interfaceDesign of a bionic hand using non invasive interface
Design of a bionic hand using non invasive interfacemangal das
 
Nweke digital-forensics-masters-thesis-sapienza-university-italy
Nweke digital-forensics-masters-thesis-sapienza-university-italyNweke digital-forensics-masters-thesis-sapienza-university-italy
Nweke digital-forensics-masters-thesis-sapienza-university-italyAimonJamali
 
all about artificial intelligence
all about artificial intelligence all about artificial intelligence
all about artificial intelligence abhay lamba
 

Similar to SAP 2000 PROJEKTI (20)

2D ROBOTIC PLOTTER
2D ROBOTIC PLOTTER2D ROBOTIC PLOTTER
2D ROBOTIC PLOTTER
 
Master thesis
Master thesisMaster thesis
Master thesis
 
Wavelet ug
Wavelet ugWavelet ug
Wavelet ug
 
Machine_Learning_Blocks___Bryan_Thesis
Machine_Learning_Blocks___Bryan_ThesisMachine_Learning_Blocks___Bryan_Thesis
Machine_Learning_Blocks___Bryan_Thesis
 
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfIMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
 
Maxime Javaux - Automated spike analysis
Maxime Javaux - Automated spike analysisMaxime Javaux - Automated spike analysis
Maxime Javaux - Automated spike analysis
 
Modelling and Dynamics of Thermoelectric Generators
Modelling and Dynamics of Thermoelectric GeneratorsModelling and Dynamics of Thermoelectric Generators
Modelling and Dynamics of Thermoelectric Generators
 
Spi research paper
Spi research paperSpi research paper
Spi research paper
 
report
reportreport
report
 
Senior Project: Methanol Injection Progressive Controller
Senior Project: Methanol Injection Progressive Controller Senior Project: Methanol Injection Progressive Controller
Senior Project: Methanol Injection Progressive Controller
 
Final Graduation Project.
Final Graduation Project. Final Graduation Project.
Final Graduation Project.
 
AuthorCopy
AuthorCopyAuthorCopy
AuthorCopy
 
BE Project Final Report on IVRS
BE Project Final Report on IVRSBE Project Final Report on IVRS
BE Project Final Report on IVRS
 
Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2
 
project Report on LAN Security Manager
project Report on LAN Security Managerproject Report on LAN Security Manager
project Report on LAN Security Manager
 
Reynard Arlow Final Year Project
Reynard Arlow Final Year ProjectReynard Arlow Final Year Project
Reynard Arlow Final Year Project
 
Design of a bionic hand using non invasive interface
Design of a bionic hand using non invasive interfaceDesign of a bionic hand using non invasive interface
Design of a bionic hand using non invasive interface
 
Nweke digital-forensics-masters-thesis-sapienza-university-italy
Nweke digital-forensics-masters-thesis-sapienza-university-italyNweke digital-forensics-masters-thesis-sapienza-university-italy
Nweke digital-forensics-masters-thesis-sapienza-university-italy
 
all about artificial intelligence
all about artificial intelligence all about artificial intelligence
all about artificial intelligence
 
web_based_ide
web_based_ideweb_based_ide
web_based_ide
 

SAP 2000 PROJEKTI

  • 1. REPUBLIC OF ALBANIA EPOKA UNIVERSITY FACULTY OF ARCHITECTURE AND ENGINEERING DEPARTMENT OF CIVIL ENGINEERING Structural Analysis of 8 story building in Sap 2000 Transportation Systems Engineering CE 282 Transportation Systems Engineering CE 282 Name Surname: Tafjon Morina TIRANA, June 2016
  • 2. 1 FACULTY OFARCHITECTURE AND ENGINEERING CIVIL ENGINEERING DEPARTMENT Structural Analysis of 8 story building in Sap 2000 -CE 399- MICROTHESIS Prepared by: Tafjon Morina Student ID: 02031305 Bachelor of Science in Civil Engineering Epoka University Tirana, June 2016
  • 3. 2 ABSTRACT In this studying is shown structural analysis of an eight floor building in SAP2000 .It is located in Shkodra ,and will be used as place of residence .The purpose was modelling in SAP2000 verison 18 and testing from external factors (Wind,Earthquakes) and internal factors such as living and dead loads .Modeling with concrete and steel gives us the result if forces and strains that have aceted upon it . Keywords: Sap2000, Wind, Earthquake, Live Load, Dead load, Forces Stresses
  • 4. 3 ABSTRAKT Ne kete Studim eshte prezantuar analiza Strukurore e nje ndertese 8 kateshe ne Sap200 . Ndertesa ndodhet ne Shkoder , ndertesa do sherbej si objek banimi .Qëllimi ishte Modelimi në Sap2000 dhe testimi nga faktorë të jashtëm ( Era , Tërmetet ) dhe faktoret e brendshëm si ngarkesat e gjalla dhe ngarkesës se vdekur . Modelimi me betoni dhe Celik na jep rezultatet si Forcat dhe Sforcime qe ka vepruar mbi të. Fjale kyce: Sap2000, Era, Termetet, Ngarkesa e gjalle, Ngarkesa e vdekur, Forcat, Sforcime
  • 5. 4 ACKNOWLEDGEMENTS I would like to thank Epoka Staff that made possible my education in Civil engineering field . I would also like to thank Dr. Enea Mustafaraj who has helped in thesis project , Structure Analysis. I would also thank all friends who helped me till now Tafjon Morina
  • 6. 5 DECLARATION I hereby declare that the project is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that the topic of this study has been the genuine idea of my supervisor and may be used by him in the future works. This study has not been previously or concurrently submitted for any other degree at Epoka University or other institutions. Tafjon Morina Date : 21/06/2016
  • 7. 6 CONTENT ABSTRACT…………………………………………………………………………………………………………………………………… ………….2 ABSTRAKT………………………………………………………………………………………………………………………………………………..3 ACKNOWLEDGEMENTS…………………………………………………………………………………………………………………………… 4 DECLARATION………………………………………………………………………………………………………………………………………….5 LIST OF FIGURE ………………………………………………………………………………………………………………………………….8-10 INTRODUCTION  What is SAP2000………….…………………………………………………………………………………………………………..11  Sap 2000…………………….…………………………………………………………………………………………………………….11 Construct Material 1. Concrete  Avantages……………………………………………………………………………………………………………..……………13  Disavantages………………………………………………………………………………………………………………………13  Propertes if fresh concrete…………………………………………………………………………………………………13  Workability…………………………………………………………………………………………………………………………14  Factors affecting workability…………………………………………………………………………………………..….14  Consistency…………………………………………………………………………………………………………………………14  Segregation…………………………………………………………………………………………………………………………15  Bleeding..……………………………………………………………………………………………………………………………16  Mixing of concrete………………………………………………………………………………………………………………17  Properties of hardened concrete………………………………………………………………………………………..17  Factors affection the strength of concrete………………………………………………………………………….19  Durability……….…………………………………………………………………………………………………………………..19  Corrosion………………………………………..………………………………………………………………………………….19  Abrasion……………………………………………………………………………………………………………………………..19 2. Steel  Mild steel bars ………………………………………………………………………….…........................................20  Deformed steel bars………………………………………………………..……………………………………………….…20  Various Grades of Mild Steel Bars…………………………………….…………………………………………………20  Avantages of Steel………………………………………………………………………………………………………………21  Disavantages………………………………………………………………………………………………………………………21  Physical Requirement…………………………………………………………………………………………………………21
  • 8. 7  Standard Steels…………………………………………………………………………………………………………………..22  The typical shapes and their sizes……………………………………………………………………………..…..23-25 3. Columns  Type of column…………………………………………………………………………………………………………………..26 4. Shear walls  Type of Shear Wall………………………………………………………………………………………………………………27 5. Beams  Type of beam……………………………………………………………………………………………………………………..28 6. Slabs  Type of slabs……………………………………………………………………………………………………………………….29  Deformations……………………………………………………………………………………………………………………..29  Conditions…………………………………………………………………………………………………………………………..30  Advantages of ribbed slabs…………………………………………………………………………………………………30  Disadvantage of ribbed slabs……………………………………………………………………………………………...30 7. Foundation  Type of foundation…………………….………………………………………………………………………………………31 8. Plan of the Structure ………………………………………………………………………………………………………………..32 9. Step by step Approach for the selected project  Step 1. File – New model – Select the units to KN,m,C – Grid only……………………………………………………..33  Step 2 .Fill the Quick Grid Lines table, with the data from the selected project ………………………………….33  Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected project.……………………………………………………………………………………………………………………………………………..34  Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete……………………………………34  Step 5. Continued .Add New Material – Rebar……………………………………………………………………………………35  Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns …….35  Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam ………………………………………36  Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell Thin Type ………………………………………………………………………………………………………………………………………….36  Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column…………..37  Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams…………….37  Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab…………37
  • 9. 8  Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to Assign – Joint – Restraints – Select Fixed condition…………………………………………………………………………….38  Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign – Area Load – Uniform Shell ………………………………………………………………………………………………………………38  Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign – Area Load – Uniform Shell ………………………………………………………………………………………………………………..39  Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame Load – Distributed……………………………………………………………………………………………………………………………..39  Step 17 . Go to Main Menu – Define load Patterns ……………………………………………………………………………40  Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New Function……………………………………………………………………………………………………………………………………………40  Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases .41  Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN – 1992) –Concrete Frame Design …………………………………………………………………………………………………………42  Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects ……...42  Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame ………………………………………43  Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source …………………………….43  Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm …………………………….44  Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2 2004………………………………………………………………………………………………………………………………………………….44  Step 26 .Run analysis ………………………………………………………………………………………………………………….......45  Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal Information ………………………………………………………………………………………………………………………………………45  Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint Displacement…………………………………………………………………………………………………………………………………….46  Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure..46  Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed ……………...46  Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints ……………………….50  Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal …………………………………….50  Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal Information ……………………………………………………………………………………………………………………………......51-53  Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells……………………………..53  Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons….54-57  Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables ………………………………………………58-66 10. List of figure  Figure 1 Architectual plan of the project structure take in consideration ....................................32  Figure 2 New Modal.......................................................................................................................33  Figure 3 Grid LInes .........................................................................................................................33  Figure 4 Edit Grid Data...................................................................................................................34  Figure 5 Define Material ................................................................................................................34  Figure 6 Add New Material............................................................................................................35  Figure 7 Create Colums..................................................................................................................35  Figure 8 Create Beam.....................................................................................................................36  Figure 9 Create Slab.......................................................................................................................36  Figure 10 Plan XZ – ZY....................................................................................................................37  Figure 11 Joint Restaints................................................................................................................38
  • 10. 9  Figure 12 Area Load .......................................................................................................................38  Figure 13 Live Load ........................................................................................................................39  Figure 14 Dead Load ......................................................................................................................39  Figure 15 Define load Patterns ......................................................................................................40  Figure 16 Response Spectrum .......................................................................................................40  Figure 17 Response Spectrum EQ-X , EQ-Y....................................................................................41  Figure 18 Load Combination..........................................................................................................42  Figure 19 Divide Areas ...................................................................................................................42  Figure 20 Space Frame...................................................................................................................43  Figure 21 Mass Source...................................................................................................................43  Figure 22 Diaphragm......................................................................................................................44  Figure 23 View Revise Preferences................................................................................................44  Figure 24 Run Analysis...................................................................................................................45  Figure 25 Modal Information.........................................................................................................45  Figure 26 Check of the Structure ...................................................................................................46  Figure 27 Verify all member passed ..............................................................................................46  Figure 28 Rebar Percentage...........................................................................................................47  Figure 29 Column Details...............................................................................................................48  Figure 30 Beam Details ..................................................................................................................49  Figure 31 Show Forces...................................................................................................................50  Figure 32 Modal.............................................................................................................................50  Figure 33 Modal 1 ..........................................................................................................................51  Figure 34 Modal 2 ..........................................................................................................................51  Figure 35 Modal 3 ..........................................................................................................................52  Figure 36 Modal 4..........................................................................................................................52  Figure 37 Modal 5 ..........................................................................................................................53  Figure 38 Modal Period and Frequencies......................................................................................53  Figure 39 Member Force Diagram.................................................................................................54  Figure 40 - S11 ...............................................................................................................................55  Figure 41 – S22...............................................................................................................................55  Figure 42 - S12 ...............................................................................................................................55  Figure 43 - SMax ............................................................................................................................56  Figure 44 SMin ...............................................................................................................................56  Figure 45 - SVM..............................................................................................................................56  Figure 46 - S13 ...............................................................................................................................57  Figure 47 - S23 ...............................................................................................................................57  Figure 48 - Smaxv..........................................................................................................................57  Figure 49 Display Forces / Stresses................................................................................................58  Figure 50 Axial Forces ....................................................................................................................59  Figure 51 Shear 2-2........................................................................................................................59  Figure 52 Shear 3-3........................................................................................................................60  Figure 53 Torsion ...........................................................................................................................60  Figure 54 Moment 2-2 ...................................................................................................................61
  • 11. 10  Figure 55 Moment 3-3 ...................................................................................................................61  Figure 56 Moment 3-3 ...................................................................................................................62  Figure 57 - S11 ...............................................................................................................................63  Figure 58 - S12...............................................................................................................................63  Figure 59 - S13 ...............................................................................................................................64  Figure 60 S13..................................................................................................................................64  Figure 61 - Smin .............................................................................................................................65  Figure 62 – Smax............................................................................................................................65  Figure 63 – SMV.............................................................................................................................66 11. Table of Analysis Display  Base Reactions …………………………………..…………………………………………………………………………………...67  Element Forces - Area Shell………………………………………………………………………………………….……...68-69  Element Forces – Frames……………………..………………………………………………………………………………70-71  Element Joint Forces – Area ……………………………………………………………………………………….…..……72-75  Element Joint Forces – Frames …………………………………………………………………………………..………..76-77  Element Stresses – Area Shells ……………………………………………………………………………………………..78-79  Joint Reactions …………………………………………………………………………………………………………………….80-81  Modal Periods And Frequencies ……………………………………………………………………………………………….82  Object And Elements – Area ………………………………………………………………………………………………..83-84  Object And Elements – Frames…………………………………………………………………………………………….85-86  Object And Elements – Jonits ……………………………………………………………………………………………….87-88  Response Spectrum Modal Information ……………………………………………………………………………….89-90 12. Referenca……………..………………………………………………………………………………………………………………….91
  • 12. 11 CHAPTER 1 INTRODUCTION 1.1 What is SAP2000 and why is used? The SAP name has been synonymous with state-of-the-art analytical methods since its introduction over 30 years ago. SAP2000 follows in the same tradition featuring a very sophisticated, intuitive and versatile user interface powered by an unmatched analysis engine and design tools for engineers working on transportation, industrial, public works, sports and other facilities. From a simple small 2D static frame analysis to a large complex 3D nonlinear dynamic analysis, Sap200 is the easiest, most productive solution for your structural analysis and design needs. Problem statement 1.2 SAP2000 SAP2000 is general-purpose civil-engineering software ideal for the analysis and design of any type of structural system. Basic and advanced systems, ranging from 2D to 3D, of simple geometry to complex, may be modeled, analyzed, designed, and optimized using a practical and intuitive object-based modeling environment that simplifies and streamlines the engineering process. The SAPFire Analysis Engine integral to SAP2000 drives a sophisticated finite-element analysis procedure. An additional suite of analysis features are available to users engaging state-of-the-art practice with nonlinear and dynamic consideration. Created by engineers for effective engineering SAP2000 is the ideal software tool for users of any experience level, designing any structural system..(CSI America)
  • 13. 12 Concrete Concrete is one of the most commonly used building materials. Concrete is a composite material made from several readily available constituents (aggregates, sand, cement, water). Concrete is a versatile material that can easily be mixed to meet a variety of special needs and formed to virtually any shape. Advantages Ability to be cast Economical Durable Fire resistant Energy efficient On‐site fabrication Disavantages Low tensile strength Low ductility Volume instability Low strength to weight ratio Propertes of Fresh Concrete Workability Consistency Segregation Bleeding Setting Time Unit Weight Uniformity
  • 14. 13 Workability Workability is the most important property of freshly mixed concrete. There is no single test method that can simultaneously measure all the properties involved in workability. It is determined to a large extent by measuring the “consistency” of the mix. It is desirable that freshly mixed concrete be relatively easy to transport, place, compact and finish without harmful segregation. A concrete mix satisfying these conditions is said to be workable Factors Affecting workability Method and duration of transportation Quantity and characteristics of cementing materials Aggregate grading, shape and surface texture Quantity and characteristics of chemical admixtures Amount of water Amount of entrained air Concrete & ambient air temperature Consistency Consistency is the fluidity or degree of wetness of concrete. It is generally dependent on the shear resistance of the mass. It is a major factor in indicating the workability of freshly mixed concrete Test methods for measuring consistency are: Flow test → measures the amount of flow Kelly‐Ball test → measures the amount of penetration Slump test (Most widely used test!) Slump Test is related with the ease with which concrete flows during placement
  • 15. 14 The slump cone is filled in 3 layers. Every layer is evenly rodded 25 times Measure the slump by determining the vertical difference between the top of the mold and the displaced original center of the top surface of the specimen Segregation Segregation refers to a separation of the components of fresh concrete, resulting in a non‐ uniform mix . The primary causes of segregation are differences in specific gravity and size of constituents of concrete. Moreover, improper mixing, improper placing and improper consolidation also lead to segregation.
  • 16. 15 Sp.Gr. Size Cement 3-3.15 5-80 m C.Agg. 2.4-2.8 5-40 mm F.Agg. 2.4-2.8 < 5 mm Some of the factors affecting segregation Larger maximum particle size (25mm) and proportion of the larger particles. High specific gravity of coarse aggregate. Decrease in the amount of fine particles. Particle shape and texture. Water/cement ratio. Bleeding Bleeding is the tendency of water to rise to the surface of freshly placed concrete. It is caused by the inability of solid constituents of the mix to hold all of the mixing water as they settle down.
  • 17. 16 Mixing of concrete Ready‐Mix concrete: In this type ingredients are introduced into a mixer truck and mixed during transportation to the site. • Wet – Water added before transportation • Dry – Water added on site Mixing at the site • Handmixed • Mixermixed Mixing time should be sufficient to produce a uniform concrete. The time of mixing depends on the type of mixer and also to some properties of fresh concrete. Undermixing → non‐homogeneity Overmixing → danger of water loss, brekage of aggregate particles Properties of hardened concrete The principal properties of hardened concrete which are of practical importance can be listed as: 1. Strength 2. Permeability & durability 3. Shrinkage & creep deformations 4. Response to temperature variations Of these compressive strength is the most important property of concrete. Of the abovementioned hardened properties compressive strength is one of the most important property that is often required, simply because 1. Concrete is used for compressive loads 2. Compressive strength is easily obtained 3. It is a good measure of all the other properties
  • 18. 17 The strength of a concrete specimen prepared, cured and tested under specified conditions at a given age depends on: 1. w/c ratio 2. Degree of compaction Compressive Strength is determined by loading properly prepared and cured cubic, cylindrical or prismatic specimens under compression.
  • 19. 18 Factors Affection the strength of concrete – Type of cement – Type of agg. – Degree of compaction – Mix proportions – Type of curing – Type of stress situation Durability A durable concrete is the one which will withstand in a satisfactory degree, the effects of service conditions to which it will be subjected. Factors Affecting Durability: External → Environmental Internal → Permeability, Characteristics of ingredients, Air‐Void System... Corrosion Electrochemical reactions in the steel rebars of a R/C structure results in corrosion products which have larger volumes than original steel Abrasion Aggregates have to be hard & resistant to wear. Bleeding & finishing practices are also important
  • 20. 19 Steel Steel is the common name for a large family of iron alloys which are easily malleable after the molten stage. Steels are commonly made from iron ore, coal, and limestone Mild steel bars Mild steel bars are used for tensile stress of RCC (Reinforced cement concrete) slab beams etc. in reinforced cement concrete work. These steel bars are plain in surface and are round sections of diameter from 6 to 50 mm. These rods are manufactured in long lengths and can be cut quickly and be bent easily without damage. Deformed steel bars As deformed bars are rods of steels provided with lugs, ribs or deformation on the surface of bar, these bars minimize slippage in concrete and increases the bond between the two materials. Deformed bars have more tensile stresses than that of mild steel plain bars. These bars can be used without end hooks. The deformation should be spaced along the bar at substantially uniform distances. Various Grades of Mild Steel Bars Reinforcement bars in accordance with standard IS No. 432 part-I can be classified into following types. Mild Steel Bars: Mild steel bars can be supplied in two grades Mild steel bars grade-I designated as Fe 410-S or Grade 60 Mild steel bars grade-II designated as Fe-410-o or Grade 40 Medium Tensile Steel Bars designated as Fe- 540-w-ht or Grade 75
  • 21. 20 Avantages of Steel 1. Good in Strength in tension 2. Good in strength in compression 3. Good in strength shear Disavantages 1. It is fair in durability “Corrodes if unprotected” 2. It is poor in resistance to fire “High Temperature” Physical Requirement S.No Types of nominal size of bars Ultimate Tensile Stress N/mm2 minimum Yield Stress N/mm2 Elongation Percent minimum 1. Mild Steel Grade I or Grade 60 For bars up to 20mm 410 250 23 For bars above 20mm upto 50 mm 410 240 23 2. Mild Steel Grade-II or Grade 40 For bar up to 20mm 370 225 23 For bars above 20mm upto 50 mm 370 215 23 3. Medium Tensile Steel Grade-75
  • 22. 21 Standard Steels According to the chemical compositions, standard steels can be classified into three major groups: carbon steels, alloy steels, and stainless steels for bars up to 16mm 540 350 20 for bars above 16 mm up to 32 mm 540 340 20 for bars above 32 mm up to 50 mm 510 330 20
  • 23. 22 The typical shapes and their sizes Steels Compositions Carbon Steels Alloying elements do not exceed these limits: 1% carbon, 0.6% copper, 1.65% manganese, 0.4% phosphorus, 0.6% silicon, and 0.05% sulfur. Alloy Steels Steels that exceed the element limits for carbon steels. Also includes steels that contain elements not found in carbon steels such as nickel, chromium (up to 3.99%), cobalt, etc. Stainless Steels Contains at least 10% chromium, with or without other elements. Based on the structures, stainless steels can be grouped into three grades: Austenitic: Typically contains 18% chromium and 8% nickel and is widely known as 18-8. Nonmagnetic in annealed condition, this grade can only be hardened by cold working. Ferritic:Contains very little nickel and either 17% chromium or 12% chromium with other elements such as aluminum or titanium. Always magnetic, this grade can be hardened only by cold working. Martensitic: Typically contains 12% chromium and no nickel. This grade is magnetic and can be hardened by heat treatment.
  • 24. 23 W section steel property table M section steel property table S section steel property table HP section steel property table C section steel property table MC section steel property table L section steel property table WT section steel property table MT section steel property table
  • 25. 24 ST section steel property table HSS (round) section steel table HSS (rect) section steel table Pipe section steel property table 2L section steel property table
  • 26. 25 Columns The vertical load bearing elements of the structural frame are usually called with their common name, columns. Columns are the rectangular elements in which the larger dimension is lesser than 4 times the smaller dimension e.g.40/40, 40/60, 25/90, etc. The columns category includes circular sections, too for example D=50 and quadrilateral sections like 50/60 with an inside angle equal to 60˚ . Type of column The column are in form “Γ”, “T” or “Z” cross‐sections, in which the dimension ratio of their orthogonal parts is lesser than 4. e.g. “Γ” cross‐ section 40/80/25/25, “T”cross‐section 70/50/25/25, “Z” crosssection 60/70/90/25, etc. Type of form columns
  • 27. 26 Shear walls Shear walls are rectangular elements with a length to thick‐ ness ratio greater or equal to 4 e.g. cross‐sections 100/25,150/30. Composite elements are comprised by one or more rectangular elements, at least one of which must be a shear wall Type of Shear Wall
  • 28. 27 Beams Beams are the vertical or sloping bearing elements of the structural system that connect columns and support slabs. When beams support slabs, they work together thus forming a “T” section beam. The level of the slabs compared to the level of the beams results in the formation of rectangular beams, inverted beams or “Z” beams Generally, beams are supported by columns (beam to column connection). Sometimes one or both beam ends are supported by another beam (beam to beam connection) and other times only one end is supported by a column or beam while the other end has no support at all. The beam supported only in one end is called cantilever. The beam to column connection is called direct support and the beam to beam connection is called indirect support. The most commonly used beam is the one supported by two columns and the most scarcely used is the cantilever beam. Type of beam
  • 29. 28 Slabs Slabs are surface plane elements that bear loads transverse to their plain. ` Type of slabs One‐way slabs (Simply supported) ‐ supported on two out of four, opposite sides. Two‐way slabs ‐ supported on all four sides. Cantilever slabs ‐ a fixed support on only one out of four sides. Two‐way three support slabs ‐ supported on three out of four sides. Two‐way two support slabs ‐ supported on two adjacent sides, like S6 of the above example. Deformations, in a large scale but proportionate to one another, for three different types of slab continuity. It is obvious that continuous slabs suffer lighter deflections thus they have better elastic stability (stiffness). Deformation
  • 30. 29 Conditions In common structures, for slab thickness equal to 15cm, the slab’s span may vary between 3.60m and 6.00m and the cantilever spans may be up to 1.50m. For slab thickness equal to 20cm the slab’s span may range from 4.80m to 8.0m and the cantilever spans may be up to 2.0m. The 15cm thick slab has a self weight equal to 0.15m*25 kN/m³=3.75 kN/m² while the live load due to human use, furniture etc that it is called to bear, is equal to 2.0 kN/m² only. If the slab has a thickness equal to 20cm its self weight is 5.0 kN/m², and if it is equal to 30cm its self weight is 7.50 kN/m² whereas the live loads remain the same. Therefore for large spans ribbed slabs (waffle slabs) (Zoellner, sandwich) can be used, like the one shown in the figure below. A ribbed slab with total thickness of 30cm may have a self weight equal to 3.75kN/m², which corresponds to the self weight of a 15cm thick solid slab.= Advantages of ribbed slabs ‐ their large effective thickness provides them with a high level of elastic stability (stiffness), ‐they have low dead weight consequently they apply relatively light stresses, ‐they do not overload the structural frame and the foundation ‐because of their large effective thickness they comparably need lesser amount of reinforcement Disadvantage of ribbed slabs ‐Their construction is more challenging and therefore they require highly accurate reinforcement detailing.
  • 31. 30 Foundation A foundation (or, more commonly, foundations) is the element of an architectural structure which connects it to the ground, and transfers loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics (Geotechnical engineering) in the design of foundation elements of structures. The same way humans have their feet to transfer their self weight and other loads, softly to the ground, foundations carry with light pressures the structural frame loads to the underlying soil. Foundation generally includes the footings and the pedestals. The simplest type of foundation is the spread foundation (pad foundation) i.e. isolated column footings. Type of foundation 1.Shallow foundations are also called spread footings or open footings. The 'open' refers to the fact that the foundations are made by first excavating all the earth till the bottom of the footing, and then constructing the footing 2. Individual footings are one of the most simple and common types of foundations. These are used when the load of the building is carried by columns 3. Strip footings are commonly found in load-bearing masonry construction, and act as a long strip that supports the weight of an entire wall. 4. Raft Foundations, also called Mat Foundations, are most often used when basements are to be constructed. In a raft, the entire basement floor slab acts as the foundation; the weight of the building is spread evenly over the entire footprint of the building
  • 32. 31 Introduction The build take in consideration in order to perform the analysis with SAP 2000 version 18, is a reinforced concrete structure . It consists an a moment resisting frame ,with 12 bay in x direction and 7 in the y direction .The maperial properties and dimensions of the structural elements are provided below : Concrete : C20/25, C25/30 Rebar according to EN 1992 Columns : 400*700 mm , 400*600mm, 600*450 mm , 300*600 mm , 400*300mm, 500*500mm ,400*600mm, 600*450mm Beam : 500*400mm Shear Wall : 1600mm*300mm Story height : 3.1 m The Loads transmitted to the considered building are as follows : Live Load : 2 KN/m2 Ceilings : 2.5 KN/m2 Infill walls : 3KN/ml. A dynamic analysis is performed to the considered building .The response Spectrum features are taken according to Albania Sesmic Map ,Shkodra region. This means that the peak ground acceleration (PGA), is taken 0.25g , considering typer 1 of EN 1998 Spectra functions .The behavior factor is taken manually , equal to 3.5 with a low margin of mistakes . Moreover , the soli type is taken as C type , according to Shkodra region.. In order to be as close as possible with the Albania practice of reinforced concreter structures ,it is chosen an un-braced frame .Since most of the structure up to 5 stories do not have lateral resisting system (shear wall/braced structural elements), the simulation aims to understand better the seismic behavior of these typ of reinforced concrete structure .
  • 33. 32 Figure 1 Architectual plan of the project structure take in consideration
  • 34. 33 Step by step Approach for the selected project Step 1. File – New model – Select the units to KN,m,C – Grid only Figure 2 New Modal Step 2 .Fill the Quick Grid Lines table, with the data from the selected project . Figure 3 Grid LInes
  • 35. 34 Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected project. Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete Figure 5 Define Material Figure 4 Edit Grid Data
  • 36. 35 Step 5. Continued .Add New Material – Rebar Figure 6 Add New Material Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns Figure 7 Create Colums
  • 37. 36 Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam Figure 8 Create Beam Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell Thin Type . Continued We can Create Shear Wall With the same way . Figure 9 Create Slab
  • 38. 37 Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column. Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams. Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab. A 3D view for the above three steps is shown below . Figure 10 Plan XZ – ZY
  • 39. 38 Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to Assign – Joint – Restraints – Select Fixed condition Figure 11 Joint Restaints Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign – Area Load – Uniform Shell Figure 12 Area Load
  • 40. 39 Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign – Area Load – Uniform Shell Figure 13 Live Load Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame Load – Distributed. Figure 14 Dead Load
  • 41. 40 Step 17 . Go to Main Menu – Define load Patterns Figure 15 Define load Patterns Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New Function. Figure 16 Response Spectrum
  • 42. 41 Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases . Figure 17 Response Spectrum EQ-X , EQ-Y
  • 43. 42 Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN – 1992) –Concrete Frame Design Figure 18 Load Combination Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects . Repeat the same step for all the slabs . Figure 19 Divide Areas
  • 44. 43 Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame . Figure 20 Space Frame Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source . Figure 21 Mass Source
  • 45. 44 Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm . Repeat the same step for all other floors. Figure 22 Diaphragm Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2 2004 Figure 23 View Revise Preferences
  • 46. 45 Step 26 .Run analysis . Figure 24 Run Analysis Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal Information Figure 25 Modal Information
  • 47. 46 Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint Displacement (IT can be found in Excel Sheets ,soft copy). Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure . Figure 26 Check of the Structure Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed Figure 27 Verify all member passed
  • 48. 47 Run Analysis—Design-Concrete Frame Design-Start Design/Check Structure-Display Concrete design Figure 28 Rebar Percentage
  • 51. 50 Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints Figure 31 Show Forces Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal Figure 32 Modal
  • 52. 51 Figure 33 Modal 1 Figure 34 Modal 2
  • 53. 52 Figure 35 Modal 3 Figure 36 Modal 4
  • 54. 53 Figure 37 Modal 5 Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal Information . Figure 38 Modal Period and Frequencies
  • 55. 54 Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells o S11: Direct stress (force per unit area) acting on the positive and negative 1 faces in the 1-axis direction. o S22: Direct stress (force per unit area) acting on the positive and negative 2 faces in the 2-axis direction. o S12: Shearing stress (force per unit area) acting on the positive and negative 1 faces in the 2- axis direction and acting on the positive and negative 2 faces in the 1-axis direction. o SMax: Maximum principal stress (force per unit area). Note that by definition principal stresses are oriented such that the associated shearing stress is zero. o S Min: Minimum principal stress (force per unit area). Note that by definition principal stresses are oriented such that the associated shearing stress is zero. o SVM: Von Mises principal stress (force per unit area). o S13: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 1 faces in the 3-axis direction. o S23: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 2 faces in the 3-axis direction. o SMaxV: Maximum principal shearing stress (force per unit area). Note that by definition principal shearing stresses are oriented on faces of the element such that the associated shears per unit length on perpendicular faces are zero.[] Figure 39 Member Force Diagram
  • 56. 55 Figure 40 - S11 Figure 41 – S22 Figure 42 - S12
  • 57. 56 Figure 43 - SMax Figure 44 SMin Figure 45 - SVM
  • 58. 57 Figure 46 - S13 Figure 47 - S23 Figure 48 - Smaxv
  • 59. 58 Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons Stresses: Axial stress S11 is available for all frame and cable sections. The shear stresses S12 and S13 are available for certain types of frame sections. When shear stresses are available, principal stresses Smax and SMin and von Mises stress SVM are also available for algebraic (non-envelope) load cases and combinations. Figure 49 Display Forces / Stresses
  • 60. 59 Figure 50 Axial Forces Figure 51 Shear 2-2
  • 61. 60 Figure 52 Shear 3-3 Figure 53 Torsion
  • 62. 61 Figure 54 Moment 2-2 Figure 55 Moment 3-3
  • 64. 63 Figure 57 - S11 Figure 58 - S12
  • 65. 64 Figure 59 - S13 Figure 60 S13
  • 66. 65 Figure 61 - Smin Figure 62 – Smax
  • 68. 67 Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables TABLE: Base Reactions OutputCase CaseType StepType StepNum GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY GlobalMZ Text Text Text Unitless KN KN KN KN-m KN-m KN-m DEAD LinStatic 1.465E-10 6.528E-11 34896.067 339862.3046 -481633.86 -8.647E-10 MODAL LinModal Mode 1 993.719 1869.437 -4.046 -33005.7466 17355.9829 38610.0627 MODAL LinModal Mode 2 891.298 -2637.097 7.858 46606.9822 15398.7902 -27793.3571 MODAL LinModal Mode 3 4000.918 135.917 4.035 -2391.5235 71005.9827 -54270.0739 MODAL LinModal Mode 4 -4168.414 -1849.418 -33.495 -2945.7403 15986.7107 -76317.2804 MODAL LinModal Mode 5 1075.163 - 12786.407 -199.832 -26619.7677 1345.5644 -170110.557 MODAL LinModal Mode 6 17338.296 352.937 -97.117 1715.6388 -21961.2327 -231038.246 MODAL LinModal Mode 7 -7163.645 -1558.334 18.806 6614.4805 -38713.5074 -119982.895 MODAL LinModal Mode 8 1045.786 - 28366.458 832.536 146491.6798 -11845.7021 -387599.8 MODAL LinModal Mode 9 - 35722.809 -497.515 -1133.179 -392.3455 -170073.474 477792.2737 MODAL LinModal Mode 10 - 11610.704 -1533.432 -381.706 -3506.9412 97087.4411 -156633.705 MODAL LinModal Mode 11 1058.336 -2750.991 - 209283.883 -2130943.52 2610967.328 -52278.2636 MODAL LinModal Mode 12 814.019 14270.979 -22192.679 711423.7711 -263972.188 176275.977 LIVE LinStatic -7.148E- 11 -9.499E- 11 -38538.315 -380567.68 538195.3962 -2.277E-10 EQ-X LinRespSpec Max 40713.23 3262.115 223.27 57272.6638 709376.2651 507700.2268 EQ-Y LinRespSpec Max 3262.116 45084.677 345.197 785639.548 56789.8372 631865.2931 dead 1.35 Combination 1.978E-10 8.813E-11 47109.691 458814.1113 -650205.72 -1.167E-09 Dead 1.35 , Live 1.5 Combination 9.058E-11 -5.435E- 11 -10697.782 -112037.403 157087.3767 -1.509E-09 Dead 1, Live 0.3, EQ-x 1 Combination Max 40713.23 3262.115 23557.842 282964.6657 389201.0191 507700.2268 Dead 1, Live 0.3, EQ-x 1 Combination Min -40713.23 -3262.115 23111.303 168419.338 -1029551.51 -507700.23 Dead 1 , Live 0.3, Eq-y 1 Combination Max 3262.116 45084.677 23679.77 1011331.55 -263385.409 631865.2931 Dead 1 , Live 0.3, Eq-y 1 Combination Min -3262.116 - 45084.677 22989.376 -559947.55 -376965.08 -631865.29 Dead 1 , Eq X 1 Combination Max 40713.23 3262.115 35119.337 397134.9685 227742.4002 507700.2268 Dead 1 , Eq X 1 Combination Min -40713.23 -3262.115 34672.798 282589.6408 -1191010.13 -507700.23 Dead 1, Eq-y 1 Combination Max 3262.116 45084.677 35241.264 1125501.853 -424844.03 631865.2931 Dead 1, Eq-y 1 Combination Min -3262.116 - 45084.677 34550.87 -445777.24 -538423.7 -631865.29
  • 69. 68 TABLE: Element Forces - Area Shells Area Joint OutputCase F11 F22 F12 FMax FMin FAngle Text Text Text KN/m KN/m KN/m KN/m KN/m Degrees 5 86 DEAD 96.17 87.17 38.78 130.71 52.63 41.687 5 716 DEAD 82.04 16.51 -15.57 85.56 13 -12.71 5 717 DEAD -14.83 -2.86 -37.07 28.7 -46.39 -49.585 5 718 DEAD -0.7 67.79 17.28 71.91 -4.81 76.609 5 86 MODAL -178.55 -140.39 -132.68 -25.43 -293.52 -49.091 5 716 MODAL -141.12 46.75 -29.07 51.15 -145.52 -81.403 5 717 MODAL 16.57 78.29 26.41 88.05 6.81 69.724 5 718 MODAL -20.86 -108.85 -77.21 24.01 -153.72 -30.161 5 86 MODAL -167.19 -431.86 -284.5 14.25 -613.3 -32.527 5 716 MODAL -36.98 219.2 -160.99 296.84 -114.62 -64.254 5 717 MODAL 27.93 232.19 17.79 233.72 26.39 85.06 5 718 MODAL -102.28 -418.88 -105.73 -70.22 -450.94 -16.869 5 86 MODAL 593.36 266.94 327.23 795.83 64.48 31.746 5 716 MODAL 529.24 -53.69 18.79 529.84 -54.29 1.845 5 717 MODAL -44.45 -168.42 -66.03 -15.87 -197 -23.404 5 718 MODAL 19.68 152.21 242.41 337.25 -165.36 52.644 5 86 MODAL 426.83 510.83 434.83 905.69 31.98 47.759 5 716 MODAL 279.22 -227.24 202.37 350.15 -298.17 19.315 5 717 MODAL -68.14 -296.71 -79.04 -43.46 -321.38 -17.334 5 718 MODAL 79.48 441.36 153.42 497.65 23.19 69.853 5 86 MODAL -174.26 -621.8 -407.88 67.2 -863.26 -30.625 5 716 MODAL 20.89 353.93 -265.24 500.59 -125.77 -61.06 5 717 MODAL 42.94 358.34 23.4 360.07 41.21 85.78 5 718 MODAL -152.21 -617.39 -119.24 -123.43 -646.17 -13.571 5 86 MODAL 1294.78 489.31 690.04 1691.02 93.08 29.865 5 716 MODAL 1178.73 -90.97 20.92 1179.07 -91.31 0.944 5 717 MODAL -98.54 -346.42 -182.27 -2.07 -442.9 -27.892 5 718 MODAL 17.51 233.86 486.85 624.41 -373.04 51.263 5 86 MODAL -272.01 -482.18 -257.92 -98.59 -655.6 -33.916 5 716 MODAL -141.51 170.31 2.7 170.33 -141.54 89.504 5 717 MODAL -31.15 192.38 -50.91 203.43 -42.19 -77.755 5 718 MODAL -161.64 -460.1 -311.53 34.55 -656.3 -32.202 5 86 MODAL 83.61 243.39 75.88 273.69 53.32 68.236 5 716 MODAL 33.66 -6.35 34.22 53.3 -25.99 29.843 5 717 MODAL -0.84 -13.25 26.32 19.99 -34.09 38.366 5 718 MODAL 49.11 236.49 67.98 258.55 27.04 72.018 5 86 MODAL 223.07 342.02 173.84 466.27 98.81 54.444 5 716 MODAL 151.45 -16.03 45.32 162.93 -27.51 14.211
  • 70. 69 5 717 MODAL -28.07 -51.94 103.65 64.34 -144.34 41.716 5 718 MODAL 43.55 306.12 232.17 441.55 -91.89 59.744 5 86 MODAL -1347.23 -1917.5 -1432.11 -172.15 -3092.58 -39.37 5 716 MODAL -785.36 891.84 -535.61 1048.3 -941.81 -73.717 5 717 MODAL 75.61 1064.04 -35.12 1065.28 74.36 -87.967 5 718 MODAL -486.26 -1745.31 -931.62 8.59 -2240.16 -27.976 5 86 MODAL -863.44 -398.25 -368.61 -194.98 -1066.71 -61.126 5 716 MODAL -802.25 -92.31 102.79 -77.72 -816.84 81.925 5 717 MODAL 83.93 84.93 206.77 291.2 -122.34 45.069 5 718 MODAL 22.74 -221.01 -264.64 192.22 -390.49 -32.636 5 86 MODAL 498.46 102.76 136.84 541.17 60.04 17.335 5 716 MODAL 509.83 159.63 -157.4 570.18 99.28 -20.976 5 717 MODAL -44 48.86 -194.54 202.44 -197.57 -51.712 5 718 MODAL -55.37 -8.01 99.7 70.79 -134.17 51.681 5 86 LIVE -132.31 -105.47 -57.43 -59.92 -177.87 -51.576 5 716 LIVE -115.93 -23.57 22.69 -18.29 -121.2 76.916 5 717 LIVE 21.01 3.82 52.64 65.76 -40.92 40.363 5 718 LIVE 4.63 -78.09 -27.48 12.93 -86.38 -16.799 5 86 EQ-X 5304.56 2788.65 3002.89 0 0 0 5 716 EQ-X 4786.12 988.48 692.83 0 0 0 5 717 EQ-X 399.91 1666.42 592.55 0 0 0 5 718 EQ-X 450.16 2094.67 2162.21 0 0 0 5 86 EQ-Y 728.9 3670.82 2131.82 0 0 0 5 716 EQ-Y 824 2046.94 1542.75 0 0 0
  • 71. 70 TABLE: Element Forces - Frames Frame Station OutputCase P V2 V3 T M2 M3 Text m Text KN KN KN KN-m KN-m KN-m 1 0 DEAD -443.323 0.633 -0.354 -0.0032 -0.2138 0.4738 1 1.425 DEAD -439.05 0.633 -0.354 -0.0032 0.2911 -0.4283 1 2.85 DEAD -434.776 0.633 -0.354 -0.0032 0.796 -1.3304 1 0 MODAL -64.206 -28.458 10.08 -1.3158 16.2676 -53.041 1 1.425 MODAL -64.206 -28.458 10.08 -1.3158 1.9037 -12.4881 1 2.85 MODAL -64.206 -28.458 10.08 -1.3158 -12.4602 28.0648 1 0 MODAL 465.911 -23.073 26.989 -1.0041 44.2953 -42.4609 1 1.425 MODAL 465.911 -23.073 26.989 -1.0041 5.8361 -9.5823 1 2.85 MODAL 465.911 -23.073 26.989 -1.0041 -32.6231 23.2964 1 0 MODAL -325.786 -7.514 -9.776 0.6963 -15.8858 -15.3666 1 1.425 MODAL -325.786 -7.514 -9.776 0.6963 -1.9549 -4.6586 1 2.85 MODAL -325.786 -7.514 -9.776 0.6963 11.9759 6.0494 1 0 MODAL -143.523 116.856 -70.939 4.9964 -111.9618 210.6385 1 1.425 MODAL -143.523 116.856 -70.939 4.9964 -10.8732 44.119 1 2.85 MODAL -143.523 116.856 -70.939 4.9964 90.2155 -122.4005 1 0 MODAL -108.997 -24.306 72.417 -0.9154 114.06 -42.7085 1 1.425 MODAL -108.997 -24.306 72.417 -0.9154 10.8664 -8.0719 1 2.85 MODAL -108.997 -24.306 72.417 -0.9154 -92.3273 26.5648 1 0 MODAL 218.676 -37.783 -33.716 2.2223 -52.8153 -70.4635 1 1.425 MODAL 218.676 -37.783 -33.716 2.2223 -4.7704 -16.6221 1 2.85 MODAL 218.676 -37.783 -33.716 2.2223 43.2745 37.2193 1 0 MODAL -77.966 207.825 -129.419 8.4361 -202.9796 363.7035 1 1.425 MODAL -77.966 207.825 -129.419 8.4361 -18.5572 67.5532 1 2.85 MODAL -77.966 207.825 -129.419 8.4361 165.8653 -228.5971 1 0 MODAL 379.676 -23.526 122.547 -0.8517 192.1008 -39.7243 1 1.425 MODAL 379.676 -23.526 122.547 -0.8517 17.471 -6.1991 1 2.85 MODAL 379.676 -23.526 122.547 -0.8517 -157.1588 27.3261 1 0 MODAL 422.821 76.487 61.446 -3.9568 95.5932 139.4584 1 1.425 MODAL 422.821 76.487 61.446 -3.9568 8.0332 30.4643 1 2.85 MODAL 422.821 76.487 61.446 -3.9568 -79.5268 -78.5297 1 0 MODAL 90.872 311.256 -179.009 11.1832 -277.3863 520.3866 1 1.425 MODAL 90.872 311.256 -179.009 11.1832 -22.298 76.8474 1 2.85 MODAL 90.872 311.256 -179.009 11.1832 232.7904 -366.6919 1 0 MODAL 2421.356 - 0.004852 10.505 0.0666 14.5726 -1.4325 1 1.425 MODAL 2421.356 - 0.004852 10.505 0.0666 -0.3977 -1.4256 1 2.85 MODAL 2421.356 - 0.004852 10.505 0.0666 -15.3681 -1.4186
  • 72. 71 1 0 MODAL 3248.939 14.217 -55.465 0.6118 -87.3966 21.4892 1 1.425 MODAL 3248.939 14.217 -55.465 0.6118 -8.3587 1.2296 1 2.85 MODAL 3248.939 14.217 -55.465 0.6118 70.6792 -19.03 1 0 LIVE 402.603 -0.854 0.722 0.0039 0.5338 -0.6999 1 1.425 LIVE 402.603 -0.854 0.722 0.0039 -0.4945 0.5175 1 2.85 LIVE 402.603 -0.854 0.722 0.0039 -1.5227 1.7348 1 0 EQ-X 2899.217 244.681 147.045 10.0409 239.669 460.7164 1 1.425 EQ-X 2899.217 244.681 147.045 10.0409 30.1582 112.4894 1 2.85 EQ-X 2899.217 244.681 147.045 10.0409 179.4172 237.0467 1 0 EQ-Y 5674.238 85.374 220.768 3.8796 364.0263 157.507 1 1.425 EQ-Y 5674.238 85.374 220.768 3.8796 49.5035 36.2296
  • 73. 72 TABLE: Element Joint Forces - Areas Joint OutputCase F1 F2 F3 M1 M2 M3 Text Text KN KN KN KN-m KN-m KN-m 86 DEAD -24.711 -26.505 12.543 4.4977 -4.0212 1.7887 716 DEAD 21.599 -15.646 -0.151 3.6507 -1.3365 -0.6286 717 DEAD 7.549 14.642 -5.577 -0.8952 -0.5181 -0.172 718 DEAD -4.437 27.508 -2.337 0.0227 -2.0911 2.2458 86 MODAL 71.461 49.556 -0.765 -2.3263 4.4803 -2.4537 716 MODAL -16.397 -18.506 -1.657 -0.5653 -0.3724 2.2337 717 MODAL -41.646 -18.195 7.752 0.5462 -0.8537 1.0707 718 MODAL -13.418 -12.856 -5.33 0.6098 2.8408 -3.6129 86 MODAL 100.715 153.447 10.121 -3.7397 2.7405 0.2928 716 MODAL 28.509 -53.61 -9.937 2.9187 0.1219 6.2326 717 MODAL -78.411 -44.927 15.813 0.1092 0.2716 2.6655 718 MODAL -50.813 -54.91 -15.996 0.8436 2.7413 -3.2647 86 MODAL -218.495 -94.6 10.5 5.7677 -15.3513 9.4908 716 MODAL 78.166 45.339 -2.477 3.128 1.6364 -4.166 717 MODAL 118.529 41.288 -16.953 -1.5303 3.3697 -2.5149 718 MODAL 21.8 7.972 8.93 -1.6157 -9.0851 11.1319 86 MODAL -184.711 -181.55 -5.896 6.6502 -10.6145 0.7699 716 MODAL 10.019 74.488 9.591 -1.8315 0.3208 -9.7472 717 MODAL 118.513 55.298 -26.357 -0.8064 1.2585 -3.0783 718 MODAL 56.179 51.764 22.662 -1.364 -7.7304 7.4652 86 MODAL 125.116 219.764 19.007 -4.611 1.966 2.7854 716 MODAL 57.994 -88.037 -16.475 6.1962 0.5329 9.792 717 MODAL -105.05 -56.279 23.172 -0.5103 1.0905 3.7555 718 MODAL -78.06 -75.449 -25.704 0.7397 3.1077 -3.2463 86 MODAL -461.756 -168.581 26.525 12.5167 -35.5087 19.8157 716 MODAL 187.282 97.136 -8.562 7.04 2.9398 -9.7083 717 MODAL 241.371 70.061 -37.606 -3.379 7.4331 -5.0597 718 MODAL 33.104 1.384 19.643 -3.3043 -21.0315 24.4615 86 MODAL 159.051 173.498 2.987 -3.5574 2.6493 -12.3441 716 MODAL 6.216 -28.601 -5.232 -1.3352 -0.4939 0.3209 717 MODAL -114.848 -74.284 8.172 1.2035 -0.4003 4.4997 718 MODAL -50.419 -70.612 -5.927 2.0805 1.1851 -8.0323 86 MODAL -45.222 -95.127 3.294 2.4085 -1.719 1.6102 716 MODAL -6.683 -19.941 -0.598 2.373 0.0006568 -0.3639 717 MODAL 36.342 55.988 -1.796 -1.3357 0.2175 -1.0266 718 MODAL 15.562 59.08 -0.9 -1.5135 -0.893 0.9316
  • 74. 73 86 MODAL -125.529 -146.293 -4.396 1.5722 0.1595 7.1698 716 MODAL -20.403 1.25 4.893 0.9812 1.3034 1.2805 717 MODAL 90.278 93.035 -2.558 -0.681 0.4241 -1.9877 718 MODAL 55.654 52.009 2.06 -1.5161 0.4485 3.8373 86 MODAL 700.179 702.223 38.8 -11.79 22.3788 -20.4931 716 MODAL 40.695 -275.49 -29.021 9.1302 -3.5598 21.566 717 MODAL -496.36 -245.066 59.899 2.2703 -4.2653 15.2023 718 MODAL -244.514 -181.667 -69.679 7.3981 16.3247 -26.6787 86 MODAL 266.915 126.145 -47.629 -19.3602 27.3738 -16.3387 716 MODAL -166.205 30.514 7.099 -16.3134 3.1019 4.5037 717 MODAL -113.12 -74.331 36.647 4.9825 -1.6191 2.1552 718 MODAL 12.41 -82.328 3.883 1.6442 14.8895 -18.6786 86 MODAL -123.268 -18.009 35.125 15.1555 -17.3777 11.6727 716 MODAL 135.651 -57.8 0.815 14.5128 -1.6128 -1.3326 717 MODAL 27.197 25.325 -27.451 -3.6976 1.4168 0.128 718 MODAL -39.58 50.484 -8.489 -0.2138 -9.0617 13.1323 86 LIVE 35.177 32.027 -15.859 -5.7083 5.5443 -2.663 716 LIVE -29.373 18.8 -0.93 -5.0829 1.8427 0.9165 717 LIVE -10.509 -18.069 8.272 1.2613 0.7946 0.2188 718 LIVE 4.705 -32.758 0.995 0.1933 2.9219 -3.3625 86 EQ-X 1950.397 988.424 113.821 52.0842 137.8587 86.5329 716 EQ-X 744.974 431.116 55.904 32.9469 15.0005 42.7544 717 EQ-X 1065.374 389.662 157.815 13.7905 30.8825 23.6097 718 EQ-X 268.137 248.003 98.19 14.4765 81.2213 99.5081 86 EQ-Y 596.485 1306.752 116.816 24.0095 15.1018 23.596 716 EQ-Y 442.868 449.241 95.966 36.5259 4.3836 51.4457 717 EQ-Y 553.68 355.729 115.576 3.531 9.9847 21.1971 718 EQ-Y 455.104 502.689 134.967 4.8844 12.122 13.8333 86 dead 1.35 -33.36 -35.782 16.933 6.072 -5.4286 2.4148 716 dead 1.35 29.158 -21.122 -0.204 4.9284 -1.8043 -0.8486 717 dead 1.35 10.192 19.767 -7.528 -1.2085 -0.6995 -0.2322 718 dead 1.35 -5.99 37.136 -3.155 0.0307 -2.823 3.0318 86 Dead 1.35 , Live 1.5 19.406 12.259 -6.856 -2.4905 2.8878 -1.5797 716 Dead 1.35 , Live 1.5 -14.901 7.078 -1.599 -2.6959 0.9597 0.5261 717 Dead 1.35 , Live 1.5 -5.572 -7.337 4.88 0.6835 0.4924 0.0961 718 Dead 1.35 , Live 1.5 1.067 -12.001 -1.663 0.3206 1.5599 -2.0119 86 Dead 1, Live 0.3, EQ-x 1 1936.239 971.527 121.606 54.8694 135.5008 87.5227
  • 75. 74 716 Dead 1, Live 0.3, EQ-x 1 757.761 421.11 55.473 35.0727 14.2168 42.4007 717 Dead 1, Live 0.3, EQ-x 1 1069.77 398.883 154.72 13.2737 30.6027 23.5034 718 Dead 1, Live 0.3, EQ-x 1 265.111 265.684 96.152 14.5572 80.0068 100.7451 86 Dead 1, Live 0.3, EQ-x 1 -1964.555 -1005.32 -106.036 -49.2989 -140.2167 -85.5431 716 Dead 1, Live 0.3, EQ-x 1 -732.187 -441.122 -56.334 -30.8211 -15.7842 -43.108 717 Dead 1, Live 0.3, EQ-x 1 -1060.977 -380.44 -160.91 -14.3073 -31.1622 -23.716 718 Dead 1, Live 0.3, EQ-x 1 -271.162 -230.323 -100.229 -14.3958 -82.4359 -98.271 86 Dead 1 , Live 0.3, Eq- y 1 582.327 1289.856 124.601 26.7947 12.7439 24.5859 716 Dead 1 , Live 0.3, Eq- y 1 455.655 439.235 95.536 38.6517 3.5999 51.0921 717 Dead 1 , Live 0.3, Eq- y 1 558.077 364.95 112.481 3.0142 9.7049 21.0907 718 Dead 1 , Live 0.3, Eq- y 1 452.078 520.37 132.928 4.9651 10.9075 15.0703 86 Dead 1 , Live 0.3, Eq- y 1 -610.643 -1323.649 -109.031 -21.2242 -17.4597 -22.6062 716 Dead 1 , Live 0.3, Eq- y 1 -430.081 -459.247 -96.396 -34.4001 -5.1673 -51.7994 717 Dead 1 , Live 0.3, Eq- y 1 -549.283 -346.507 -118.671 -4.0478 -10.2644 -21.3034 718 Dead 1 , Live 0.3, Eq- y 1 -458.129 -485.008 -137.006 -4.8037 -13.3366 -12.5962 86 Dead 1 , Eq X 1 1925.686 961.919 126.364 56.5819 133.8375 88.3216
  • 76. 75 716 Dead 1 , Eq X 1 766.573 415.47 55.752 36.5976 13.664 42.1258 717 Dead 1 , Eq X 1 1072.923 404.304 152.238 12.8953 30.3644 23.4377 718 Dead 1 , Eq X 1 263.7 275.512 95.853 14.4992 79.1302 101.7539 86 Dead 1 , Eq X 1 -1975.108 -1014.929 -101.278 -47.5864 -141.88 -84.7442 716 Dead 1 , Eq X 1 -723.375 -446.762 -56.055 -29.2962 -16.337 -43.383 717 Dead 1 , Eq X 1 -1057.824 -375.02 -163.391 -14.6857 -31.4006 -23.7817 718 Dead 1 , Eq X 1 -272.574 -220.495 -100.527 -14.4538 -83.3125 -97.2623 86 Dead 1, Eq- y 1 571.774 1280.248 129.359 28.5072 11.0806 25.3848
  • 77. 76 TABLE: Element Joint Forces - Frames OutputCase F1 F2 F3 M1 M2 M3 Text KN KN KN KN-m KN-m KN-m DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032 DEAD 0.633 -0.354 -434.026 -0.8846 -1.4887 -0.0032 MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158 MODAL -28.458 10.08 -64.206 14.9801 35.1794 -1.3158 MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041 MODAL -23.073 26.989 465.911 39.3703 29.0645 -1.0041 MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963 MODAL -7.514 -9.776 -325.786 -14.4199 7.928 0.6963 MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964 MODAL 116.856 -70.939 -143.523 -107.9503 -151.6144 4.9964 MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154 MODAL -24.306 72.417 -108.997 110.4314 32.6414 -0.9154 MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223 MODAL -37.783 -33.716 218.676 -51.7034 46.6652 2.2223 MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361 MODAL 207.825 -129.419 -77.966 -198.2201 -280.5533 8.4361 MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517 MODAL -23.526 122.547 379.676 187.7956 33.2077 -0.8517 MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568 MODAL 76.487 61.446 422.821 94.8882 -97.6515 -3.9568 MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832 MODAL 311.256 -179.009 90.872 -277.5427 -444.5058 11.1832 MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666 MODAL -0.004852 10.505 2421.356 17.9944 -1.4174 0.0666 MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118 MODAL 14.217 -55.465 3248.939 -84.5455 -22.5843 0.6118 LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039 LIVE -0.854 0.722 402.603 1.7031 1.9484 0.0039 EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409 EQ-X 244.681 147.045 2899.217 216.1775 298.1601 10.0409 EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796 EQ-Y 85.374 220.768 5674.238 320.3785 107.4295 3.8796 dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044 dead 1.35 0.855 -0.478 -585.935 -1.1942 -2.0097 -0.0044 Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015 Dead 1.35 , Live 1.5 -0.427 0.604 17.969 1.3605 0.9129 0.0015 Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043
  • 78. 77 Dead 1, Live 0.3, EQ-x 1 245.058 146.907 2585.972 215.8038 297.2559 10.0389 Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389 Dead 1, Live 0.3, EQ-x 1 -244.305 -147.182 -3212.462 -216.5511 -299.0642 -10.043 Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817 Dead 1 , Live 0.3, Eq-y 1 85.751 220.63 5360.993 320.0048 106.5254 3.8775 Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775 Dead 1 , Live 0.3, Eq-y 1 -84.997 -220.906 -5987.483 -320.7522 -108.3337 -3.8817 Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442 Dead 1 , Eq X 1 245.314 146.69 2465.191 215.2929 296.6714 10.0377 Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377
  • 79. 78 TABLE: Element Stresses - Area Shells Area ShellType Joint S11Top S22Top S12Top SMaxTop SMinTop SAngleTop SVMTop Text Text Text KN/m2 KN/m2 KN/m2 KN/m2 KN/m2 Degrees KN/m2 5 Shell-Thin 86 1910.33 1395.48 187.25 1971.23 1334.58 18.016 1742.44 5 Shell-Thin 716 -317.9 583.72 -128.72 601.74 -335.91 -82.032 822.84 5 Shell-Thin 717 89.88 316.05 -157.17 396.59 9.34 -62.867 392.01 5 Shell-Thin 718 109.11 111.17 158.79 268.93 -48.66 45.186 296.27 5 Shell-Thin 86 -2256.95 -1314.4 -920.04 -751.95 -2819.4 -58.562 2528.71 5 Shell-Thin 716 -438.55 384.66 -366.89 524.44 -578.33 -69.144 955.41 5 Shell-Thin 717 -388.14 188.59 -55.91 193.96 -393.51 -84.514 518.45 5 Shell-Thin 718 -502.06 -532.78 -609.06 91.83 -1126.68 -44.278 1175.28 5 Shell-Thin 86 -1388.77 -3550.1 -2207.71 -11.42 -4927.45 -31.959 4921.74 5 Shell-Thin 716 -141.39 2541.84 -1693.64 3360.86 -960.41 -64.192 3930.08 5 Shell-Thin 717 210.62 874.99 -493.53 1137.72 -52.11 -61.972 1164.65 5 Shell-Thin 718 -1157.72 -1804.7 -1007.6 -422.95 -2539.47 -36.1 2356.63 5 Shell-Thin 86 7781.71 2658.72 2048.46 8500.08 1940.36 19.325 7715.12 5 Shell-Thin 716 1707.74 -97.71 265.42 1745.96 -135.92 8.192 1817.73 5 Shell-Thin 717 1572.57 -372.96 -138.86 1582.43 -382.82 -4.062 1804.56 5 Shell-Thin 718 1217.13 912.14 1644.18 2715.87 -586.61 42.351 3051.76 5 Shell-Thin 86 5159.91 4758.8 3252.8 8218.33 1700.38 43.236 7513.85 5 Shell-Thin 716 787.83 -2699.23 2088.19 1764.68 -3676.08 25.07 4807.78 5 Shell-Thin 717 479.59 -949.2 432.67 600.4 -1070.01 15.6 1465.55 5 Shell-Thin 718 1780.06 1944.54 1597.28 3461.69 262.91 46.474 3338.01 5 Shell-Thin 86 -962.62 -5157.23 -3296.01 846.79 -6966.64 -28.765 7426.33 5 Shell-Thin 716 32.17 4390.13 -2789.63 5750.92 -1328.62 -63.997 6517.6 5 Shell-Thin 717 658.05 1481.11 -825.06 1991.58 147.58 -58.255 1922.05 5 Shell-Thin 718 -1702.54 -2561.33 -1331.45 -732.96 -3530.91 -36.063 3227.47 5 Shell-Thin 86 17727.54 5383.88 4310.8 19083.96 4027.46 17.466 17422.92 5 Shell-Thin 716 3455.56 -35.61 425.8 3506.74 -86.79 6.854 3550.93 5 Shell-Thin 717 3644.13 -694.48 -465.41 3693.5 -743.85 -6.054 4116.14 5 Shell-Thin 718 2669.15 1527.43 3419.59 5565.2 -1368.63 40.261 6360.91 5 Shell-Thin 86 -2056.81 -2966.65 -1573.03 -874.23 -4149.23 -36.935 3788.53 5 Shell-Thin 716 -590.18 779.81 -339.53 859.34 -669.71 -76.817 1327.59 5 Shell-Thin 717 -340.04 635.12 -353.79 749.95 -454.88 -72.017 1053.8 5 Shell-Thin 718 -705.08 -2336.52 -1587.3 263.84 -3305.44 -31.401 3444.94 5 Shell-Thin 86 969.77 1443.04 320.87 1605.09 807.72 63.204 1390.06 5 Shell-Thin 716 30.23 423.16 87.54 441.78 11.61 77.992 436.09 5 Shell-Thin 717 159.5 169.07 56.6 221.08 107.49 47.415 191.49 5 Shell-Thin 718 260.89 1270.92 289.92 1348.22 183.59 75.07 1266.45 5 Shell-Thin 86 823.35 1741.69 972.35 2357.84 207.21 57.639 2261.36 5 Shell-Thin 716 1086.95 52.53 309.79 1172.63 -33.15 15.46 1189.56
  • 80. 79 5 Shell-Thin 717 -130.6 -195.62 426.71 264.83 -591.06 42.821 758.96 5 Shell-Thin 718 80.2 1634.18 1089.27 2195.18 -480.8 62.75 2470.92 5 Shell-Thin 86 - 12494.83 - 13362.07 -9975.75 -2943.28 - 22913.62 -43.756 21592.96 5 Shell-Thin 716 -3394.65 8748.74 -5656.64 10975.42 -5621.33 -68.513 14620.39 5 Shell-Thin 717 -1540.77 4216.48 -2012.93 4850.45 -2174.75 -72.518 6229.36 5 Shell-Thin 718 -5208.08 -8797.91 -6332.04 -421.47 - 13584.52 -37.087 13378.77 5 Shell-Thin 86 - 13558.28 -6005.83 -2094.38 -5463.92 - 14100.19 -75.493 12313.71 5 Shell-Thin 716 -539.43 -2805.7 613.65 -383.94 -2961.2 14.219 2789.12 5 Shell-Thin 717 -1936.62 -1147.16 720.62 -720.24 -2363.54 59.356 2098.27
  • 81. 80 TABLE: Joint Reactions Joint OutputCase F1 F2 F3 M1 M2 M3 Text Text KN KN KN KN-m KN-m KN-m 1 DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032 1 MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158 1 MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041 1 MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963 1 MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964 1 MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154 1 MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223 1 MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361 1 MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517 1 MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568 1 MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832 1 MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666 1 MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118 1 LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039 1 EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409 1 EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796 1 dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044 1 Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015 1 Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043 1 Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389 1 Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817 1 Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775 1 Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442 1 Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377 1 Dead 1, Eq-y 1 84.741 221.122 6117.561 363.8125 157.0332 3.8829 1 Dead 1, Eq-y 1 -86.007 -220.414 -5230.914 -364.2401 -157.9808 -3.8764 3 DEAD 0.761 0.652 479.862 -0.5356 0.9282 0.0011 3 MODAL 36.678 -3.558 -41.023 5.5591 61.2778 1.3054 3 MODAL 29.773 -21.762 -417.708 35.8384 49.1908 1.0262 3 MODAL 10.837 6.314 87.846 -10.4532 18.6997 -0.7158 3 MODAL -145.925 42.972 -165.695 -68.0063 -239.7505 -5.0007 3 MODAL 29.163 -64.66 251.473 103.2696 47.5959 0.984 3 MODAL 50.813 21.3 -65.568 -34.1597 83.5035 -2.2791 3 MODAL -254.09 80.775 141.992 -127.6065 -409.961 -8.4312 3 MODAL 27.414 -113.585 -330.244 180.3599 43.6188 0.9615 3 MODAL -101.343 -39.214 -167.538 62.0426 -164.2364 4.0508 3 MODAL -364.485 113.51 -618.024 -176.8496 -573.3648 -11.1301
  • 82. 81 3 MODAL 1.961 -12.904 -3175.391 17.273 3.4557 -0.0332 3 MODAL -13.444 48.027 -4260.324 -77.9359 -20.5965 -0.6291 3 LIVE -0.929 -1.12 -444.465 0.9616 -1.0945 - 0.0007132 3 EQ-X 321.192 96.87 1665.921 158.4935 537.5791 10.1335 3 EQ-Y 109.994 213.776 4268.095 354.1738 182.198 3.9039 3 dead 1.35 1.028 0.88 647.814 -0.7231 1.2531 0.0015 3 Dead 1.35 , Live 1.5 -0.365 -0.8 -18.884 0.7194 -0.3886 0.000459 3 Dead 1, Live 0.3, EQ-x 1 321.675 97.186 2012.444 158.2463 538.179 10.1344 3 Dead 1, Live 0.3, EQ-x 1 -320.709 -96.554 -1319.399 -158.7406 -536.9793 -10.1326 3 Dead 1 , Live 0.3, Eq-y 1 110.477 214.092 4614.617 353.9267 182.7978 3.9048
  • 83. 82 TABLE: Modal Periods And Frequencies OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2 MODAL Mode 1 0.924609 1.081537789 6.795502342 46.17885208 MODAL Mode 2 0.901943 1.108717337 6.966276481 48.52900802 MODAL Mode 3 0.779214 1.283344833 8.063493397 65.01992577 MODAL Mode 4 0.300944 3.32287609 20.87824623 435.9011656 MODAL Mode 5 0.282348 3.541727339 22.25332918 495.2106595 MODAL Mode 6 0.240496 4.158079647 26.12598494 682.5670892 MODAL Mode 7 0.174232 5.739486249 36.06225567 1300.486284 MODAL Mode 8 0.151979 6.579877485 41.34258954 1709.20971 MODAL Mode 9 0.13041 7.668109424 48.18015247 2321.327092 MODAL Mode 10 0.121433 8.234977489 51.74188956 2677.223136 MODAL Mode 11 0.110894 9.017606954 56.65929552 3210.275769 MODAL Mode 12 0.108252 9.23770203 58.04219367 3368.896246
  • 84. 83 TABLE: Objects And Elements - Areas AreaElem AreaObject ElemJt1 ElemJt2 ElemJt3 ElemJt4 Text Text Text Text Text Text 40 40 42 103 106 107 41 41 107 106 108 111 42 42 111 108 112 78 43 43 103 117 118 106 44 44 106 118 119 108 45 45 108 119 120 112 46 46 117 121 122 118 47 47 118 122 123 119 48 48 119 123 124 120 49 49 121 44 125 122 50 50 122 125 126 123 51 51 123 126 79 124 52 52 32 127 128 129 53 53 129 128 130 131 54 54 131 130 132 133 55 55 133 132 134 135 56 56 135 134 103 42 57 57 127 136 137 128 58 58 128 137 138 130 59 59 130 138 139 132 60 60 132 139 140 134 61 61 134 140 117 103 62 62 136 141 142 137 63 63 137 142 143 138 64 64 138 143 144 139 65 65 139 144 145 140 66 66 140 145 121 117 67 67 141 34 146 142 68 68 142 146 147 143 69 69 143 147 148 144 70 70 144 148 149 145 71 71 145 149 44 121 72 72 34 150 151 146 73 73 146 151 152 147 74 74 147 152 153 148 75 75 148 153 154 149 76 76 149 154 155 44 77 77 150 156 157 151
  • 85. 84 78 78 151 157 158 152 79 79 152 158 159 153 80 80 153 159 160 154 81 81 154 160 161 155 82 82 156 162 163 157 83 83 157 163 164 158 84 84 158 164 165 159 85 85 159 165 166 160 86 86 160 166 167 161
  • 86. 85 TABLE: Objects And Elements - Frames FrameElem FrameObject ElemJtI ElemJtJ Text Text Text Text 1-1 1 1 2 2-1 2 3 4 3-1 3 5 6 4-1 4 7 8 5-1 5 9 10 6-1 6 11 12 7-1 7 13 14 8-1 8 49 48 10-1 10 19 20 11-1 11 21 22 12-1 12 23 24 13-1 13 25 26 14-1 14 27 47 17-1 17 33 34 18-1 18 35 36 19-1 19 37 38 22-1 22 43 44 23-1 23 45 46 26-1 26 51 52 27-1 27 53 54 38-1 38 6 585 38-2 38 585 586 38-3 38 586 12 43-1 43 20 539 43-2 43 539 533 43-3 43 533 72 44-1 44 8 534 44-2 44 534 524 44-3 44 524 73 46-1 46 10 572 46-2 46 572 571 46-3 46 571 4 50-1 50 54 238 50-2 50 238 237 50-3 50 237 236 50-4 50 236 235 50-5 50 235 74 56-1 56 42 107
  • 87. 86 56-2 56 107 111 56-3 56 111 78 57-1 57 44 125 57-2 57 125 93 57-3 57 93 126 57-4 57 126 79 58-1 58 46 80 59-1 59 52 81 61-1 61 56 627
  • 88. 87 TABLE: Objects And Elements - Joints JointElem JointObject GlobalX GlobalY GlobalZ Text Text m m m 1 1 2.15 0 0 2 2 2.15 0 3.1 3 3 6.15 0 0 4 4 6.15 0 3.1 5 5 11.15 0 0 6 6 11.15 0 3.1 7 7 2.15 2.3 0 8 8 2.15 2.3 3.1 9 9 6.15 2.3 0 10 10 6.15 2.3 3.1 11 11 11.15 2.3 0 12 12 11.15 2.3 3.1 13 13 16.95 2.3 0 14 14 16.95 2.3 3.1 18 18 25.95 2.3 3.1 19 19 2.15 7.3 0 20 20 2.15 7.3 3.1 21 21 6.15 7.3 0 22 22 6.15 7.3 3.1 23 23 11.15 7.3 0 24 24 11.15 7.3 3.1 25 25 16.95 7.3 0 26 26 16.95 7.3 3.1 27 27 21.95 7.3 0 30 30 25.95 7.3 3.1 32 32 2.15 12.45 3.1 33 33 6.15 12.45 0 34 34 6.15 12.45 3.1 35 35 11.15 12.45 0 36 36 11.15 12.45 3.1 37 37 16.95 12.45 0 38 38 16.95 12.45 3.1 40 40 25.95 12.45 3.1 42 42 2.15 17.45 3.1 43 43 6.15 17.45 0 44 44 6.15 17.45 3.1 45 45 11.15 17.45 0 46 46 11.15 17.45 3.1
  • 89. 88 51 51 16.95 17.45 0 52 52 16.95 17.45 3.1 53 53 21.95 17.45 0 54 54 21.95 17.45 3.1 56 56 25.95 17.45 3.1 62 62 12.825 12.45 3.1 64 64 15.175 12.45 3.1 66 66 12.825 10.475 3.1 68 68 15.175 10.475 3.1
  • 90. 89 TABLE: Response Spectrum Modal Information OutputCas e ModalCas e StepTyp e StepNu m Period DampRati o U1Acc U2Acc U3Acc Text Text Text Unitless Sec Unitless m/sec2 m/sec2 m/sec2 EQ-X MODAL Mode 1 0.92460 9 0.05 9.81 0 0 EQ-X MODAL Mode 2 0.90194 3 0.05 9.81 0 0 EQ-X MODAL Mode 3 0.77921 4 0.05 9.81 0 0 EQ-X MODAL Mode 4 0.30094 4 0.05 9.81 0 0 EQ-X MODAL Mode 5 0.28234 8 0.05 9.81 0 0 EQ-X MODAL Mode 6 0.24049 6 0.05 9.81 0 0 EQ-X MODAL Mode 7 0.17423 2 0.05 9.81 0 0 EQ-X MODAL Mode 8 0.15197 9 0.05 9.81 0 0 EQ-X MODAL Mode 9 0.13041 0.05 9.81 0 0 EQ-X MODAL Mode 10 0.12143 3 0.05 9.81 0 0 EQ-X MODAL Mode 11 0.11089 4 0.05 9.81 0 0 EQ-X MODAL Mode 12 0.10825 2 0.05 9.81 0 0 EQ-Y MODAL Mode 1 0.92460 9 0.05 0 9.81 0 EQ-Y MODAL Mode 2 0.90194 3 0.05 0 9.81 0 EQ-Y MODAL Mode 3 0.77921 4 0.05 0 9.81 0 EQ-Y MODAL Mode 4 0.30094 4 0.05 0 9.81 0 EQ-Y MODAL Mode 5 0.28234 8 0.05 0 9.81 0 EQ-Y MODAL Mode 6 0.24049 6 0.05 0 9.81 0 EQ-Y MODAL Mode 7 0.17423 2 0.05 0 9.81 0 EQ-Y MODAL Mode 8 0.15197 9 0.05 0 9.81 0 EQ-Y MODAL Mode 9 0.13041 0.05 0 9.81 0 EQ-Y MODAL Mode 10 0.12143 3 0.05 0 9.81 0
  • 91. 90 EQ-Y MODAL Mode 11 0.11089 4 0.05 0 9.81 0 EQ-Y MODAL Mode 12 0.10825 2 0.05 0 9.81 0
  • 92. 91 Conclusion A seismic analysis was performed to an – braced , 8 story reinforced concrete building. Considering the output taken the modal analyses table , it can be seen that the value of the frist fundamental period is 0.924 sec .The generated value is higher than the expected one , which rangs from 0.5 to 0.6 sec .This difference is dedicated to the mass source chosen , where the live load was reducted by 70% , which accounts for less mass and hight fundamental period . After generating the design check with SAP 2000 , it was noticed that the level of risk failure for the structure is considerably hight .This is also confirmed by the fact that four member of the considered building failed in shear stress capacity . It is necessary to emphasize that these types of structures suffer on dynamic loading conditions, that’s why it is crucial to better research this topic in order to have a better seismic performance
  • 93. 92 References  Advanced Materials and Techniques for Reinforced Concrete Structures  Mohamed Abdallah El-Reedy, Ph.D, Mohamed El-Reedy Reference - 327 Pages  The Roman Pantheon: The Triumph of Concrete. Romanconcrete.com. Retrieved on 2013-02-19.  Lancaster, Lynne (2005). Concrete Vaulted Construction in Imperial Rome. Innovations in Context. Cambridge University Press. ISBN 978-0-511-16068-4.  Ashby, Michael F. & Jones, David R. H. (1992) [1986].Engineering Materials 2 (with corrections ed.). Oxford: Pergamon Press. ISBN 0-08-032532-7.  Duncan, Chester I. Soils and Foundations for Architects and Engineers. New York: Van Nostrand Reinhold, 1992.  "Column - Definition and More from the Free Merriam-Webster Dictionary". Merriam- webster.com. 2012-08-31. Retrieved 2013-07-04.