SlideShare a Scribd company logo
1 of 87
Chapter #1 Introduction
 Picker to ………………………………………………………………………………………………………………………………………1
 Abstract ……………………………………………………………………………………………………………………………………….2
 The design is original information…………………………………………………………………………………………………2
 Program than option…………………………………………………………………………………………………………………….3
 The supper structure form and dimensions of……………………………………………………………………………….3
 The calculation of the deck…………………………………………………………………………………………………………..4
 The main span in Computing…………………………………………………………………………………………………………4
 The main span reinforced computing…………………………………………………………………………………………….4
 A section of carrying capacity limit status calculations……………………………………………………………….….4
 Steel beam prestressed loss calculation…………………………………………………………………………………………5
 Crack resistance of recalculations………………………………………………………………………………………………….5
 The section is of crack resistance……………………………………………………………………………………..5
 A section of crack resistance……………………………………………………………………………………………5
Chapter# 2 CompareandSelection ofProject
 The bridge principles of design……………………………………………………………………………….…………………….6
 Security………………………………………………………………………………………………….………………….6
 Applicability…………………………………………………………………………………….………………………..6
 Economics …………………………………………………………………………………….………………………….6
 Art…………………………………………………………………………………………………………….………………6
 Evaluated Systematically………………………………………………………………………………………….……………….7
 Suspension………………………………………………………………………………………………….………….7
 Arch………………………………………………………………………………………………..………………………7
 Continuous …………………………………………………………………………………………………………...7
 Project details……………………………………………………………………………………………………………….………….8
 Project Comparison……………………………………………………………………………………………………………..……8
Chapter#03Forms andSizeofDeformation ofSuperstructure
 Formulation of Main span………………………………………………………………………………………………………..11
 Size formulation of the frame…………………………………………………………………………………………………….11
 Size formation horizontal bridge ……………………………………………………………………………………………….11
 Calculations ………………………………………………………………………………………………………11
 Formulas …………………………………………………………………………………………………………..12
 Details ………………………………………………………………………………………………………………12
 Deck pavement………………………………………………………………………………………………………………………..13
 Primary materials of the bridge………………………………………………………………………………………………..13
 Endings ……………………………………………………………………………………………………………………………………13
Chapter#4 Calculations oftheBridgeDeck Slab
 The Design bending moment of the bridge deck…………………………………………………………………………15
 Constant load and internal load calculations…………………………………………….………….15
 Wind load bending moment ………………………………………………………………………………..15
 Live load bending moment of each strip ………………………………………………………………17
 Dead loads …………………………………………………………………………………………………………..17
 Calculation of bending moments …………………………………………………………………………17
 Calculation of the cantilever ……………………………………………………………………………………………………...18
 Loads calculations ……………………………………………………………………………………………………………………..19
 Calculation of bending moment ………………………………………………………………………………………………..19
 Reinforcement of the bridge deck …………………………………………………………………………………………….20
 Ending calculations……………………………………………………………………………………………………………………21
Chapter#5InternalForceCalculationsofthe MainGirder
 Division of the whole beam section…………………………………………………………………………………………….22
 Calculation tables ……………………………………………………………………………………………………………………….23
 Internal forces…………………………………………………………………………………………………………………………….24
 Dead and live load calculations ……………………………………………………………………………………………………27
 MIDAS bridge model……………………………………………………………………………………………………………………28
 Structural details …………………………………………………………………………………………………………………………28
 MIDAS Calculations table ……………………………………………………………………………………………………………29
 Ending …………………………………………………………………………………………………………………………………………41
Chapter#6Main BeamReinforcement
 Estimation of prestressed reinforcement……………………………………………………………………………………42
 Reinforcement principles ………………………………………………………………………………………………………….43
 Estimation of prestressed tendons…………………………………………………………………………………………….44
 Calculations ………………………………………………………………………………………………………………………………44
 Prestressed steel bar table……………………………………………………………………………………………………….45
 Prestressed reinforcement arrangements…………………………………………………………………………………47
 Non-prestressed reinforced …………………………………………………………………………………………………….57
 Estimation and placement……………………………………………………………………………………………………….57
Chapter#7SectionLoad Carrying
 Cross sections …………………………………………………………………………………………………………………………….58
 Cross section load calculations …………………………………………………………………………………………………..58
 Cross sectional load calculations ……………………………………………………………………………………………….59
 Results ………………………………………………………………………………………………………………………………………60
Chapter#8CalculationofPrestressed SteelBeamLoss
(PrestressedLosses)
 Calculation tables ……………………………………………………………………………………………………………………….63
 Prestressed Loss…………………………………………………………………………………………………………………………64
 Steel slack caused by prestressed loss…………………………………………………………………………………………66
 Support sections…………………………………………………………………………………………………………………………66
 Cross sectional regions ………………………………………………………………………………………………………………67
 Ending ………………………………………………………………………………………………………………………………………68
Chapter#9 StressCheckingCalculations
 Brief status of stress check ……………………………………………………………………………………………………….70
 Mid Span………………………………………………………………………………………………………….70
 Support section………………………………………………………………………………………………..71
 Calculations …………………………………………………………………………………………………….71
 Lasting Positive Stress Checking calculations ……………………………………………………………………………72
 Mid span ……………………………………………………………………………………………………….72
 Support sections ……………………………………………………………………………………………72
 Calculations …………………………………………………………………………………………………..72
 Sustained prestressed reinforced stress checking calculations …………………………………………………72
 Mid Span……………………………………………………………………………………………………..73
 Support Section …………………………………………………………………………………………….73
 Calculations ………………………………………………………………………………………………….73
Chapter#10CrackResistanceCheck
 Crack resistant of cross section ……………………………………………………………………………………….……..74
 Cross sectional crack calculation …………………………………………………………………………………………….75
 Support section ……………………………………………………………………………………………………………………..75
 Cross section crack resistant ………………………………………………………………………….……………………….77
 Shear strength ……………………………………………………………………………………………….……………………….77
 Strain Relief ……………………………………………………………………………………………….…………………………..77
 Calculations ………………………………………………………………………………………………………………….……….77
Chapter#11theMainBeamDeformation
 Details ………………………………………………………………………………………………………………………………….78
 Calculations ………………………………………………………………………………………………………………………….78
References
END
Chapter #1: Introduction
Picker to
Thisdesign isbasedondesigntasksforthe bookand the highwaybridge onthe provisionsof the
regulationof the victoryof the riverbridge programthan anddesign.The designof the bridge,the spirit
of the security,utilities,economic,beautiful"principle 8, the designof the three differentbridge type to
compare and select.Programforprestressedconcrete continuousGirderBridge,the programforthe
secondcombinationof beamsystembridge,ProgramIIIisthe suspensionbridge.Throughthe above
principles aswell asthe designandconstructionof variousaspectssuchasconsideration,determine
prestressedconcrete continuousGirderBridge tofinal designprograms.
The prestressedconcrete continuousGirderBridge,whichwillconsistof three cross-(30m+50 m
+30 m) mainspans50 m, side symmetric30 m mainspar; a single enclosure single roomprestressed
concrete box beam,cross beamheightis1.5 m to supportbase of 2.8 mLeung,sectional heightbythe
secondmeetingof the parabolaformchanges;netdeckswitha widthof 1.5 mx 7+2; the designloadfor
the road – Grade.
In the design,the use of the bridge designsoftwarebuildbridgesthe Midasmodel andbridges
hang download,downloadthe Live andSeoremainedunchangedinconductanalysisandcalculations,
and concludedthatthe steel prestressedestimates.Finallythe mainsparstress,etc.forrecalculations.
The comparative analysisandindicatesthatthe designof the recalculationscalculationcorrectly,the
force distributionandreasonable and inthe designof the requirementsforthe task.
1
Abstract
The designisbasedon the requirementsof the designtaskand"highwayregulation". Bridge the design
of the bridge iscarriedoutin the rulerof "safety,eight-characterpractically,aesthetic"economically
and bycomparingand choosingthe bestone.The firstprogram is continuous prestressedconcrete
girderbridge,the secondone the beamcombinationof arch bridge,andthe thirdone isthe bridge.
Accordingsuspensiontothe above principlesandconstructionfactorsthe prestressed continuous
bridge ischosento the ultimate.
The continuous prestressedconcrete girderbridgeisdividedintothree inters,(30m+50m+30m),
withthe mainspan of 50m, 30m-symmetryandconcrete box girderprestressedone.isusedasthe main
beam;the beamdepthinthe mid-spanadaptorsis1,5 MHz while atthe supportbearingitis2.8m.the
sectional depthischangedinthe formof parabolic.The netwidthof the deckis7+2x1.5m, and the
designloadisforthe highway-i.
In the design,the bridge designsoftware MIDASisused togetthe calculationmodel.Byanalyzing
and computingthe deadloadlive loadandinternal force (the estimatedvalue of the prestressedstrand
isgot. finally,checkingcalculationiscarriedoutto the stressanddeformationof the mainbeam.the
resultsof the analysisandcheckingthe show thatthe designcalculationmethodisdescribesanissue
that occurs and the internal force distributionisthe viewtothe designtask.
Key words: prestressedcontinuousbeam;concrete;box-girder;non-uniform
The design is original information
it is the design of K70+364.8 Victory River bridge. Information about terrain and geological
tectonics of riverbed cross section are wanted from the riverbed cross-sectional profile, the rest
of the related design parameters are as follows:
1. A topographic map and bridge site of the bridge
2. Design loading: Highway Grade ⅠOperated:3.5kN/m2
3. Design speed of 60km/h
4. The width of the bridge deck: Net -7+2×1.5(Walkways)
5. Cross slope of the bridge deck: 1.5%;
6. Navigation Ratings: Ⅳ-(4). 2
Program than option
The bridge designisbasedondesigntasksforthe bookand the highwaybridge onthe provisionsof
the Regulation,the spiritof the security,utilities,economic,beautiful"8Principles,setoutinthree
differentbridge type tocompare andselect.Program forprestressedconcrete continuousGirder
Bridge,the programfor the secondcombinationof beamsystembridge,ProgramIIIisthe suspension
bridge.Throughthe above principlesaswell asthe designandconstructionof variousaspectssuchas
consideration,determineprestressedconcrete continuousGirderBridge tofinal designprograms.
The supper structure form and dimensions of
1. The formulationof the mainspan
The designof the program afterthe electionthanusingthe three cross-networkedprestressed
concrete taperedcontinuousbeamedwithatotal lengthof 110m . Inaccordance withthe net
Navigationbridge callsfor,the mainspanis50 m.Edge cross-with0.6 timesthe diameterof the cross,
that is,30 m .
2. Shun bridge tothe size of the formulation
The beamsin a single enclosuresingle roomprestressedconcretebox beam, crossbeamheightis
1.5 m to supportbase of 2.8 m Leung,sectional heightbythe secondmeetingof the parabolaform
changes.
3. Cross the bridge to the size of the Development
ChassisPlate Thicknessfrom Mr. Leung20 cm ; cross-inbackplane boardthickness30cmto
furnishedprestressedbeampivotsbase platethicknessof 60cm, the middle bottompanel thicknessto
linearchange;Abdominalpanel thicknessdue tothe furnishedprestressedsteel beamanchorheadisby
usingthe 40 cm ; supportthe size ; takingintoaccount the overrelativelysmall andtherefore only
supportfor settingupa cross road divider,panelthicknessof 1 m ; sidewalksare onhold-pavement
board.
4. Footbridge Tiles
TilesSelecteddecks8cmthickwaterproof concrete pavementasTier,Add2 cm thickasphaltic
concrete wear,total 10cm thick.
5. The bridge primarymaterial
Main frame usingC 50 concrete prestressedreinforcedwithlow slacktwistedsteel (standard),non-
prestressedreinforcedwith NG( 335 grade steel,walkways,railingsusing C20
3
The main spar reinforced computing
Prestressedreinforcedshouldmeetthe constructionstage,andbridge tothe operationof the force
requirements,steel constructionarrangementincompliance withrequirements,includingprestressed
anchorage select,steel beamspace,etc.,andasfar as possible tofacilitate the constructionworks.The
use of the midasbridgescomputingsoftware,enterthe twistedsteel categoryfor1x 7 standard,and
nominal diameter15.2 mm , cross-sectionalareaof 139 mm 2
, run the analysisoutputaftereach
sectionprestressedreinforcedthe forecastquantity.Afterthe sectionalprestressedsteelbeam.
By the steel prestressedestimatestable suggeststhatfull-bridge prestressedsteel beamupto87
root,90 root,pre-buriedpipesare metal bellows,eachwithinthe bellowssettings9rootprestressed
steel beam,the largestof 10 sticksthe bellows.Asaresultof the imposedbridge prestressedmethodis
after,to ensure thatone of the mostconcrete setin concrete placementcanbe passedsmoothlywhen,
at the level of the bellowsnetare 5cm.
Because the steel withchassisanchormulti-the websof the steelplate,sothe beambendingand
vertical barsFlat Bentdesign.
A section of carrying capacity
Limit status calculations
The is a cross-sectionof conductorandloadcalculations,the calculationissectional loadcarrying
capacityto meetthe designrequirementsandpressthe calculationresultsof asectioninthe
configuration.
Steel beam prestressed loss calculation
As a resultof the constructionof the tensioningprestressedafterusingone of the followingitemsand
therefore prestressedlossonthe calculation:
Prestressedreinforcedwithapipe frictionbetweenthe wall;anchorage deformation,steel and
retract and seamcompression resilient;Concrete;prestressedreinforcedthe stress ;Concrete shrinkage
and Xuremainedunchanged.Finally calculatedincross-sectional andproductionlossprestressed
averages.Toprovide the basisforrecalculationsstrainrelief
4
Stresses recalculations
Withconcrete curvedmemberbythe use of stagessectionof concrete law to stressandpressure
by the steel sectorstrainrelief doesnotexceedthe specifiedlimitsasa standardfora strain relief
residue.
Crack resistance of recalculations
1. The sectionisof crack resistance
Coveredbythe highwaybridge of lastingconditionsshouldfollow the normal usage limitsatthe
requestof the state of the componentsof crack resistance of recalculations.The crackresistance of
calculations,the role (orloadthe effect) (where the vehicle loadwithouttakingintoaccountthe impact
factor) shouldadopta short-termeffectdesigncombinationvalue,structural materialperformance with
theirstrengthdesignvalues.
2. A sectionof crack resistance
PrestressedConcretebeamis sectionalcrackresistance of recalculationsispassedinconcrete mainpull
strainrelief tocontrol the recalculationsThe mainstressrecalculationsincross-pathdirectionshould
selectshearandBendingMomentare large seatingof the section.A cross-sectional crackresistance of
recalculationsisrequiredonlyif the role (orload) short-termeffectscombinationof concrete mainpull
strainrelief.
The main spar deformation computing
In thisdesignthe mainsparDeformation(calculated) approximate use charpydeflection calculation
method.Continuous more charpydue tosupporta negative bendcandramaticallyreduce torque in
cross-deflectionandthususingcharpythe calculationmethodincross-deflectionissecure
5
Chapter #2: Compare and selectionof project
Continuous Beam Bridge, beam-arch Combination Bridge and cable-stayed bridge can be
considered as forms of bridge. In comparison of those three kinds of bridges, the bridge form is
eventually decided in aspects of security, applicability, economics and art.
The Bridge principle of bridge design:
1. Security
Security should be assured as the primary condition in bridge design. Amplitude of the
bridge should be controlled vertically and laterally to avoid vehicles vibrating and striking. The
whole bridge span structure and components of every part should have enough strength,
rigidity, stability and durability in process of manufacture, transportation, installation and use.
2. Applicability
Applicabilityisthe primaryprinciple of bridge design.itshouldbe assuredthatvehiclesand
populationcanpass safelyonthe bridge whichshouldsatisfythe needof trafficvolume increasing.
Meanwhile,underthe bridge,flooddischarge andsafelynavigationortransportationshouldbe needed.
The bridge builtshouldassure the durable yearsandbe easyforexaminationandmaintainservice.
3. Economics
The bridge designshouldreflectthe economical rationality.Whendesigning,the economical
technologyshouldbe comparedtomake the leastconsumptionof the total costand materials.
Meanwhile,
The cost of operation and maintenance should be sufficiently considered
4. Art
A bridge should have an artistic appearance, which is in harmony with surroundings.
Reasonable structure layout and outlines are the main points instead of mistaking art with
luxury decoration. 6
The bridge should be evaluated synthetically according to the principles above.
1. continuous beam bridge
Beam systemis an old structure system, continuous beam bridge is referred to the one
whose bearings of structure only produce vertical reaction without horizontal force under the
action of vertical load. Prestressed concrete continuous beam bridge makes use of unloading
bending moment to reduce mid-span moment and allocate internal force of span reasonably.
The cross-section of component with the same bending strength can build bridges with much
longer span. Meanwhile, design and construction of continuous beam bridge are getting
improved.
2. beam-arch combination bridge
This kind of systemincludes tied arch, truss arch and beam arch in structure with
multiplied spans. They make up into united structures by using characteristic of flexural
capacity of beam and arch pressure-bearing. Due to the pressure stored in the beam bearing
the horizontal force from the arch, pre-stressed concrete structure not only has arch's
characteristics, but also is not thrust structure. Besides, it has less request for foundation. But
construction of the structure is complex and the cost is much more expensive.
3. Suspension bridge
Suspension bridge use cable rope hung on both sides of it as main bearing structure. Under the
action of vertical load, suspender is used to make cable rope bear more stress, which needs
very large anchorage structure built behind bridge abutments. Suspension bridge is also a
structure which has horizontal reaction. So far, wire rope made of high-tensile steel wires is
widely used to take full advantage of excellent tensile property. Thus dead load of the structure
is small. Another characteristic of suspension bridge volume wire rope is easy to transport and
its component is light to make it easy to assemble without support. But dead load of suspension
bridge is small, structural rigidity is worse, and in the vehicle dynamic loads and wind loads, it
has a major deformation and vibration.
7
Continuous Beam Bridge
Girder and Arch Combination Bridge
Suspension Bridge
8
Project comparison Table1-1
Project First project Second project Third project
Form
prestressed concrete
continuous beam bridge
beam-arch
combination bridge
suspension bridge
Characterist
ics
Continuous beam
bridge is referred to the
one whose bearings of
structure only produce
vertical reaction without
horizontal force under
the action of vertical
load. It has flexible and
beautiful shape,
structure stiffness is
bigger, and
degeneration is smaller.
Stress is clear.
Meanwhile, design and
construction of
continuous beam bridge
are getting improved.
Due to the pressure
stored in the beam
bearing the horizontal
force from the arch,
pre-stressed concrete
structure not only has
arch's characteristics,
but also is not thrust
structure. Besides, it
has less request for
foundation.
Suspension bridge
use cable rope hung
on both sides of it as
main bearing
structure. Under the
action of vertical load,
suspender is used to
make cable rope bear
more stress, which
needs very large
anchorage structure
built behind bridge
abutments.
Appearance
Seenfromthe side,
clearline,cooperation
withthe local terrain,
appearingelegant.
Large span,
beautiful lines,
inharmonywith
environment
Lightstructure;
In well harmonywith
environment;Large
span;Brand new
Cost lower Moderate Higher
Technology
Advancedtechnology;
Rich experience;
Strict technology;
Fewerdevices;
Lessroom occupation
Rotationmethod;
Smallereffect;
Buildstructure
separatelyandunite
themeventually
Volume wire rope is
easy to transport and
its component is light
to make it easy to
assemble without
support.
As is known from the list, according to the situation of local hydrogeology, combined with
principles of bridge design, choosing the first one is better than other two projects in aspects of
span satisfaction, scenes in harmony with environment, ripe experience with technology, less
difficulty with construction and short time limit. In allusion of local geography, pile foundation
should be used to strengthen the basis. So choosing the first one is the best.
10
Chapter #3: Forms and size formulation of supper structure
Time limit shorter longer Moderate
According to the information of bridge location, terrain and geological map, this design
uses prestressed concrete variable cross-section continuous beam structure, the length of
which is 110m.According to the navigation and net capacity requirements, the main span is
50m.
According to the requirement of the width of the bridge deck: Net -7+2×1.5(Walkways),
single box-type beam is used, width of which is 9.2m.
The formulation of the main span
The main span is 50m, side span is 0.5~0. 8 times wider than main span on the basis of
experience both at home and abroad, and the middle spin is 0.6 time wider, which is 30m.So
the whole span is:
30+50+30+110(m)
The size formulation of the frame to axle
(1) Beam depth of Pivots: In accordance with 【1】, beam depth of Pivots is
width of span.The most common is , therefore beam depth of pivots:
(2) Beam depth of middle span: In accordance with 【1】, beam depth of Pivots is
width of span.The beam depth of Pivots: Within that
range.
(3) Bottom curve: In accordance with 【1】.use second parabola,
A cross-beam bottom as origin, curve equations:
11
Size formulation of horizontal bridge
201~151
181
)m8.218150 (支
h
501~031 )m5.1 (中
h 33/150/5.1 
5.14X0.00216576 2
Y
In accordance with the net deck’s width: Net -7+2×1.5(Walkways), two sides of the
Roadways and the 1.5m sidewalk. In accordance with【3】 choose holistic single box-type
cross-sections.
Size formulation of main beam sections ‘detail (according to reference literature 【3】as
is shown in figure 2-1.
Support Section
Cross Section
12
Girder plate Thickness is20cm;back plate of middle span is 30 cm thick, to furnish prestress
beam pivots’base plate is 60 cm thick, intermediate plate thickness change linearly; web plate
thickness is 40cm due to the furnishment of well-prestressed steel beam anchor;and bearing
size is . Considering smaller span,only set a diaphragm on bearings, thickness of
which is 1m.pedestrian walkway with the on hold-board ,specific size is showed in figure2-3
Sidewalk Plate Structure
Deck pavement
(Depending on the reference literature【2】, choose 8 cm thick Waterproof concrete as
pavement layer, put 2cm thick asphaltic concrete on it, a total of 10 cm thick.
Primary material of this bridge
Depending on the reference literature【5】, prestressed concrete girder use C50 concrete
; ;
;
Prestressed reinforced steel uses low-steel strands of the slack( Standard) of ASTM
13
cmcm 6020 
MPaEc
4
1045.3  MPafck 4.32 MPafcd 4.22 65.2tkf MPa MPaftd 83.1
71
A416-97a standard, ,
,
normal diameter: 15.24mm;normal
area is ; ;
Rust inhibitor, pedestrian railings board use concrete C20
;non-prestressed reinforced: HRB335 level steel,
, ,
;
constructional reinforcement use R235 steel.
14
MPaf pk 1860 MPaf pd 1260
2
140mm MPaEp
5
1095.1 
MPafsk 335 MPafsd 280
MPaEs
5
100.2 
Chapter#4:Calculationof bridge deck slab
(1) The design bending moment of the bridge deck plate
According to the REFERENCE 5, pre-compliance requirements:25/4.6=5.43 2, So on the
basis of number of cross-continuous directional panel to do in computing.
(1) Constant load And internal load calculation
(1) Linear meters per board hang:
The autumnal tiles:
(Bitumen layer of concrete)
(Waterproof layer of concrete)
Bridge deck slab: exfoliation will support area of assessed contributions to the deck,
Then, average thickness
The total load is:
(2) The Board of m Wind Load Bending Moment
The calculation of the deck cross-diameter:
Simply press the Panel calculates cross bend moment:
15

:1g mkN/44.0220.102.0 
:2g mkN/84.1230.108.0 
)(73.2220)302500/()6020( cmt 
:3g mkN/68.5250.12273.0 
mkNgggg /96.7321 
mcmtll 4.4440204200 
mkNglMAg  26.1940.496.7
8
1
8
1 22
(2) Bearing moment caused by Road Grade Ⅰ
(According to the REFERENCE 5- Vehicle Loading lateral placement require vehicle load.
Do mid-span moment influence line, as is shown in the figure 3-1, vehicle arrangement
makes mid-span moment up to the maximum. The support is between two vehicles and keeps
equal distance with two wheels, so the effect to mid-span bending moment can be balanced,
only the first car’s effect needed.
① .effective distribution width of one-way slab
As is evaluated above, make one back wheel of vehicle loading act on span, make the
other one act on support. The force of two backshift: 2P=280kN
Touchdown length of the rear wheels of the load is 0.2m, the width is 0.6m. The effective
distribution of width on mid-span is:
Distance from the pivot point to another wheel near it
The effective distribution of the width of the wheel side
16
m
l
dhaa 27.3
3
40.4
4.1)10.022.0(
3
)2( 1 
m
bl
x 8.0
2
8.0
80.1
2
40.4
2
80.1
2

)2( 1 hax 
mxdthaa 63.38.0240.12273.0)10.022.0(2)2( 1
'

① Live load bending moment of each wide strip
On the basis of the bridge regulation, the local load of vehicle load and
impact coefficient on T beam and box beam is 0.3, so mid-span bending moment acted
on every wide strip is calculated.
The cross-Torque ruled on the wheel of the curve:
The cross-curve rolled on the wheel at pivots
Therefore, cross-Bend moment of each wide strip
(3) Calculation of design bending moment
① Combine with the normal use of the limits of the press, then calculate design bending
moment in charpoy’s way
As a result of =0.2273/1.5 (minimum) =0.152)
,
Tertiary row exfoliation design bend
a moment of:
Cross-Bend moment:
Pivot point bend moment:
17
mkN
hb
l
a
P
M 




 







 
 66.55
2
1.026.0
40.4
27.38
280
3.1
2
2
8
)1( 1
1 
mkNxa
P
M 

 03.108.0
63.38
280
3.1
4
2)1(
'
2 
mkNMMM Ap  69.6503.1066.5521
mkNMMM ApAg  95.8469.6526.190
ht /
4
1

mkNMM  48.4295.845.05.0 0中
mkNMM  47.5995.847.07.0 0支
② Press the load carrying capacity limits.The composition of the state of the press Charpy
Computing Design Bending Moment of,
Then By 5, Mr. =0.2273/1 high =0.152 minimum) Tertiary row exfoliation design
bend a moment of:
Cross-Bend moment:
Pivot point bend moment:
(2) The calculation of the cantilever slab
(4) 1/Hang contained within and its competitiveness computing
1 linear meters per board hang download
The autumnal tiles:
The arm of the Board:
Total:
Each side of the pavement railings and board building press
(2) Wide Load Bending Moment
The length of the cantilever board:
18
mkNMMM ApAg  08.11569.654.126.192.14.12.10
ht /
4
1

mkNMM  54.5708.1155.05.0 0中
mkNMM  55.8008.1157.07.0 0支
mkNg /28.2230.108.0220.102.01 
   mkNg /43.6250.12.01.2/6.02.02 
mkNggg  71.843.628.211
mkNG /0.5
ml 10.20 
Root Load Bending Moment:
Note:The Role of the joint positionof the sidewalkboard from
the boom enddistance of 0.5m
② Bearing moment caused by highway Grade Ⅰ
(1) Effective distribution width of one-way slab
The rear wheel of the vehicle load is arranged along sidewalk laterally.
Built-in as is shown in Figure 3-4 two back shaft force
Touchdown length of the rear wheels of the load is 0.2m, the width is 0.6m. From Figure
3-4, to calculate the distance from load pressure side outer edge to the outer edge of the Board
to be:
The load distribution width is:
(2) The meters wide strip of live download bend Torque
On the basis of the bridge regulation, the local load of vehicle load and
impact coefficient on T beam and box beam is 0.3, so mid-span bending moment acted
on every wide strip is
19
    mkNlGglM Ag  21.275.010.20.510.271.8
2
1
5.0
2
1 2
0
2
0
kNP 2802 
 
  m
hb
lc
9.0
2
1.026.0
1.15.01.2
2
2
1.15.00





cdhaa 221 
m60.39.0240.11.022.0 
  mkN
b
l
a
P
M Ap 













 94.85
2
8.0
10.2
60.32
280
3.1
22
2
1 0
(3)Calculation of design bending moment
Combine with the normal use of the limits of the press, then calculate design bending
moment
Press the carrying capacity of the state to limit in combination, Computing Design bend a
moment of:
(3) The reinforcement of bridge deck
(1) pivot reinforcement, calculate in unit 1m width
The calculation of the ribbed beam’s section effective height
(To meet the
requirements
20
mkNMMM ApAgA  15.11394.8521.27
    mkNMMM ApAgA  97.15294.854.121.272.14.12.1
mmcmtgshh 7.26667.26
3
1
2
40
2010  
0931.0
7.26610001.230.1
1097.152
2
6
01




bhf
M
c
s


55.00979.00931.0211211  bs 
951.0
2
0931.0211
2
211




 s
s


In accordance with HRB335 level steel18@100, then
,
requirement is met.
(2) cross-reinforced, the unit 1m plate width calculation,
(To meet the
requirements
In accordance with HRB335 Level@ 200 is 18 Steel
,
requirement is met.
21
2
6
0
4.2010
7.266300951.0
1097.152
mm
hf
M
A
ys
s 




2
2540 mmAs 
mmcmahh 160164200 
0973.0
16010001.230.1
1054.57
2
6
01




bhf
M
c
s


55.01026.00973.0211211  bs 
949.0
2
0973.0211
2
211




 s
s


2
6
0
2.1263
160300949.0
1054.57
mm
hf
M
A
ys
s 




2
1272 mmAs 
Chapter #5: Internal force calculation of main girder
The division of the whole bridge section
(1)for more convenience of bridge construction and better dividing by lifting weight, every
50cm beam section and weight are calculated by computing procedure specifically seen on
table
Section property calculation table
Section
Location
(m)
Beam
Heigh
t (cm)
Beam
Thicknes
s(cm)
Section Property Liang
Duanz
hong
(kN)
Beam of
the (kN)A(cm
2
)
S(cm3
) J(cm4
) Y(cm)
0.0 150.0 30.0
4500
0.00
2.969E+0
6
1.434E+0
8
66.0 0.0 0.0
0.5 150.1 30.6
4526
1.47
3.000E+0
6
1.442E+0
8
66.3 56.4 56.4
1.0 150.2 31.2
4553
1.61
3.035E+0
6
1.453E+0
8
66.6 56.7 113.2
1.5 150.5 31.8
4581
0.41
3.072E+0
6
1.466E+0
8
67.1 57.1 170.2
2.0 150.9 32.4
4609
7.88
3.112E+0
6
1.481E+0
8
67.5 57.4 227.7
2.5 151.4 33.1
4639
4.00
3.154E+0
6
1.500E+0
8
68.0 57.8 285.5
3.0 151.9 33.7
4669
8.79
3.200E+0
6
1.520E+0
8
68.5 58.2 343.7
3.5 152.7 34.3
4701
2.24
3.250E+0
6
1.544E+0
8
69.1 58.6 402.3
4.0 153.5 34.9
4733
4.36
3.302E+0
6
1.571E+0
8
69.8 59.0 461.2
4.5 154.4 35.5
4766
5.14
3.358E+0
6
1.601E+0
8
70.4 59.4 520.6
5.0 155.4 36.1
4800
4.58
3.417E+0
6
1.633E+0
8
71.2 59.8 580.4
5.5 156.6 36.7
4835
2.69
3.480E+0
6
1.669E+0
8
72.0 60.2 640.6
6.0 157.8 37.3
4870
9.45
3.547E+0
6
1.709E+0
8
72.8 60.7 701.3
6.5 159.2 38.0
4907
4.89
3.617E+0
6
1.751E+0
8
73.7 61.1 762.4
7.0 160.6 38.6
4944
8.98
3.692E+0
6
1.798E+0
8
74.7 61.6 824.0
7.5 162.2 39.2
4983
1.74
3.770E+0
6
1.848E+0
8
75.7 62.1 886.0
8.0 163.9 39.8
5022
3.16
3.853E+0
6
1.903E+0
8
76.7 62.5 948.5
8.5 165.6 40.4
5062
3.24
3.940E+0
6
1.961E+0
8
77.8 63.0 1011.6
9.0 167.5 41.0
5103
1.99
4.032E+0
6
2.024E+0
8
79.0 63.5 1075.1
9.5 169.5 41.6
5144
9.40
4.128E+0
6
2.091E+0
8
80.2 64.1 1139.2
10.0 171.7 42.2
5187
5.47
4.229E+0
6
2.163E+0
8
81.5 64.6 1203.7
10.5 173.9 42.9
5231
0.20
4.335E+0
6
2.240E+0
8
82.9 65.1 1268.9
11.0 176.2 43.5
5275
3.60
4.445E+0
6
2.322E+0
8
84.3 65.7 1334.5
11.5 178.6 44.1
5320
5.66
4.561E+0
6
2.410E+0
8
85.7 66.2 1400.7
12.0 181.2 44.7
5366
6.39
4.683E+0
6
2.504E+0
8
87.3 66.8 1467.5
12.5 183.8 45.3
5413
5.78
4.809E+0
6
2.603E+0
8
88.8 67.4 1534.9
13.0 186.6 45.9
5461
3.83
4.942E+0
6
2.709E+0
8
90.5 68.0 1602.9
13.5 189.5 46.5
5510
0.54
5.080E+0
6
2.821E+0
8
92.2 68.6 1671.5
Section
Location
(m)
Beam
height
(cm)
Beam
Thicknes
s (cm)
Section Property Liang
Duanz
hong
(kN)
Beam Of
the(kN)A(cm2
)
S(cm3
) J(cm4
) Y(cm)
14.0 192.4 47.1
55595
.92
5.224E+06 2.940E+08 94.0 69.2 1740.6
14.5 195.5 47.8
56099
.96
5.374E+06 3.067E+08 95.8 69.8 1810.5
15.0 198.7 48.4
56612
.66
5.530E+06 3.201E+08 97.7 70.4 1880.9
15.5 202.0 49.0
57134
.03
5.693E+06 3.343E+08 99.6 71.1 1952.0
16.0 205.4 49.6
57664
.06
5.862E+06 3.493E+08 101.7 71.7 2023.7
16.5 209.0 50.2
58202
.75
6.038E+06 3.652E+08 103.7 72.4 2096.2
17.0 212.6 50.8
58750
.10
6.221E+06 3.820E+08 105.9 73.1 2169.3
17.5 216.3 51.4
59306
.12
6.411E+06 3.998E+08 108.1 73.8 2243.0
18.0 220.2 52.0
59870
.80
6.608E+06 4.185E+08 110.4 74.5 2317.5
18.5 224.1 52.7
60444
.15
6.813E+06 4.383E+08 112.7 75.2 2392.7
19.0 228.2 53.3
61026
.16
7.026E+06 4.593E+08 115.1 75.9 2468.6
19.5 232.4 53.9
61616
.83
7.246E+06 4.813E+08 117.6 76.7 2545.3
20.0 236.6 54.5
62216
.16
7.474E+06 5.045E+08 120.1 77.4 2622.7
20.5 241.0 55.1
62824
.16
7.711E+06 5.290E+08 122.7 78.2 2700.8
21.0 245.5 55.7
63440
.82
7.956E+06 5.548E+08 125.4 78.9 2779.8
21.5 250.1 56.3
64066
.14
8.209E+06 5.820E+08 128.1 79.7 2859.4
22.0 254.8 56.9
64700
.12
8.472E+06 6.106E+08 130.9 80.5 2939.9
22.5 259.6 57.6
65342
.77
8.743E+06 6.407E+08 133.8 81.3 3021.2
23.0 264.6 58.2
65994
.08
9.024E+06 6.723E+08 136.7 82.1 3103.3
23.5 269.6 58.8
66654
.06
9.314E+06 7.056E+08 139.7 82.9 3186.2
24.0 274.7 59.4
67322
.70
9.614E+06 7.405E+08 142.8 83.7 3269.9
24.5 280.0 60.0
68000
.00
9.924E+06 7.772E+08 145.9 84.6 3354.5
25.0 280.0 60.0
68000
.00
9.924E+06 7.772E+08 145.9 84.6 3439.1
(2) Diaphragm weight
(3) Main frame construction (40t lifting capacity):
Support Housing Department 25.0~24 4.0, 864 340.2 2+171 =340.2KN (including
diaphragm)
The second paragraph of 24.0~22 4.0m, 3269.9-2939.9=330kN
25
      36
84.621102020501406020210200 mV  
kNVQ 1712684.626 

The third paragraph of 22.0~19.5m, 2939.9-2545.3=394.6kN
The fourth paragraph of 19.5~17.0m,2545.3-2169.3=376kN
The fifth paragraph of 17.0~14.5m,2169.3-1810.5=358.8kN
The sixth paragraph of 14.5~12.0m,1810.5-1467.5=343kN
The seventh paragraph of 12.0~9.0m, 1467.5-1075.1=392.4kN
The eighth paragraph of 9.0~6.0m, 1075.1-701.3=373.8kN
The ninth paragraph of 6.0~3.0m, 701.3-343.7=357.6kN
The middle paragraph of 3.0~0m, 343.7-0=343.7kN
(4)cross span construction (40t lifting capacity) :
Support Housing Department 30.0~29.0m,864 2+171=340.2kN (including diaphragm)
The second paragraph of 29.0~27.0m,3269.9-2939.9=330kN
The third paragraph of 27.0~24.5m,2939.9-2545.3=394.6kN
The fourth paragraph of 24.5~22.0m,2545.3-2169.3=376kN
The fifth paragraph of 22.0~19.5m,2169.3-1810.5=358.8kN
The sixth paragraph of 19.5~17.0m,1810.5-1467.5=343kN
The seventh paragraph of 17.0~14.0m,1467.5-1075.1=392.4kN
The eighth paragraph of 14.0~10.0m,1075.1-701.3=373.8kN
The ninth paragraph of 10.0~8.0m, 701.3-343.7=357.6kN
The tenth paragraph of 8.0~5.0m, 343.7-0=343.7kN
The eleventh paragraph of 5.0~0m,full supporting
26

(2) Internal force of dead load and live load
On the basis of arrangement of beam and span vertical section, by moving load to most
unfavorable position, determine internal force of the control section and combine them, Draw
envelope figure.
(1) According to the bridge regulation, when the bridge is designed on bearing capacity, it
should be conducted as follows:
(4.
Where: - The Importance of Structural factor ,security level is the level 1 when the 1.1
- under limit state, Load capacity the basic combination of the effects of the
combination of the value
- Part of the role of the permanent effect design values
- Vehicle Load effect city include the vehicle impact, centrifugal force of design
values
- on the role of the portfolio in addition to Effect Vehicle Load effect city include the
vehicle impact, other than the centrifugal force
(2) According to the bridge regulation, when the bridge is designed on limit state, it should
be conducted as follows:
① short-term benefits
- Design value of role of the short-term effect
- the standard value of permanent role
27
0 udS 







   
m
i
n
j
QjdcdQGid SSS
1 2
10 
0
udS
GidS
dQS 1
c
Qjk
n
j
j
m
i
Giksd SSS  

1
1
1

sdS
GikS
- frequent value factor of the first variable effects,
Vehicle load = 0.7mm,
the crowd load ≤1.0
- frequent value of each variable j effects
(2) Long-term benefits
- The design values of the long-term effects
-- standard value under NO.i permanent role
- quasi-permanent value Factor of The role of each variable j effects,
Vehicle load = 0.4,
the crowd load ≤0.4
- Quasi-permanent value of NO.j variable role
Midas bridge calculation software for modeling, as shown in Figure 4-2, the flat is divided
into 220 units, each unit 0.5M. Only considering the influence of concrete shrinkage and creep s
econdary internal force structure.
The bridge model by Midas
28
j1
1
1
j1 QjkS
Qjk
n
j
j
m
i
Gikld SSS  

1
2
1

ldS
GikS
j2
2
2
j2 QjkS
Output after the operation analysis of dead load and live load inner force and internal
force combination according to ultimate limit State, as shown in table 4-2, 4-3.
Ultimate limit State moment (KN.m) combined meter
Sectio
n
Dead Load
M
Live
Loads
Mmax
Live
Loads
Mmin
Creep M
Combinati
on Mmax
Combination
Mmin
0 0 0 0 0 0 0
0.5 116.9267 476.126 -92.6515 209.4133 1117.932 216.2907
1 225.7284 919.1819 -186.616 404.301 2158.233 405.644
1.5 326.4051 1331.767 -283.205 584.6633 3124.906 566.0401
2 418.9567 1716.999 -383.726 750.5001 4022.752 695.4649
2.5 503.3834 2078.392 -489.482 901.8114 4857.182 791.9115
3 579.6851 2419.747 -601.77 1038.597 5634.051 853.3845
3.5 647.8618 2745.05 -721.877 1160.858 6359.497 877.9011
4 707.9135 3058.382 -851.078 1268.592 7039.806 863.4959
4.5 759.8402 3363.833 -990.637 1361.802 7681.274 808.2256
5 803.6418 3665.422 -1141.8 1308.875 8145.319 565.3979
5.5 839.3185 3967.015 -1305.79 1366.987 8720.789 416.0151
6 866.8702 4250.472 -1469.79 1411.765 9242.937 243.0253
6.5 886.2969 4515.804 -1633.78 1443.238 9711.812 46.46132
7 897.5986 4763.041 -1797.78 1461.427 10127.48 -173.654
7.5 900.7753 4992.234 -1961.78 1466.352 10490.05 -417.298
8 895.827 5203.456 -2125.78 1458.037 10799.65 -684.445
8.5 882.7536 5396.798 -2289.78 1436.506 11056.46 -975.076
9 861.5553 5572.371 -2453.78 1401.788 11260.67 -1289.15
9.5 832.232 5730.305 -2617.79 1353.911 11412.52 -1626.64
10 794.7837 5870.743 -2781.79 1292.908 11512.26 -1987.5
10.5 749.2104 5993.845 -2945.8 1218.811 11560.17 -2371.71
11 695.5121 6099.788 -3109.8 1131.656 11556.57 -2779.21
11.5 633.6887 6188.756 -3273.81 1031.478 11501.78 -3209.98
12 563.7404 6260.948 -3437.81 918.3144 11396.14 -3663.97
12.5 485.6671 6316.572 -3601.82 792.2049 11240.03 -4141.14
13 399.4688 6355.841 -3765.82 653.1886 11033.8 -4641.45
13.5 305.1455 6378.973 -3929.83 501.3058 10777.85 -5164.84
14 202.6972 6386.209 -4093.84 336.5978 10472.58 -5711.28
14.5 92.12384 6377.77 -4257.84 159.1063 10118.39 -6280.72
15 -26.5745 6353.887 -4421.85 -27.7316 9725.248 -6875.23
15.5 -153.398 6314.793 -4585.85 -217.787 9316.477 -7504.26
16 -288.346 6260.725 -4749.86 -419.699 8862.667 -8157.07
16.5 -431.419 6191.91 -4913.86 -633.426 8364.212 -8833.59
17 -582.618 6108.585 -5077.87 -858.928 7821.521 -9533.79
17.5 -741.941 6010.973 -5241.87 -1096.16 7234.982 -10257.6
18 -909.389 5899.293 -5405.88 -1345.1 6604.977 -11005.1
18.5 -1084.96 5773.76 -5569.89 -1605.68 5931.883 -11776
19 -1268.66 5634.601 -5733.89 -1877.88 5216.091 -12570.5
19.5 -1460.48 5482.019 -5897.9 -2161.65 4457.959 -13388.4
20 -1660.43 5316.218 -6061.9 -2456.96 3657.846 -14229.8
20.5 -1868.51 5137.393 -6225.91 -2763.76 2816.093 -15094.5
21 -2084.7 4945.731 -6389.92 -3082.02 1933.032 -15982.5
21.5 -2309.03 4741.418 -6553.92 -3411.69 1008.992 -16893.8
22 -2541.48 4524.633 -6717.93 -3752.75 44.28965 -17828.4
22.5 -2782.05 4295.541 -6881.93 -4105.14 -960.778 -18786.1
23 -3030.75 4055.181 -7046.81 -4468.84 -2004.57 -19768.4
23.5 -3287.57 3811.445 -7220.32 -4843.81 -3074.89 -20787.1
24 -3552.52 3566.528 -7404.49 -5230.01 -4168.33 -21845.2
24.5 -3825.59 3320.764 -7599.51 -5627.41 -5284.32 -22943.2
25 -4106.79 3074.493 -7805.61 -6035.96 -6422.31 -24081.2
25.5 -4396.11 2828.066 -8022.99 -6455.65 -7581.71 -25259.5
26 -4693.56 2581.845 -8251.92 -6886.42 -8761.94 -26478.5
26.5 -4999.14 2336.207 -8492.65 -7328.25 -9962.37 -27738.6
27 -5312.83 2091.532 -8745.45 -7781.11 -11182.4 -29040.2
27.5 -5634.66 1848.208 -9010.6 -8244.97 -12421.3 -30383.5
28 -5964.61 1606.628 -9288.42 -8719.79 -13678.6 -31769.2
28.5 -6302.68 1436.059 -9579.2 -9205.54 -14847.5 -33197.6
29 -6648.88 1434.888 -9883.28 -9702.19 -15776.4 -34669.2
29.5 -7003.2 1441.835 -10201 -10214.9 -16719.5 -36190.1
30 -7365.65 1457.251 -10532.7 -10746.7 -17679.5 -37764.4
30.5 -6963.49 1414.665 -10010.8 -10159.2 -16656.3 -35783.4
31 -6569.43 1375.222 -9500.53 -9583.96 -15650.9 -33844.8
31.5 -6183.49 1339.126 -9002.93 -9021.03 -14662.7 -31949.8
32 -5805.67 1306.338 -8517.46 -8470.18 -13691.7 -30097.6
32.5 -5435.99 1352.896 -8044.66 -7931.29 -12620.5 -28288.7
33 -5074.42 1496.659 -7584.16 -7404.3 -11421.7 -26522.6
33.5 -4720.98 1642.367 -7136.63 -6889.14 -10241.9 -24800.2
34 -4375.67 1789.939 -6701.66 -6385.77 -9081.08 -23120.8
34.5 -4038.48 1939.291 -6279.46 -5894.15 -7939.39 -21484.7
35 -3709.42 2090.335 -5870.5 -5414.23 -6816.9 -19892.7
35.5 -3388.48 2242.986 -5474.59 -4946 -5713.73 -18344.3
36 -3075.67 2397.152 -5091.92 -4489.42 -4629.98 -16839.8
36.5 -2770.98 2552.743 -4722.66 -4044.47 -3565.77 -15379.5
37 -2474.42 2709.66 -4366.99 -3611.14 -2521.23 -13963.7
37.5 -2185.98 2867.808 -4025.07 -3189.4 -1496.49 -12592.4
38 -1905.67 3027.089 -3697.11 -2779.24 -491.681 -11266.2
38.5 -1633.48 3187.401 -3482.85 -2380.65 493.0546 -10138.5
39 -1369.42 3348.644 -3313.51 -1993.62 1457.572 -9103.42
39.5 -1113.48 3510.712 -3152.53 -1618.14 2401.718 -8104.64
40 -865.666 3673.502 -2999.89 -1254.2 3325.339 -7142.13
40.5 -625.979 3836.907 -2855.58 -901.801 4228.28 -6215.86
41 -394.416 4000.831 -2719.59 -560.935 5110.394 -5325.82
41.5 -170.978 4165.171 -2591.93 -231.602 5971.525 -4472.02
42 44.33495 4329.833 -2472.6 86.19958 6821.284 -3664.22
42.5 251.5228 4494.723 -2361.64 392.4685 7685.598 -2928.53
43 450.5856 4659.763 -2259.07 687.2026 8526.731 -2227.39
43.5 641.5233 4824.901 -2164.94 970.3982 9344.596 -1560.9
44 824.3361 4990.112 -2079.37 1242.05 10139.15 -929.199
44.5 999.0238 5155.481 -2002.54 1502.152 10910.52 -332.612
45 1165.587 5321.745 -1935.32 1865.945 11786.6 354.2973
45.5 1324.024 5498.549 -1887.48 2118.913 12546.28 880.5179
46 1474.337 5678.308 -1851.55 2359.522 13286.19 1365.857
46.5 1616.525 5852.568 -1819.22 2587.758 13993.3 1823.12
47 1750.587 6018.463 -1787.71 2803.608 14663.18 2256.538
47.5 1876.525 6175.239 -1756.43 3007.055 15294.64 2667.038
48 1994.338 6322.639 -1725.23 3198.082 15887.28 3054.81
48.5 2104.025 6460.505 -1694.08 3376.668 16440.83 3419.886
49 2205.588 6588.703 -1662.95 3542.794 16955.05 3762.284
49.5 2299.026 6707.112 -1631.83 3696.435 17429.74 4081.991
50 2384.338 6815.62 -1600.72 3837.567 17864.7 4378.985
50.5 2461.526 6914.125 -1569.62 3966.163 18259.75 4653.242
51 2530.589 7002.532 -1538.53 4082.195 18614.69 4904.733
51.5 2591.526 7080.755 -1507.43 4185.629 18929.37 5133.424
52 2644.339 7148.713 -1476.34 4276.435 19203.62 5339.282
52.5 2689.026 7206.337 -1445.26 4354.574 19437.3 5522.267
53 2725.589 7253.568 -1414.17 4420.01 19630.28 5682.336
53.5 2754.026 7290.355 -1383.09 4472.7 19782.43 5819.445
54 2774.339 7316.659 -1352 4512.601 19893.64 5933.547
54.5 2786.526 7332.454 -1320.92 4539.665 19963.83 6024.589
55 2790.589 7337.72 -1289.84 4549.726 19988.36 6087.988
55.5 2786.526 7332.454 -1320.92 4542.349 19966.78 6027.541
56 2774.339 7316.66 -1352 4521.379 19903.3 5943.203
56.5 2754.026 7290.355 -1383.09 4486.928 19798.08 5835.096
57 2725.589 7253.568 -1414.17 4439.06 19651.24 5703.291
57.5 2689.026 7206.337 -1445.26 4377.826 19462.88 5547.844
58 2644.339 7148.712 -1476.34 4303.273 19233.14 5368.805
58.5 2591.526 7080.756 -1507.43 4215.448 18962.17 5166.225
59 2530.589 7002.533 -1538.53 4114.395 18650.11 4940.153
59.5 2461.526 6914.125 -1569.62 4000.158 18297.14 4690.636
60 2384.338 6815.621 -1600.72 3872.783 17903.44 4417.722
60.5 2299.026 6707.112 -1631.83 3732.315 17469.21 4121.459
61 2205.588 6588.703 -1662.95 3578.801 16994.66 3801.893
61.5 2104.025 6460.506 -1694.08 3412.287 16480.01 3459.067
62 1994.338 6322.641 -1725.23 3232.819 15925.49 3093.021
62.5 1876.525 6175.238 -1756.43 3040.446 15331.37 2703.768
63 1750.587 6018.463 -1787.71 2835.214 14697.94 2291.304
63.5 1616.525 5852.569 -1819.22 2617.172 14025.66 1855.475
64 1474.337 5678.308 -1851.55 2386.368 13315.72 1395.387
64.5 1324.024 5498.55 -1887.48 2142.849 12572.61 906.847
65 1165.587 5321.745 -1935.32 1770.089 11681.16 248.8556
65.5 999.0238 5155.481 -2002.54 1518.276 10928.26 -314.876
66 824.3361 4990.112 -2079.37 1254.686 10153.05 -915.298
66.5 641.5233 4824.9 -2164.94 979.3655 9354.459 -1551.03
67 450.5856 4659.764 -2259.06 692.3582 8532.403 -2221.72
67.5 251.5228 4494.723 -2361.64 393.7084 7686.963 -2927.17
68 44.33495 4329.833 -2472.6 83.45975 6818.27 -3667.23
68.5 -170.978 4165.171 -2591.93 -238.344 5964.109 -4479.44
69 -394.416 4000.831 -2719.59 -571.661 5098.595 -5337.62
69.5 -625.979 3836.908 -2855.58 -916.448 4212.169 -6231.97
70 -865.666 3673.502 -2999.89 -1272.66 3305.031 -7162.44
70.5 -1113.48 3510.713 -3152.53 -1640.26 2377.379 -8128.98
71 -1369.42 3348.644 -3313.51 -2019.21 1429.42 -9131.57
71.5 -1633.48 3187.401 -3482.85 -2409.47 461.3574 -10170.2
72 -1905.67 3027.089 -3697.11 -2810.99 -526.602 -11301.1
72.5 -2185.98 2867.808 -4025.07 -3223.73 -1534.26 -12630.2
73 -2474.42 2709.66 -4366.99 -3647.67 -2561.42 -14003.8
73.5 -2770.98 2552.742 -4722.66 -4082.75 -3607.89 -15421.6
74 -3075.67 2397.152 -5091.92 -4528.96 -4673.47 -16883.3
74.5 -3388.48 2242.986 -5474.59 -4986.24 -5757.99 -18388.5
75 -3709.42 2090.335 -5870.5 -5454.56 -6861.26 -19937
75.5 -4038.48 1939.29 -6279.46 -5933.89 -7983.1 -21528.4
76 -4375.67 1789.939 -6701.66 -6424.19 -9123.34 -23163
76.5 -4720.98 1642.367 -7136.63 -6925.43 -10281.8 -24840.1
77 -5074.42 1496.659 -7584.16 -7437.58 -11458.4 -26559.2
77.5 -5435.99 1352.896 -8044.66 -7960.61 -12652.8 -28320.9
78 -5805.67 1306.338 -8517.46 -8494.48 -13718.4 -30124.3
78.5 -6183.49 1339.126 -9002.93 -9039.16 -14682.7 -31969.8
79 -6569.43 1375.222 -9500.53 -9594.63 -15662.6 -33856.5
79.5 -6963.49 1414.666 -10010.7 -10166 -16663.8 -35790.9
80 -7365.68 1457.493 -10533 -10751.6 -17684.5 -37770.3
80.5 -7003.2 1441.835 -10201 -10222.4 -16727.7 -36198.3
81 -6648.88 1434.888 -9883.28 -9705.53 -15780.1 -34672.9
81.5 -6302.68 1436.059 -9579.2 -9200.98 -14842.5 -33192.6
82 -5964.61 1606.628 -9288.42 -8708.53 -13666.2 -31756.8
82.5 -5634.66 1848.208 -9010.6 -8228.09 -12402.8 -30365
83 -5312.83 2091.532 -8745.45 -7759.57 -11158.7 -29016.5
83.5 -4999.14 2336.207 -8492.65 -7302.94 -9934.52 -27710.8
84 -4693.56 2581.845 -8251.92 -6858.13 -8730.82 -26447.4
84.5 -4396.11 2828.066 -8023 -6425.12 -7548.14 -25225.9
85 -4106.79 3074.493 -7805.61 -6003.88 -6387.02 -24045.9
85.5 -3825.59 3320.764 -7599.51 -5594.38 -5247.99 -22906.8
86 -3552.52 3566.528 -7404.49 -5196.6 -4131.58 -21808.5
86.5 -3287.57 3811.445 -7220.32 -4810.52 -3038.27 -20750.5
87 -3030.75 4055.181 -7046.82 -4436.12 -1968.58 -19732.4
87.5 -2782.05 4295.541 -6881.93 -4073.4 -925.866 -18751.2
88 -2541.48 4524.633 -6717.93 -3722.35 77.72852 -17794.9
88.5 -2309.03 4741.419 -6553.92 -3382.95 1040.614 -16862.2
89 -2084.7 4945.732 -6389.91 -3055.19 1962.539 -15953
89.5 -1868.51 5137.393 -6225.91 -2739.09 2843.232 -15067.3
90 -1660.43 5316.218 -6061.9 -2434.62 3682.412 -14205.2
90.5 -1460.48 5482.019 -5897.9 -2141.8 4479.791 -13366.6
91 -1268.66 5634.601 -5733.89 -1860.63 5235.066 -12551.5
91.5 -1084.96 5773.762 -5569.89 -1591.1 5947.922 -11760
92 -909.389 5899.292 -5405.88 -1333.23 6618.032 -10992
92.5 -741.941 6010.973 -5241.87 -1087.01 7245.055 -10247.6
93 -582.618 6108.586 -5077.87 -852.456 7828.641 -9526.67
93.5 -431.419 6191.91 -4913.86 -629.579 8368.443 -8829.36
94 -288.346 6260.724 -4749.86 -418.389 8864.106 -8155.63
94.5 -153.398 6314.793 -4585.85 -218.897 9315.256 -7505.48
95 -26.5745 6353.885 -4421.85 -34.6477 9717.638 -6882.83
95.5 92.12384 6377.769 -4257.84 153.3302 10112.03 -6287.07
96 202.6972 6386.209 -4093.84 328.7694 10463.97 -5719.89
96.5 305.1455 6378.974 -3929.83 491.6494 10767.23 -5175.46
97 399.4688 6355.841 -3765.82 641.9478 11021.44 -4653.81
97.5 485.6671 6316.572 -3601.82 779.6404 11226.21 -4154.96
98 563.7404 6260.95 -3437.81 904.7007 11381.17 -3678.95
98.5 633.6887 6188.756 -3273.81 1017.1 11485.96 -3225.8
99 695.5121 6099.787 -3109.8 1116.809 11540.24 -2795.54
99.5 749.2104 5993.845 -2945.8 1203.793 11543.65 -2388.23
100 794.7837 5870.742 -2781.79 1278.018 11495.88 -2003.88
100.5 832.232 5730.304 -2617.79 1339.446 11396.6 -1642.55
101 861.5553 5572.37 -2453.78 1388.036 11245.54 -1304.28
101.5 882.7536 5396.798 -2289.78 1423.745 11042.42 -989.113
102 895.827 5203.455 -2125.78 1446.527 10786.99 -697.106
102.5 900.7753 4992.234 -1961.78 1456.332 10479.03 -428.32
103 897.5986 4763.041 -1797.78 1453.108 10118.33 -182.805
103.5 886.2969 4515.804 -1633.78 1436.798 9704.728 39.37709
104 866.8702 4250.472 -1469.79 1407.343 9238.072 238.1605
104.5 839.3185 3967.014 -1305.79 1364.678 8718.248 413.4749
105 803.6418 3665.422 -1141.8 1439.091 8288.556 708.6348
105.5 759.8402 3363.833 -990.637 1360.546 7679.893 806.8444
106 707.9135 3058.382 -851.078 1267.477 7038.578 862.2687
106.5 647.8618 2745.049 -721.877 1159.881 6358.423 876.827
107 579.6851 2419.747 -601.77 1037.76 5633.13 852.4639
107.5 503.3834 2078.392 -489.482 901.114 4856.415 791.1445
108 418.9567 1716.999 -383.726 749.9422 4022.138 694.8511
108.5 326.4051 1331.767 -283.205 584.2449 3124.445 565.5798
109 225.7284 919.1819 -186.616 404.0221 2157.926 405.337
109.5 116.9267 476.126 -92.6515 209.2738 1117.778 216.1373
110 0 0 0 0 0 0
Ultimate Limit State Shear (KN) Combined meter
Sectio
n
Dead Load
V
Live
Loads Vmax
Live
Loads Vmin
Creep V Combinati
on Vmax
Coombinat
ionVmin
0 -241.978 205.2042 -1138.28 -433.352 -426.849 -2549.05
0.5 -225.728 208.3238 -1094.68 -404.301 -372.214 -2428.5
1 -209.478 214.743 -1055.29 -375.25 -312.497 -2314.43
1.5 -193.228 224.4014 -1020.84 -346.199 -247.792 -2207.97
2 -176.978 237.218 -991.915 -317.148 -178.223 -2110.02
2.5 -160.728 253.0947 -968.944 -288.097 -103.942 -2021.24
3 -144.478 276.5913 -952.217 -259.046 -17.9263 -1942.08
3.5 -128.228 298.318 -941.906 -229.995 65.36379 -1872.79
4 -111.978 317.8914 -938.072 -200.944 145.338 -1813.48
4.5 -95.7284 344.7603 -940.675 -171.893 236.5472 -1764.08
5 -79.4784 374.0115 -949.581 -129.839 345.7289 -1710.09
5.5 -63.2283 376.2641 -922.686 -103.435 396.1167 -1618.18
6 -46.9782 379.1804 -896.012 -77.0332 447.5254 -1526.61
6.5 -30.7281 399.9734 -869.576 -50.6405 526.4536 -1435.41
7 -14.4782 420.9515 -843.392 -24.263 605.65 -1344.62
7.5 1.77159 442.0986 -817.475 2.0946 685.4744 -1254.66
8 18.02105 463.3986 -791.841 28.42833 768.6928 -1168.34
8.5 34.27016 484.8361 -766.503 54.73461 852.0923 -1082.51
9 50.51884 506.3954 -741.475 81.01027 935.6451 -997.189
9.5 66.76701 528.0613 -716.769 107.2524 1019.324 -912.402
10 83.01459 549.8198 -692.396 133.4584 1103.106 -828.17
10.5 99.26149 571.6566 -668.368 159.6259 1186.965 -744.511
11 115.5076 593.5588 -644.694 185.7527 1270.879 -661.443
11.5 131.7529 615.513 -621.385 211.8368 1354.824 -578.984
12 147.9972 637.5073 -598.447 237.8763 1438.781 -497.147
12.5 164.2405 659.5306 -575.887 263.8696 1522.731 -415.945
13 180.4827 681.5727 -553.712 289.8151 1606.656 -335.389
13.5 196.7236 703.6233 -531.928 315.7114 1690.538 -255.49
14 212.9631 725.6731 -510.538 341.5572 1774.361 -176.256
14.5 229.2012 747.7142 -489.546 367.3514 1858.112 -97.6926
15 245.4377 769.7388 -468.954 368.1455 1914.336 -47.2477
15.5 261.6726 791.7403 -448.764 392.2094 1996.118 28.1732
16 277.9056 813.7125 -428.977 416.2221 2077.797 102.916
16.5 294.1368 835.6504 -409.593 440.1831 2159.364 176.9793
17 310.3659 857.5488 -390.61 464.0916 2240.809 250.3635
17.5 326.5928 879.404 -372.028 487.947 2322.126 323.0702
18 342.8175 901.2131 -353.844 511.7489 2403.311 395.1025
18.5 359.0398 922.9732 -336.056 535.4968 2484.358 466.464
19 375.2595 944.6813 -318.66 559.1903 2565.261 537.1577
19.5 391.4765 966.3357 -301.654 582.8292 2646.018 607.1891
20 407.6907 987.9351 -285.033 606.4131 2726.626 676.5639
20.5 423.902 1009.478 -268.792 629.9419 2807.083 745.2888
21 440.1103 1030.966 -252.927 653.4153 2887.39 813.3711
21.5 456.3153 1052.396 -237.432 676.8334 2967.543 880.8182
22 472.5169 1073.77 -222.303 700.1959 3047.544 947.638
22.5 488.7151 1095.089 -207.533 723.5028 3127.394 1013.839
23 504.9096 1116.352 -193.117 746.7542 3207.093 1079.43
23.5 521.1004 1137.561 -179.048 769.9501 3286.642 1144.422
24 537.2873 1158.718 -165.321 793.0906 3366.045 1208.822
24.5 553.4702 1179.824 -151.929 816.1758 3445.303 1272.641
25 569.6489 1200.88 -138.865 839.2057 3524.418 1335.888
25.5 585.8232 1221.889 -126.124 862.1806 3603.394 1398.573
26 601.9931 1242.851 -113.699 885.1006 3682.232 1460.707
26.5 618.1585 1263.771 -101.583 907.9659 3760.938 1522.299
27 634.3191 1284.648 -89.7709 930.7768 3839.513 1583.358
27.5 650.4748 1305.485 -78.2556 953.5335 3917.961 1643.896
28 666.6256 1326.285 -67.031 976.2363 3996.285 1703.92
28.5 682.7713 1347.05 -58.4664 998.8855 4074.489 1759.784
29 698.9117 1367.781 -58.0697 1021.481 4152.576 1803.005
29.5 716.7716 1391.832 -57.9362 1047.073 4241.339 1851.007
30 -812.5 108.7211 -1486.42 -1187.66 -2032.75 -4668.01
30.5 -794.421 108.59 -1466.91 -1161.38 -1984.15 -4585.19
31 -778.291 108.7712 -1450.91 -1137.9 -1940.3 -4513.43
31.5 -762.155 109.0176 -1434.85 -1114.47 -1896.4 -4441.63
32 -746.014 109.3306 -1418.73 -1091.07 -1852.42 -4369.75
32.5 -729.867 109.7119 -1402.54 -1067.69 -1808.36 -4297.79
33 -713.716 110.1629 -1386.28 -1044.33 -1764.2 -4225.74
33.5 -697.559 110.6854 -1369.95 -1020.98 -1719.94 -4153.58
34 -681.398 111.281 -1353.55 -997.646 -1675.58 -4081.32
34.5 -665.232 111.9513 -1337.08 -974.313 -1631.09 -4008.95
35 -649.061 112.6983 -1320.53 -950.984 -1586.49 -3936.45
35.5 -632.886 113.5237 -1303.9 -927.655 -1541.77 -3863.84
36 -616.707 117.0719 -1287.2 -904.324 -1492.84 -3791.09
36.5 -600.523 124.9087 -1270.41 -880.99 -1437.3 -3718.22
37 -584.335 132.99 -1253.55 -857.65 -1381.38 -3645.2
37.5 -568.144 141.3209 -1236.6 -834.304 -1325.06 -3572.05
38 -551.949 149.9066 -1219.57 -810.948 -1268.33 -3498.76
38.5 -535.75 158.7523 -1202.46 -787.581 -1211.19 -3425.31
39 -519.548 167.8629 -1185.26 -764.203 -1153.62 -3351.73
39.5 -503.342 177.2428 -1167.97 -740.81 -1095.61 -3277.98
40 -487.133 186.8964 -1150.61 -717.403 -1037.17 -3204.09
40.5 -470.922 196.828 -1133.15 -693.979 -978.275 -3130.05
41 -454.707 207.0415 -1115.61 -670.536 -918.923 -3055.85
41.5 -438.49 217.5407 -1097.99 -647.074 -859.107 -2981.49
42 -422.269 228.3288 -1080.29 -623.59 -798.819 -2906.99
42.5 -406.047 239.4081 -1062.5 -600.084 -738.056 -2832.33
43 -389.822 250.7812 -1044.64 -576.554 -676.81 -2757.52
43.5 -373.595 262.4504 -1026.71 -552.998 -615.078 -2682.57
44 -357.365 274.4174 -1008.7 -529.415 -552.855 -2607.47
44.5 -341.134 286.6829 -990.617 -505.803 -490.139 -2532.23
45 -324.901 299.2473 -972.474 -514.702 -462.722 -2492.65
45.5 -308.666 312.1105 -954.271 -489.43 -397.255 -2415.39
46 -292.429 325.2714 -936.013 -464.121 -331.287 -2338
46.5 -276.191 338.7285 -917.707 -438.775 -264.82 -2260.49
47 -259.951 352.4797 -899.357 -413.389 -197.855 -2182.87
47.5 -243.71 366.5216 -880.973 -387.96 -130.394 -2105.15
48 -227.468 380.8502 -862.562 -362.488 -62.4425 -2027.34
48.5 -211.225 395.4609 -844.132 -336.97 5.995867 -1949.45
49 -194.98 410.3486 -825.692 -311.403 74.9153 -1871.48
49.5 -178.735 425.5072 -807.252 -285.785 144.3087 -1793.46
50 -162.489 440.9295 -788.822 -260.114 214.1678 -1715.4
50.5 -146.242 456.6079 -770.413 -234.388 284.4834 -1637.3
51 -129.995 472.5338 -752.036 -208.602 355.2454 -1559.19
51.5 -113.747 488.6984 -733.702 -182.756 426.4431 -1481.08
52 -97.4979 505.0918 -715.423 -156.845 498.0645 -1402.98
52.5 -81.2489 521.7035 -697.213 -130.866 570.0967 -1324.91
53 -64.9995 538.5224 -679.084 -104.817 642.5262 -1246.89
53.5 -48.7498 555.5371 -661.048 -78.6937 715.3393 -1168.93
54 -32.5 572.7358 -643.12 -52.4923 788.5215 -1091.05
54.5 -16.25 590.1058 -625.311 -26.2091 862.0579 -1013.26
55 0.00001 607.6348 -607.635 0.15982 935.9334 -935.582
55.5 16.25001 625.3098 -590.105 26.54508 1013.627 -861.687
56 32.4999 643.1178 -572.734 52.91733 1091.51 -788.051
56.5 48.74963 661.0454 -555.534 79.2711 1169.558 -714.7
57 64.99911 679.0801 -538.519 105.602 1247.744 -641.658
57.5 81.24826 697.2081 -521.699 131.9061 1326.045 -568.947
58 97.49702 715.417 -505.087 158.1802 1404.436 -496.589
58.5 113.7453 733.6939 -488.693 184.4211 1482.896 -424.604
59 129.993 752.0265 -472.528 210.6262 1561.4 -353.012
59.5 146.2401 770.4024 -456.601 236.7929 1639.929 -281.83
60 162.4865 788.8101 -440.922 262.919 1718.461 -211.075
60.5 178.732 807.2383 -425.5 289.0023 1796.976 -140.762
61 194.9766 825.6768 -410.341 315.0409 1875.456 -70.9053
61.5 211.2203 844.1148 -395.452 341.0331 1953.884 -1.51805
62 227.4628 862.5429 -380.841 366.9773 2032.242 67.38854
62.5 243.7042 880.9518 -366.512 392.872 2110.514 135.8046
63 259.9442 899.3338 -352.47 418.7158 2188.688 203.7219
63.5 276.1829 917.6808 -338.719 444.5076 2266.748 271.1327
64 292.4201 935.9851 -325.261 470.2461 2344.682 338.0302
64.5 308.6556 954.2403 -312.1 495.9305 2422.479 404.4105
65 324.8894 972.4409 -299.237 488.5902 2463.862 434.0028
65.5 341.1214 990.5815 -286.672 512.5469 2539.577 497.5598
66 357.3514 1008.657 -274.407 536.4505 2615.131 560.596
66.5 373.5793 1026.664 -262.439 560.3006 2690.517 623.111
67 389.805 1044.598 -250.77 584.0964 2765.729 685.1054
67.5 406.0283 1062.456 -239.397 607.8376 2840.761 746.581
68 422.2492 1080.236 -228.318 631.5238 2915.609 807.5411
68.5 438.4675 1097.937 -217.53 655.1547 2990.269 867.9888
69 454.683 1115.554 -207.03 678.7299 3064.738 927.9273
69.5 470.8957 1133.089 -196.817 702.2493 3139.014 987.3614
70 487.1054 1150.539 -186.886 725.7126 3213.093 1046.296
70.5 503.3119 1167.905 -177.232 749.1197 3286.977 1104.738
71 519.5152 1185.185 -167.852 772.4707 3360.662 1162.692
71.5 535.715 1202.38 -158.742 795.7653 3434.151 1220.166
72 551.9113 1219.49 -149.896 819.0037 3507.442 1277.166
72.5 568.1039 1236.516 -141.311 842.1858 3580.536 1333.7
73 584.2927 1253.458 -132.98 865.3118 3653.435 1389.775
73.5 600.4775 1270.318 -124.899 888.3816 3726.14 1445.4
74 616.6582 1287.097 -117.063 911.3956 3798.653 1500.583
74.5 632.8346 1303.796 -113.515 934.3537 3870.976 1549.095
75 649.0067 1320.416 -112.689 957.2563 3943.112 1593.348
75.5 665.1742 1336.96 -111.942 980.1035 4015.062 1637.415
76 681.337 1353.428 -111.271 1002.895 4086.83 1681.298
76.5 697.4951 1369.823 -110.675 1025.633 4158.417 1725
77 713.6482 1386.146 -110.153 1048.315 4229.827 1768.524
77.5 729.7962 1402.4 -109.701 1070.943 4301.064 1811.873
78 745.9391 1418.585 -109.32 1093.517 4372.129 1855.049
78.5 762.0766 1434.704 -109.007 1116.038 4443.027 1898.056
79 778.2086 1450.758 -108.76 1138.505 4513.759 1940.894
79.5 796.25 1470.283 -108.827 1164.196 4595.901 1988.896
80 -733.022 57.79134 -1412.71 -1071.07 -1895.5 -4321.34
80.5 -715.124 57.80306 -1388.63 -1044.94 -1847.05 -4231.89
81 -698.986 58.07584 -1367.93 -1021.44 -1803.03 -4152.85
81.5 -682.842 58.4724 -1347.19 -997.984 -1758.86 -4073.8
82 -666.693 67.0377 -1326.42 -974.554 -1702.13 -3994.73
82.5 -650.538 78.26319 -1305.61 -951.142 -1641.32 -3915.61
83 -634.379 89.77937 -1284.77 -927.744 -1580.08 -3836.44
83.5 -618.215 101.5925 -1263.89 -904.354 -1518.37 -3757.22
84 -602.047 113.7089 -1242.96 -880.971 -1456.21 -3677.93
84.5 -585.874 126.1349 -1221.99 -857.59 -1393.56 -3598.57
85 -569.697 138.8767 -1200.98 -834.209 -1330.43 -3519.14
85.5 -553.515 151.9409 -1179.92 -810.826 -1266.79 -3439.62
86 -537.33 165.3337 -1158.81 -787.438 -1202.63 -3360.02
86.5 -521.14 179.0617 -1137.65 -764.044 -1137.95 -3280.33
87 -504.947 193.1309 -1116.43 -740.642 -1072.73 -3200.54
87.5 -488.75 207.5476 -1095.17 -717.23 -1006.95 -3120.66
88 -472.549 222.3178 -1073.84 -693.807 -940.622 -3040.67
88.5 -456.345 237.4475 -1052.47 -670.37 -873.717 -2960.58
89 -440.138 252.9425 -1031.03 -646.918 -806.23 -2880.38
89.5 -423.928 268.8081 -1009.54 -623.45 -738.15 -2800.07
90 -407.714 285.0491 -987.992 -599.963 -669.47 -2719.65
90.5 -391.498 301.6707 -966.389 -576.458 -600.178 -2639.12
91 -375.279 318.6772 -944.731 -552.931 -530.268 -2558.48
91.5 -359.058 336.0729 -923.02 -529.381 -459.731 -2477.73
92 -342.834 353.8614 -901.256 -505.808 -388.56 -2396.86
92.5 -326.608 372.0453 -879.444 -482.209 -316.749 -2315.9
93 -310.379 390.6271 -857.586 -458.583 -244.293 -2234.82
93.5 -294.149 409.6094 -835.685 -434.928 -171.186 -2153.65
94 -277.916 428.9937 -813.744 -411.243 -97.4246 -2072.38
94.5 -261.682 448.7807 -791.769 -387.525 -23.0059 -1991.02
95 -245.446 468.9702 -769.765 -388.42 24.96108 -1936.69
95.5 -229.209 489.5617 -747.738 -363.028 102.4642 -1853.4
96 -212.97 510.5534 -725.695 -337.597 180.6291 -1770.05
96.5 -196.729 531.9428 -703.643 -312.124 259.4539 -1686.63
97 -180.487 553.7269 -681.591 -286.606 338.9362 -1603.16
97.5 -164.245 575.9012 -659.547 -261.043 419.0712 -1519.65
98 -148.001 598.4601 -637.522 -235.432 499.8526 -1436.12
98.5 -131.756 621.3976 -615.526 -209.77 581.2737 -1352.57
99 -115.51 644.7068 -593.57 -184.056 663.3263 -1269.03
99.5 -99.2632 668.3796 -571.667 -158.286 746.0008 -1185.51
100 -83.0159 692.4069 -549.828 -132.458 829.2855 -1102.02
100.5 -66.768 716.7786 -528.069 -106.569 913.1682 -1018.59
101 -50.5195 741.4839 -506.402 -80.6168 997.6354 -935.223
101.5 -34.2705 766.5114 -484.841 -54.5978 1082.672 -851.95
102 -18.0212 791.8483 -463.403 -28.509 1168.263 -768.788
102.5 -1.77161 817.4814 -442.102 -2.34697 1254.391 -685.757
103 14.47823 843.3966 -420.954 23.89172 1344.223 -606.062
103.5 30.72822 869.5794 -399.975 50.21084 1434.946 -526.929
104 46.97829 896.0149 -379.182 76.61434 1526.15 -447.988
104.5 63.22836 922.6872 -376.265 103.1064 1617.817 -396.479
105 79.47837 911.9806 -351.612 142.5633 1666.181 -297.237
105.5 95.72837 907.4177 -340.208 171.6142 1712.56 -229.844
106 111.9784 909.1759 -324.487 200.6652 1768.674 -155.802
106.5 128.2284 917.3415 -304.641 229.7162 1834.655 -75.4082
107 144.4784 931.9039 -280.948 258.7672 1910.487 10.91008
107.5 160.7284 952.7473 -253.776 287.8182 1995.992 102.5855
108 176.9784 979.6398 -225.759 316.8691 2090.813 195.5632
108.5 193.2284 1012.222 -215.754 345.9201 2194.395 260.8015
109 209.4784 1049.991 -208.951 374.9711 2305.966 321.1102
109.5 225.7284 1092.29 -205.418 404.0221 2424.512 376.3817
110 241.9784 1138.282 -205.204 433.073 2548.746 426.5421
According to the tables 4-2 and 4-3 can
be drawn under ultimate limit State moment envelope and the corresponding shear force envel
ope diagram,
Bending moment envelope diagrams (KN)
Shear force envelope diagram (KN)
41
Chapter #6: Mainbeam reinforcement
1. Estimation of prestressed reinforcement principle
1. Equipped with beam principle:
Construction of prestressed reinforcement should meet the stage and bridge operating force re
quirements and reinforcement placement in accordance
with construction requirements, including anchorage options, steel beam space layout,
etc., and to facilitate the construction.
2. Beam distribution formula
In accordance with the provisions of the code for design of reinforced concrete and
prestressed concrete highway bridges and
culverts, first prestressed concrete continuous beams under stress to meet load requirements.
Under normal circumstances, upper and lower edge of compressive stress is
not the controlling factor, simple plan, can be considered only on margin and margin does
not appear under tensile stress for restrictions. According to
the conditions of this type is expressed as:
0
上
min
上 
W
M
y , That is
上
上
W
M
y
min
 (5-1)
0max

下
下
W
M
y , That is
下
下
W
M
y
max
 (5-2)
Type: 上y , 下y --on a section by prestressing force and stress generated by the lower edge;
Mmax, Mmin-
section of maximum and minimum bending moment, positive moment is positive negative nega
tive bending moment;
上W 、 下W --Namely the section the upper and lower edge of flexural modulus.
According to section forces, there
are three possible forms of reinforcement: sectionare arranged on
the upper and lower margin of reinforced to resist positive and negative moment; only in the se
ction margin under layout of tendons to resist bendingmoments; or only in assigning the upper
edge reinforced to resist the negative moment.
42
① Sections are arranged on the upper and lower margin of prestressed tendons
Reinforced by force and in cross section and lower margin of stress are:
上
下下下
上
上上上
上=
W
eN
A
N
W
eN
A
N
y  (5-3)
下
下下下
下
上上上
下=
W
eN
A
N
W
eN
A
N
y  (5-4)
Order yyfnN 上上  , yyfnN 下下  (5-5)
We have:
))((
)()(
下上下上
下下上下下上下上
上
eekk
ekkekk
f
A
n
yy
yy 




(5-6)
))((
)()(
下上下上
下上下上下下上下
上
eekk
ekkekk
f
A
n
yy
yy 




(5-7)
Type: 上n , 下n ,--and lower margin of prestressing steel on the section number;
A--Concrete area;
yf --Each beam (unit) cross-sectional area of the prestressing steel;
y --
The persistent stress of prestressed reinforcement. Estimated number of bars is desirable for pr
e
Standard strength of stress bars;
上k , 下k --Section and lower margin of the core distance;
上e , 下e --Section upper and lower edge of prestressing to cross the center of gravity the Centre
of gravity range;
② Margin layout only under section prestressed tendons
Section lower edge only in the layout of tendons to resist bending moments, by thelower edge
of prestressing steel upper and lower stress in the cross section, respectively
Lower stress are:
43
上
下下下
上=
W
eN
A
N
y  (5-8)
下
下下下
下=
W
eN
A
N
y  (5-9)
Order yyfnN 上上  , (5-10)
We have:
下下
下上
下
ek
k
f
A
n
y
yy 



(5-11)
下上
下下
下
ek
k
f
A
n
y
yy 



(5-12)
③ Margin only in arrangement of prestressed tendons
The same can be obtained now does
not appear on the tensile stress is the sectionmargin number of prestressing:
下下
下上
上
ek
k
f
A
n
y
yy 



(5-13)
下下
下上
上
ek
k
f
A
n
y
yy 



(5-14)
④ Criterion of upper and lower reinforcement
Number of prestressed concrete flexural reinforcement not only associated with the cross
section subjected to bending moment and also needs to consider the effect ofsectional properti
es. Thus, reinforcement calculation, should not be considered onlywhen under positive and neg
ative bending moment interaction only when upper and lower reinforcement, but should
be based (5-6) and (5-7) on the basis of criterionreinforcement is derived.
(5-6), 0上n is available only in the lower reinforcement of conditions:
   上下下下下上下上 ekkekk y  y (5-15)
43
(5-7), 0下n is available only at the upper edge reinforced conditions:
  下下下上上上 kekk y y (5-16)
2. Estimation of prestressing tendon
Using Midas bridge calculation software, enter-
strand type 1x7 standard, and nominal diameter of 15.2mm, 139 mm2 cross-
sectional area, run the analysis section of the output for prestressing the estimated number, as
shown in table 5-1, unit area mm2 steel beam, steel beams for the root.
The estimation of prestressed steel bar table
Section Location
Steel
beam
area
Steel
beam
Section Location
Steel
beam
area
Steel
beam
Section Location
Steel
beam
area
Steel
beam
1 Bottom 0 0 13 Bottom 6170.462 44 26 Top 3686.675 27
1 Top 0 0 13 Top 1032.651 7 27 Bottom 7599.847 55
2 Bottom 712.7601 5 14 Bottom 6507.636 47 27 Top 3902.692 28
2 Top 9.8904 0 14 Top 1214.273 9 28 Bottom 7454.531 54
3 Bottom 1376.08 10 15 Bottom 6807.931 49 28 Top 4118.126 30
3 Top 28.5689 0 15 Top 1401.367 10 29 Bottom 7282.321 52
4 Bottom 1993.172 14 16 Bottom 7071.044 51 29 Top 4332.579 31
4 Top 57.6569 0 16 Top 1593.487 11 30 Bottom 7084.691 51
5 Bottom 2567.889 18 17 Bottom 7296.853 52 30 Top 4545.673 33
5 Top 98.7715 1 17 Top 1790.176 13 31 Bottom 6867.276 49
6 Bottom 3104.573 22 18 Bottom 7485.428 54 31 Top 4761.172 34
6 Top 153.5238 1 18 Top 1990.97 14 32 Bottom 6642.613 48
7 Bottom 3607.922 26 19 Bottom 7637.015 55 32 Top 4989.748 36
7 Top 223.516 2 19 Top 2195.379 16 33 Bottom 6397.83 46
8 Bottom 4082.864 29 20 Bottom 7752.035 56 33 Top 5216.677 38
8 Top 310.3395 2 20 Top 2402.915 17 34 Bottom 6134.395 44
9 Bottom 4534.441 33 21 Bottom 7831.068 56 34 Top 5441.61 39
9 Top 415.5722 3 21 Top 2613.09 19 35 Bottom 5853.772 42
10 Bottom 4967.708 36 22 Bottom 7874.848 57 35 Top 5664.226 41
10 Top 540.7754 4 22 Top 2825.414 20 36 Top 5884.226 42
11 Bottom 5387.633 39 23 Bottom 7884.252 57 36 Bottom 5557.399 40
11 Top 687.4897 5 23 Top 3039.405 22 37 Top 6101.339 44
12 Bottom 5796.9 42 24 Bottom 7860.286 57 37 Bottom 5246.677 38
38 Top 6315.319 45 50 Top 8629.933 62 63 Top 10158.81 73
38 Bottom 4922.982 35 50 Bottom 509.2788 4 63 Bottom 0 0
39 Top 6525.946 47 51 Top 8823.058 63 64 Top 9783.585 70
39 Bottom 4587.653 33 51 Bottom 150.9798 1 64 Bottom 0 0
40 Top 6733.022 48 52 Top 9019.307 65 65 Top 9403.285 68
40 Bottom 4241.975 31 52 Bottom 0 0 65 Bottom 0 0
41 Top 6936.375 50 53 Top 9218.433 66 66 Top 9018.479 65
41 Bottom 3887.183 28 53 Bottom 0 0 66 Bottom 0 0
42 Top 7135.852 51 54 Top 9420.219 68 67 Top 8629.122 62
42 Bottom 3524.459 25 54 Bottom 0 0 67 Bottom 0 0
43 Top 7331.329 53 55 Top 9624.461 69 68 Top 8235.954 59
43 Bottom 3154.928 23 55 Bottom 0 0 68 Bottom 0 0
44 Top 7522.692 54 56 Top 9830.978 71 69 Top 7838.963 56
44 Bottom 2779.664 20 56 Bottom 0 0 69 Bottom 0 0
45 Top 7709.86 55 57 Top 10039.59 72 70 Top 7438.641 54
45 Bottom 2399.677 17 57 Bottom 0 0 70 Bottom 0 0
46 Top 7892.759 57 58 Top 10250.16 74 71 Top 7035.699 51
46 Bottom 2015.922 15 58 Bottom 0 0 71 Bottom 0 0
47 Top 8072.077 58 59 Top 10462.54 75 72 Top 6630.404 48
47 Bottom 1630.032 12 59 Bottom 0 0 72 Bottom 0 0
48 Top 8254.138 59 60 Top 10676.61 77 73 Top 6223.356 45
48 Bottom 1249.198 9 60 Bottom 0 0 73 Bottom 211.3078 2
49 Top 8440.194 61 61 Top 11102.49 80 74 Top 5815.195 42
49 Bottom 875.475 6 61 Bottom 0 0 74 Bottom 523.5213 4
50 Top 8629.933 62 62 Top 10529.13 76 75 Top 5406.606 39
50 Bottom 509.2788 4 62 Bottom 0 0
75 Bottom 843.0748 6 86 Top 2137.151 15 97 Bottom 9329.945 67
76 Top 4998.319 36 87 Bottom 5218.671 38 97 Top 277.005 2
76 Bottom 1169.808 8 87 Top 1918.268 14 98 Bottom 9685.449 70
77 Top 4591.147 33 88 Bottom 5633.838 41 98 Top 152.1454 1
77 Bottom 1503.525 11 88 Top 1706.63 12 99 Bottom 10021.13 72
78 Top 4274.028 31 89 Bottom 6050.037 44 99 Top 31.7917 0
78 Bottom 1843.993 13 89 Top 1503.042 11 100 Bottom 10335.63 74
79 Top 3990.569 29 90 Bottom 6466.62 47 100 Top 0 0
79 Bottom 2190.939 16 90 Top 1308.435 9 101 Bottom 10627.66 76
80 Top 3709.288 27 91 Bottom 6883.605 50 101 Top 0 0
80 Bottom 2544.049 18 91 Top 1124.468 8 102 Bottom 10895.98 78
81 Top 3430.742 25 92 Bottom 7310.719 53 102 Top 0 0
81 Bottom 2902.964 21 92 Top 962.5553 7 103 Bottom 11139.42 80
82 Bottom 3267.285 24 93 Bottom 7739.214 56 103 Top 0 0
82 Top 3155.527 23 93 Top 815.6824 6 104 Bottom 11356.92 82
83 Bottom 3636.569 26 94 Bottom 8158.808 59 104 Top 0 0
83 Top 2884.266 21 94 Top 675.3281 5 105 Bottom 11547.5 83
84 Bottom 4010.328 29 95 Bottom 8565.112 62 105 Top 0 0
84 Top 2617.622 19 95 Top 538.8761 4 106 Bottom 11710.29 84
85 Bottom 4394.272 32 96 Bottom 8956.014 64 106 Top 0 0
85 Top 2362.532 17 96 Top 406.0257 3 107 Bottom 11844.53 85
2. Prestressed reinforced arrangements
1. Steel beam Layout:
Because no method in bridge prestressed post-tensioned, prestressed steel
bar prestressing horizontal spacing between, should guarantee the maximum aggregate in conc
rete in concrete can go through. Settings for the post-tensioning prestressing steel pipe
Should be guided by the following principles:
① Longitudinal reinforcement of prestressed steel beams for the structure of the main, for eas
e of design and construction, symmetric beam, bolt-head layout as close as possible to stress;
② When arranged in a cross section, straight beam near the top position, bending beams in or
near the webs, easy to bend under anchorage;
③ the horizontal spacing between the straight-pipe shall be not less than 40mm, and not less
than 0.6 times times the pipe diameter; for embedded corrugated metal pipe
And vertically between the two pipes superimposition;
④ Cross-sectional area of the pipe diameter should not be less than twice of prestressed steel
area times;
⑤ Steel beam layout shall comply with construction requirements
47
2. Arrangement of steel beams:
By prestressed steel beam estimates table known, full bridge prestressed steel beam up at for
87 root, take for 90 root, so, pre buried pipeline used metal corrugated tube, each root
corrugated tube set 9 root prestressed steel beam, forces maximum at layout 10 root
corrugated tube; anchor pad form used, installation aperture for M10, installation hole from for
135mm; anchor Board used,; tension end anchor with used OVM13-9 anchor with; tension Jack
model for YCW150B.
(1) Cross and bearing arrangement of prestressed steel beam
Prestressing of post-tensioned prestressed concrete flexural pipe layout should
be in conformity with the road
bridge in respect of the relevant structural requirements,reference the existing design drawings
and the structural requirements of the bridge Board, cross (see Figure 5-
1), and the support section (see Figure 5-2) preliminarylayout of the prestressing steel.
Cross section prestressed steel beam (in mm)
Bearing calculation of prestressed steel beam position (in mm) 48
(2) The steel beam vertical bend location and tilt computing
1. Steel beam crooking shapes, bend angle and its bend radius
Using the straight to the Arc of the curve bend the way to make the prestressed reinforced
pre-force Better anchor and anchor plate’s aao, prestressed reinforced the vertical angle bend
Derived Rust Inhibitor steel beam bending radius are taken to :
Down on the property Make sure that the cable anchor point
Distance from the point of the horizontal distance:
Down on the property Determine if the bent wires start point to the point
of the horizontal distance:
Therefore, bend the start point to the anchor point of the horizontal distance:
In accordance with the nature of the arc tangent figure, bend points along the lines for the
direction to lead the distance and bend the start point to the point of the horizontal distance
from the wire is equal, and therefore, bent wires for the point-to-point of the horizontal
distance:
In this design all the main spar prestressed Steel Vertical bend with the above calculations.
49



80  mmRN 15000
0cot cLd
mmcLd 14238cot200cot 0  

2
tan 0
2

 RLb
mmRLb 10494tan15000
2
tan 0
2  
mmLLL bdw 2472104914232 
mmLL bb 10398cos1049cos 021  

(3) Steel beam bending the position of the flat and flat bent corners
City backplane or top of the twisted steel in cross-market in or support base section in the
same level of, and in, when the majority of anchor in web anchor center line on the steel in
order to achieve this kind of tendon way centers are not in Web line prestressing steel strand
must be transferred from another location, turn into the side of the connection center line, in
order to facilitate the construction of the pipeline furnished prestressed abdominal panel
center on both sides of the line and the twisted steel flat bent in the same form.
Prestressed steel roof 5-55-Shu Ping bend as shown in Figure 7 below, shown in bottom plate of
prestressed steel Shu Ping bend as shown in Figure 5-7. For N2, N4,N11, N13,
the offset distance of 12cm, connected to
the two adjoining circular curve, circular curve radius R=1878cm, bending angle of arc in each p
aragraph 
58.4
150
1878
sinsin  arc
l
R
arc . For N1, N1,
the offset distance is 24cm, also uses a two-stage connected to
the arc, arc RADIUSR=3756cm, bending angle of arc in each paragraph

58.4
300
3756
sinsin  arc
l
R
arc
. N5, N15 steel beam, steel beams, anchoring of roof and floor respectively.
Due to symmetric reinforcement on both sides in
the middle section, so the steel beams are not drawn in the figure on the right in the middle.
In accordance
with the above calculation of the shaft bending and bending, arrangement of prestressed
steel beam welded connction, all the bridge section of prestressed steel beam known as shown
in table 5-2. Due to the full-
bridge arrangement ofsteel cross section in symmetrical, so that only the left half of
the bridge span steel beam arrangement.
Left half of the bridge span prestressed steel strands of layout tables
Section
TopLayer LowerNumbersOfthe bar
a=10 a=30 a=10 a=30
0.5 2 0 4 0
1 2 0 4 0
1.5 2 0 4 0
2 2 0 4 0
2.5 2 0 4 0
3 2 0 4 0
3.5 2 0 4 0
4 2 0 4 0
4.5 2 0 4 0
5 2 0 4 2
5.5 2 0 4 2
6 2 0 4 0
6.5 2 0 4 0
7 2 0 4 0
7.5 2 0 4 0
8 2 2 4 2
8.5 2 0 6 0
9 2 0 6 0
9.5 2 0 6 0
Section
TopLayer LowerNumbersOfthe bar
a=10 a=30 a=10 a=30
10 2 0 6 0
10.5 2 0 6 0
11 2 0 8 0
11.5 4 0 8 0
12 4 0 6 0
12.5 4 0 6 0
13 4 0 6 0
13.5 4 0 6 0
14 4 2 6 2
14.5 4 0 6 0
15 4 0 6 0
15.5 4 0 6 0
16 4 0 6 0
16.5 4 0 6 0
17 4 0 6 0
17.5 6 0 4 0
18 6 0 4 0
18.5 6 0 4 0
19 6 0 4 0
Section
TopLayer LowerNumbersOfThe bar
a=10 a=30 a=10 a=30
19.5 6 0 4 2
20 6 0 2 0
20.5 6 0 2 0
21 6 0 2 0
21.5 6 0 2 0
22 6 2 2 2
22.5 6 0 2 0
23 6 0 2 0
23.5 6 0 2 0
24 6 0 2 0
24.5 6 0 2 0
25 8 0 0 0
25.5 8 0 0 0
26 8 0 0 0
26.5 8 0 0 0
27 8 2 0 0
27.5 8 0 0 0
28 8 0 0 0
28.5 8 0 0 0
29 8 0 0 0
29.5 10 0 0 0
30 10 0 0 0
30.5 10 0 0 0
31 10 0 0 0
31.5 8 0 0 0
32 8 0 0 0
32.5 8 0 0 0
33 8 2 0 0
33.5 6 0 0 0
34 6 0 0 0
34.5 6 0 0 0
35 6 0 0 0
35.5 6 2 2 0
36 4 0 2 0
36.5 4 0 2 0
37 4 0 2 0
Section
TopLayer LowerNumbersOfThe Bar
a=10 a=30 a=10 a=30
38.5 4 0 2 0
37.5 4 0 2 0
38 4 2 2 2
39 4 0 2 0
39.5 4 0 2 0
40 4 0 2 0
40.5 4 0 2 0
41 2 0 2 0
41.5 2 0 2 0
42 2 0 2 0
42.5 2 0 2 0
43 2 2 2 2
43.5 2 0 4 0
44 2 0 4 0
44.5 2 0 4 0
45 2 0 4 0
45.5 2 0 4 0
46 2 0 4 2
46.5 2 0 6 0
47 2 0 6 0
47.5 2 0 6 0
48 2 0 6 0
48.5 2 0 6 0
49 2 0 6 2
49.5 0 0 8 0
50 0 0 8 0
50.5 0 0 8 0
51 0 0 8 0
51.5 0 0 8 0
52 0 0 8 0
52.5 0 0 10 0
53 0 0 10 0
53.5 0 0 10 0
54 0 0 10 0
54.5 0 0 10 0
55 0 0 10 0
54
Select 1 (full beam) , steel beam layout (see figure, and 5-8, and 5-9) is shown.
1 Calculation of prestressed steel beam position (in cm)
8 calculation of prestressed steel beam position (in cm)
55
4. Non-prestressed reinforced estimations and placement
(1) Non-prestressed reinforced estimate
Press the component load carrying capacity limit status request estimate Non-prestressed
reinforced quantity:
In determining the number of prestressed reinforced non-prestressed reinforced on the
basis of section is carrying capacity limit state's requirements to determine,
Set prestressed reinforced and non-prestressed reinforced the joint effort to point to the
bottom edge of the distance of the Section you have
The case of cross-sectional area of the press into glyphs sections, such as shown in the
figure GA5-11c:
① The equivalent of panel thickness:
② On the Support area per capita assessments on the wings, the equivalent
on wing panel thickness:
③ The support area per capita assessments on the wings, the equivalent of
the wing panel thickness:
The assumption that the equivalent sections for the first category of T type section by
formula, X computing pressure areas is highly
tertiary
56
mma 80
mmahh 27208028000 
cmb 80240 
cmhf 86.22
80920
22060
20 


上
cmhf 4.62
500
2060
60 

下
 20
'
0 xhxbfM fcdd 
 2272092004.22103.377700.1 6
xx 
Job-seekers could read as:
Based on the load carrying capacity of the Section is the computing needs of non-
prestressed reinforced area of:
Visible, Full DR simply press the construct Configuration vertical non-prestressed
reinforced.
(2) Non-prestressed reinforced furnished
In accordance with the reference of the ±5- Reinforced concrete road and prestressed
concrete bridge design specification for Covered by 9.3.6, 9.3, 8, of the regulations on the basis
of construction to configure the non-prestressed reinforced.
57
mmhmmx f 6.22824.68  上
0
330
12600126024.6892004.22
'





sd
ppdfcd
s
f
Afxbf
A
Chapter#7: Section load carrying capacity limit status calculations
1.A cross-section, load calculations
The maximum torque curve of the Section are sectional load carrying capacity calculations.
(1) For pressure areas height x
First press the first category of T-Sectional Leung, omitting the construction of steel impact
calculated by concrete pressure areas height, namely: skip x
Pressure areas are all located on the flange on the inside of the description is indeed the
first class T Type section,.
(2) Are cross-sectional load calculations
The Support Block-section prestressed reinforced diagram See Figure prestressed
reinforced the joint force to point to the distance from the top edge of the section,
(cross the placement of the level of steel
As can be seen from table 4-2, Dr Support Section to bend the torque converter portfolio
design values the mobile phone crashes occasionally sectional flexural
load:
(A ratio of 6 to 1
58
mmhmm
bf
AfAf
x f
fcd
ssdppd
6.22877
92004.22
0330126001260





 上
mma 100
mkNMd  3.37770
 20
'
xhxbfM fcdu 
 
  3.337703.337700.142233
1042233
27727007792004.22
0
6



dMmkN
mmN

Visible, stand-section is sectional load carrying capacity to meet the requirements.
2. A cross-sectional load calculations
(1) Support slanting sectional shear load calculations
First, in accordance with the formula for cross-sectional shear strength upper and lower
limits of the review, namely,
(A ratio of 6 to 2
In, Drug Drama
- Concrete Strength Rating by the 5050MPAmanagement C
- Conversion of the section of the Plate Thickness b= 800mm to operate
- corresponding to the combination of the values of the shear the cross-sectional
effective height,
- Increase the factor by prestressed Drug Drama
- Concrete Tensile Strength value by Design
Therefore Be:
Calculations show that, sectional dimensions satisfy the requirements but you need to
configure anti-cut steel,
59
0,
3
002
3
1051.0105.0 bhfVbhf kcudtd

 
kNVd 4668
kcuf ,
b
0h
mmahh 270010028000 
2 25.12 
tdf MPaftd 83.1
kNVd 466846680.10 
dtd VkNbhf 0
3
02
3
5.2470270080083.125.1105.0105.0   
dkcu Vbhf 0
3
0,
3
5.77892700800501051.01051.0  
A cross-sectional shear load press boards (6:3 Computing
(6) Than
In, (6-4)
(6)
Including: - The ability of bend torque impact factor, = 1.0
- Increase the factor by prestressed =1.25
- Pressure flange impact coefficient, 1.1
A dual-band clamp diameter of 14mm limbs of HRB335 steel = 280MPAspacing tertiary
= 100mm, The Tertiary
And as a result of the so tertiary
As a result of the support of the non-prestressed reinforced the curves, therefore vpd = 0
,
60
pdcsd VVV 0
  svsvkcucs ffpbhV  ,0
3
321 6.021045.0  
ppdpdpd AfV sin1075.0 3


1 1
2 2
3 3
583.0
2700800
12600
100100100
0





bh
AAA
p
spbp

svf
vs
2
8.3079.1532 mmAsv 
00385.0
8000100
8.307



bs
A
v
sv
sv
139.08sinsin  
p
  28000385.050583.06.0227008001045.01.125.10.1 3
 
csV
kN35.5656
kNVV dcs 466835.5656 0  
Support of the city of shear the largest bevel-Section to meet the requirements of the Anti-
cut, non-prestressed reinforced as the bearer of the construction of the reserve is not to be
taken into account.
61
Chapter#8. Calculation of prestressed steel beam loss
Prestressed beam tensioning control stress, in the light of the documentation of the ±5-
Reinforced concrete and prestressed concrete road bridge covered by the relevant provisions of
the design specification
The component in the pre-load of stress prestressed steel strand of anchor the control
strain relief should be consistent with,
The
As a result of the construction of the tensioning prestressed after Zhang law, so on the
basis of reference [5], para. 6.2. 1, shall calculate the following losses: prestressed
Prestressed reinforced with a pipe friction between the wall Rust inhibitor, anchorage
deformed steel retracted and seam Compression the flexibility of the rust inhibitor concrete
Compression Rust Inhibitor prestressed reinforced the stress Rust Inhibitor concrete
shrinkage and Xu change Log in first.
(1) Pipes with steel prestressed wall between the friction loss
Press the norms, is calculated as follows:
In, - In the prestressed reinforced anchor tension control stress
- 6.7 prestressed reinforced with a pipe between the walls of the coefficient of friction
- From the tensioning end-to calculate the sectional curve Pipes section of the angle of
the Trans condylar tangent and the red particle diameter
--Tubes per meter local deviation of friction Impact Factor 62
b
ycon R75.0
MPacon 1395186075.0 
1l
2l
4l 5l
6l
1l
 
]1[1
kx
conl e 
 

con


k
- from the tensioning end-to calculate the length of the pipe sections of m), is an
approximate read its longitudinal axis in the projection on the length.
The cross-section and support beam and pipe prestressed steel wall between the friction
loss the results of the calculations such as tables, ##, 7-2.
Steel beam
number
2 N 6 9.22° 0.25 0.0015 9 1395 73
68.2
N 27 8° 0.25 0.0015 6 1395 59.9
2 N 8 9.22° 0.25 0.0015 12 1395 78.9
2 N 9 9.22° 0.25 0.0015 17 1395 88.7
N 210 0 0.25 0.0015 19.5 1395 40.2
Steel beam
number
N 21 9.22° 0.25 0.0015 13 1395 80.9
62.2
2 N 2 9.22° 0.25 0.0015 5.5 1395 66
2 N 3 8° 0.25 0.0015 3 1395 53.9
N 24 9.22° 0.25 0.0015 8 1395 71
2 N 5 0 0.25 0.0015 19 1395 39.2
(2), a straight line from the steel prestressed anchorage deformed steel retracted and
seamcompression loss arising from the strain relief
In, - prestressed reinforced the effective length of
- The Anchor head to distort steel retracted and seam
compression value, 63
x
1l
  k x con 1l 1l
  k x con 1l 1l
2l
pl E
l
l
2
l
l
Cross-sectional friction loss in the strain relief
Table 7-11l
Support Housing Section friction loss strain relief
Table 7-21l
Table 6.2. 3, 6 on each side of the steel retracted and anchorage deformation of the
inflection values in mm. The cross-section and support by the anchorage deformation, steel and
retract and seamcompression loss arising from the strain relief for calculations, the Results
Table 7-3, 7-4 below.
Steel beam
number
2 N 6 2 x 6 18000 195×105 130
124
N 27 2 x 6 12000 9556x 105 195
N 28 2 x 6 24000 195×105 97.5
2 N 9 4×6 34,000 195×105 1.376
2 N 10 2 x 6 39000 9556x 105 60
Steel beam
number
N 21 4×6 26000 195×105 180
219.2
N 22 2 x 6 11000 9556x 105 212.7
N 23 2 x 6 6000 195×105 390
2 N 4 2 x 6 16000 9556x 105
Additional
commitment
authority146.3
N 25 4×6 28000 9556x 105 167.1
(1) After the French prestressed concrete components when using batch tension before
tensioning of steel by Chang-down after the steel concrete prestressing compression
resilient loss,
64
2l
l l pE 2l 2l
l l pE 2l 2l
4l


 pcEpl
m

2
1
4
Cross-sectional prestressed losses. Table 7-
3.
2l
Support Housing Section prestressed losses the
calculation of the
2l
In, m- prestressed reinforced tensioning batch number of them
- Prestressed reinforced concrete and Modulus Of Elasticity Modulus of
elasticity of the ratio of Cheung-down when the actual strength of
concrete level, 6.7 Calculations The strength of the design is
assumed to be 90%, i.e. = C, 45 Look up table was, =
3.5×104MPAor tertiary Drug Drama
- in the calculation of the first section of the gravity of the tension of steel,
after the tension arising from the installments of steel concrete law to
stress MPA
Including: - the pre-load prestressed reinforced by the joint forces of the Strain Relief
Drug Drama
- The pre-load prestressed reinforced the synergies of strain relief To Section to
the distance between the mandrel.
(1) The cross-section of they are:
Down on the property Guangdong Guangdong
Guangdong
A:
Therefore, 65
Ep
ckf '
ckf '
ckf '
cE'
82.5
1035.3
1095.1
4
5



Ep
pc
 
m
IeNAN
m
ppppc
pc
2




pN
pllconp AN )( 21  
pe pN
mmep 690 2
12600109140 mmAp 
6
105.4 A 412
1043.1 mmI 
kNN p 1515528012600)1242.681395( 
  MPa
m
pc
pc 84.0
10
10434.174015155280105.415155280 1226





MPa
m
pcEpl 0.2284.082.5
2
110
2
1
4 



  
(2) To support cross-sections are:
Down on the property Guangdong Guangdong
Guangdong
A:
Therefore,
(1) Steel slack caused by the loss of prestressed
(4 of 7)
And - Pull Coefficient, a time when pulled,
- Steel Slack Factor for Grade Ⅱslack, city), the slack
- The power when the anchor for the rear sheet steel strain relief law components,
① The cross-section of the are:
The
(2) To support cross-sections are:
66
mmep 1359 2
12600109140 mmAp 
6
108.6 A 412
10772.7 mmI 
kNN p 1403136012600)2.2192.621395( 
  MPa
m
pc
pc 591.0
10
10772.7135914031360108.614031360 1226





MPa
m
pcEpl 47.15591.082.5
2
110
2
1
4 



  
5l
pe
pk
pe
l
f


 







 26.052.05
 0.1
 3.0
pe
421 lllconpe  
MPape 8.11800.221242.681395 
MPal 8.248.118026.0
1860
8.1180
52.03.00.15 






MPape 13.109847.152.2192.621395 
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.
Final Graduation Project.

More Related Content

What's hot

SE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportSE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportTaylor Parsons
 
Qgis 1.7.0 user-guide_en
Qgis 1.7.0 user-guide_enQgis 1.7.0 user-guide_en
Qgis 1.7.0 user-guide_enxp5000
 
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...Nathan Fitzpatrick
 
Chassis
ChassisChassis
Chassishome
 
Hsm module user_guide2008
Hsm module user_guide2008Hsm module user_guide2008
Hsm module user_guide2008Mrx Man
 
On-Line Presentation of Data from PMU Stations
On-Line Presentation of Data from PMU StationsOn-Line Presentation of Data from PMU Stations
On-Line Presentation of Data from PMU StationsPower System Operation
 
Ibm spss advanced_statistics
Ibm spss advanced_statisticsIbm spss advanced_statistics
Ibm spss advanced_statisticsb3randal
 
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tôhttps://www.facebook.com/garmentspace
 
Ibm system z in a mobile world providing secure and timely mobile access to...
Ibm system z in a mobile world   providing secure and timely mobile access to...Ibm system z in a mobile world   providing secure and timely mobile access to...
Ibm system z in a mobile world providing secure and timely mobile access to...bupbechanhgmail
 

What's hot (17)

SE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportSE_Drivetrain_Model_Report
SE_Drivetrain_Model_Report
 
Qgis 1.7.0 user-guide_en
Qgis 1.7.0 user-guide_enQgis 1.7.0 user-guide_en
Qgis 1.7.0 user-guide_en
 
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...
Coupled thermal fluid analysis with flowpath-cavity interaction in a gas turb...
 
Manual usuario estacion total s0kkia serie cx 50 (1)
Manual usuario estacion total s0kkia serie cx 50 (1)Manual usuario estacion total s0kkia serie cx 50 (1)
Manual usuario estacion total s0kkia serie cx 50 (1)
 
Grafx
GrafxGrafx
Grafx
 
Rlecturenotes
RlecturenotesRlecturenotes
Rlecturenotes
 
Chassis
ChassisChassis
Chassis
 
The maxima book
The maxima bookThe maxima book
The maxima book
 
Sap2000 basic
Sap2000 basicSap2000 basic
Sap2000 basic
 
Hsm module user_guide2008
Hsm module user_guide2008Hsm module user_guide2008
Hsm module user_guide2008
 
Circuitikzmanual
CircuitikzmanualCircuitikzmanual
Circuitikzmanual
 
On-Line Presentation of Data from PMU Stations
On-Line Presentation of Data from PMU StationsOn-Line Presentation of Data from PMU Stations
On-Line Presentation of Data from PMU Stations
 
Ibm spss advanced_statistics
Ibm spss advanced_statisticsIbm spss advanced_statistics
Ibm spss advanced_statistics
 
Master Thesis
Master ThesisMaster Thesis
Master Thesis
 
Man 461
Man 461Man 461
Man 461
 
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô
4.4.1. nghiên cứu, phân tích và đánh giá động lực học hệ thống lái ô tô
 
Ibm system z in a mobile world providing secure and timely mobile access to...
Ibm system z in a mobile world   providing secure and timely mobile access to...Ibm system z in a mobile world   providing secure and timely mobile access to...
Ibm system z in a mobile world providing secure and timely mobile access to...
 

Viewers also liked

Laporan pondok romadhan
Laporan pondok romadhanLaporan pondok romadhan
Laporan pondok romadhanMuslimin Imin
 
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rs
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rsKmk no. 1204 ttg persyaratan kesehatan lingkungan rs
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rsharimus
 
Crowdfunding, Sharing Economy, P2PFinance,
Crowdfunding, Sharing Economy, P2PFinance, Crowdfunding, Sharing Economy, P2PFinance,
Crowdfunding, Sharing Economy, P2PFinance, MichalGromek
 
Current State of Crowdfunding in Europe - review 2016
Current State of Crowdfunding in Europe - review 2016Current State of Crowdfunding in Europe - review 2016
Current State of Crowdfunding in Europe - review 2016MichalGromek
 
Mill training report (viyellatex), Dyeing- Md, Rafsan Jany
Mill training report (viyellatex), Dyeing- Md, Rafsan JanyMill training report (viyellatex), Dyeing- Md, Rafsan Jany
Mill training report (viyellatex), Dyeing- Md, Rafsan JanyMd. Rafsan Jany
 
Building your first aplication using Apache Apex
Building your first aplication using Apache ApexBuilding your first aplication using Apache Apex
Building your first aplication using Apache ApexYogi Devendra Vyavahare
 
Bio processing of textiles - Rafsan
Bio processing of textiles - RafsanBio processing of textiles - Rafsan
Bio processing of textiles - RafsanMd. Rafsan Jany
 
Toyota production system
Toyota production systemToyota production system
Toyota production systemArya Kulang
 
Bio processing of textiles - Md. Rafsan Jany
Bio processing of textiles - Md. Rafsan JanyBio processing of textiles - Md. Rafsan Jany
Bio processing of textiles - Md. Rafsan JanyMd. Rafsan Jany
 
Crowdfunding - Collaborative Economy
Crowdfunding - Collaborative Economy Crowdfunding - Collaborative Economy
Crowdfunding - Collaborative Economy MichalGromek
 
為什麼我們的流行音樂走入困境?
為什麼我們的流行音樂走入困境?為什麼我們的流行音樂走入困境?
為什麼我們的流行音樂走入困境?Chi-pin Hsieh
 

Viewers also liked (14)

Mekong 9 2014
Mekong 9 2014Mekong 9 2014
Mekong 9 2014
 
Laporan pondok romadhan
Laporan pondok romadhanLaporan pondok romadhan
Laporan pondok romadhan
 
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rs
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rsKmk no. 1204 ttg persyaratan kesehatan lingkungan rs
Kmk no. 1204 ttg persyaratan kesehatan lingkungan rs
 
Ej campoelectrico03
Ej campoelectrico03Ej campoelectrico03
Ej campoelectrico03
 
Crowdfunding, Sharing Economy, P2PFinance,
Crowdfunding, Sharing Economy, P2PFinance, Crowdfunding, Sharing Economy, P2PFinance,
Crowdfunding, Sharing Economy, P2PFinance,
 
Current State of Crowdfunding in Europe - review 2016
Current State of Crowdfunding in Europe - review 2016Current State of Crowdfunding in Europe - review 2016
Current State of Crowdfunding in Europe - review 2016
 
Mill training report (viyellatex), Dyeing- Md, Rafsan Jany
Mill training report (viyellatex), Dyeing- Md, Rafsan JanyMill training report (viyellatex), Dyeing- Md, Rafsan Jany
Mill training report (viyellatex), Dyeing- Md, Rafsan Jany
 
Building your first aplication using Apache Apex
Building your first aplication using Apache ApexBuilding your first aplication using Apache Apex
Building your first aplication using Apache Apex
 
Bio processing of textiles - Rafsan
Bio processing of textiles - RafsanBio processing of textiles - Rafsan
Bio processing of textiles - Rafsan
 
Toyota production system
Toyota production systemToyota production system
Toyota production system
 
PERANG SALIB
PERANG SALIBPERANG SALIB
PERANG SALIB
 
Bio processing of textiles - Md. Rafsan Jany
Bio processing of textiles - Md. Rafsan JanyBio processing of textiles - Md. Rafsan Jany
Bio processing of textiles - Md. Rafsan Jany
 
Crowdfunding - Collaborative Economy
Crowdfunding - Collaborative Economy Crowdfunding - Collaborative Economy
Crowdfunding - Collaborative Economy
 
為什麼我們的流行音樂走入困境?
為什麼我們的流行音樂走入困境?為什麼我們的流行音樂走入困境?
為什麼我們的流行音樂走入困境?
 

Similar to Final Graduation Project.

Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2halfmann4
 
Capstone Final Report
Capstone Final ReportCapstone Final Report
Capstone Final ReportVaibhav Menon
 
BE Project Final Report on IVRS
BE Project Final Report on IVRSBE Project Final Report on IVRS
BE Project Final Report on IVRSAbhishek Nadkarni
 
Power-Jib-Crane-Design.pdf
Power-Jib-Crane-Design.pdfPower-Jib-Crane-Design.pdf
Power-Jib-Crane-Design.pdfYOOSHIN3
 
Computer control; an Overview. Astrom
Computer control; an Overview. AstromComputer control; an Overview. Astrom
Computer control; an Overview. AstromJOAQUIN REA
 
2007PSU_TechnionUndergrad1 (1)
2007PSU_TechnionUndergrad1 (1)2007PSU_TechnionUndergrad1 (1)
2007PSU_TechnionUndergrad1 (1)Igor Teller
 
Manual del usuario Satloc bantam
Manual del usuario Satloc bantamManual del usuario Satloc bantam
Manual del usuario Satloc bantamJeferson Gomez
 
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfIMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfvenkatesh231416
 
Fence engineeringmanual
Fence engineeringmanualFence engineeringmanual
Fence engineeringmanualChien Ks
 
Rapport d'analyse Dimensionality Reduction
Rapport d'analyse Dimensionality ReductionRapport d'analyse Dimensionality Reduction
Rapport d'analyse Dimensionality ReductionMatthieu Cisel
 
Basics of power system design.pdf for student
Basics of power system design.pdf for studentBasics of power system design.pdf for student
Basics of power system design.pdf for studentabdirahman gure
 
M.Tech_Thesis _surendra_singh
M.Tech_Thesis _surendra_singhM.Tech_Thesis _surendra_singh
M.Tech_Thesis _surendra_singhsurendra singh
 

Similar to Final Graduation Project. (20)

Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2Meen 442 Journal Final Pdf V2
Meen 442 Journal Final Pdf V2
 
Capstone Final Report
Capstone Final ReportCapstone Final Report
Capstone Final Report
 
thesis
thesisthesis
thesis
 
BE Project Final Report on IVRS
BE Project Final Report on IVRSBE Project Final Report on IVRS
BE Project Final Report on IVRS
 
Power-Jib-Crane-Design.pdf
Power-Jib-Crane-Design.pdfPower-Jib-Crane-Design.pdf
Power-Jib-Crane-Design.pdf
 
Computer control; an Overview. Astrom
Computer control; an Overview. AstromComputer control; an Overview. Astrom
Computer control; an Overview. Astrom
 
2007PSU_TechnionUndergrad1 (1)
2007PSU_TechnionUndergrad1 (1)2007PSU_TechnionUndergrad1 (1)
2007PSU_TechnionUndergrad1 (1)
 
Cube_Quest_Final_Report
Cube_Quest_Final_ReportCube_Quest_Final_Report
Cube_Quest_Final_Report
 
Manual del usuario Satloc bantam
Manual del usuario Satloc bantamManual del usuario Satloc bantam
Manual del usuario Satloc bantam
 
High accuracy liquid level measurement-Proservo NMS5
High accuracy liquid level measurement-Proservo NMS5High accuracy liquid level measurement-Proservo NMS5
High accuracy liquid level measurement-Proservo NMS5
 
2D ROBOTIC PLOTTER
2D ROBOTIC PLOTTER2D ROBOTIC PLOTTER
2D ROBOTIC PLOTTER
 
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdfIMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS ON FPGA HARDWARE.pdf
 
Fence engineeringmanual
Fence engineeringmanualFence engineeringmanual
Fence engineeringmanual
 
Uhm cee-03-03
Uhm cee-03-03Uhm cee-03-03
Uhm cee-03-03
 
Rapport d'analyse Dimensionality Reduction
Rapport d'analyse Dimensionality ReductionRapport d'analyse Dimensionality Reduction
Rapport d'analyse Dimensionality Reduction
 
Final_report
Final_reportFinal_report
Final_report
 
MSC-2013-12
MSC-2013-12MSC-2013-12
MSC-2013-12
 
Basics of power system design.pdf for student
Basics of power system design.pdf for studentBasics of power system design.pdf for student
Basics of power system design.pdf for student
 
M.Tech_Thesis _surendra_singh
M.Tech_Thesis _surendra_singhM.Tech_Thesis _surendra_singh
M.Tech_Thesis _surendra_singh
 
Rprogramming
RprogrammingRprogramming
Rprogramming
 

Recently uploaded

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 

Recently uploaded (20)

What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 

Final Graduation Project.

  • 1.
  • 2. Chapter #1 Introduction  Picker to ………………………………………………………………………………………………………………………………………1  Abstract ……………………………………………………………………………………………………………………………………….2  The design is original information…………………………………………………………………………………………………2  Program than option…………………………………………………………………………………………………………………….3  The supper structure form and dimensions of……………………………………………………………………………….3  The calculation of the deck…………………………………………………………………………………………………………..4  The main span in Computing…………………………………………………………………………………………………………4  The main span reinforced computing…………………………………………………………………………………………….4  A section of carrying capacity limit status calculations……………………………………………………………….….4  Steel beam prestressed loss calculation…………………………………………………………………………………………5  Crack resistance of recalculations………………………………………………………………………………………………….5  The section is of crack resistance……………………………………………………………………………………..5  A section of crack resistance……………………………………………………………………………………………5 Chapter# 2 CompareandSelection ofProject  The bridge principles of design……………………………………………………………………………….…………………….6  Security………………………………………………………………………………………………….………………….6  Applicability…………………………………………………………………………………….………………………..6
  • 3.  Economics …………………………………………………………………………………….………………………….6  Art…………………………………………………………………………………………………………….………………6  Evaluated Systematically………………………………………………………………………………………….……………….7  Suspension………………………………………………………………………………………………….………….7  Arch………………………………………………………………………………………………..………………………7  Continuous …………………………………………………………………………………………………………...7  Project details……………………………………………………………………………………………………………….………….8  Project Comparison……………………………………………………………………………………………………………..……8 Chapter#03Forms andSizeofDeformation ofSuperstructure  Formulation of Main span………………………………………………………………………………………………………..11  Size formulation of the frame…………………………………………………………………………………………………….11  Size formation horizontal bridge ……………………………………………………………………………………………….11  Calculations ………………………………………………………………………………………………………11  Formulas …………………………………………………………………………………………………………..12  Details ………………………………………………………………………………………………………………12  Deck pavement………………………………………………………………………………………………………………………..13  Primary materials of the bridge………………………………………………………………………………………………..13  Endings ……………………………………………………………………………………………………………………………………13 Chapter#4 Calculations oftheBridgeDeck Slab
  • 4.  The Design bending moment of the bridge deck…………………………………………………………………………15  Constant load and internal load calculations…………………………………………….………….15  Wind load bending moment ………………………………………………………………………………..15  Live load bending moment of each strip ………………………………………………………………17  Dead loads …………………………………………………………………………………………………………..17  Calculation of bending moments …………………………………………………………………………17  Calculation of the cantilever ……………………………………………………………………………………………………...18  Loads calculations ……………………………………………………………………………………………………………………..19  Calculation of bending moment ………………………………………………………………………………………………..19  Reinforcement of the bridge deck …………………………………………………………………………………………….20  Ending calculations……………………………………………………………………………………………………………………21 Chapter#5InternalForceCalculationsofthe MainGirder  Division of the whole beam section…………………………………………………………………………………………….22  Calculation tables ……………………………………………………………………………………………………………………….23  Internal forces…………………………………………………………………………………………………………………………….24  Dead and live load calculations ……………………………………………………………………………………………………27  MIDAS bridge model……………………………………………………………………………………………………………………28  Structural details …………………………………………………………………………………………………………………………28  MIDAS Calculations table ……………………………………………………………………………………………………………29  Ending …………………………………………………………………………………………………………………………………………41
  • 5. Chapter#6Main BeamReinforcement  Estimation of prestressed reinforcement……………………………………………………………………………………42  Reinforcement principles ………………………………………………………………………………………………………….43  Estimation of prestressed tendons…………………………………………………………………………………………….44  Calculations ………………………………………………………………………………………………………………………………44  Prestressed steel bar table……………………………………………………………………………………………………….45  Prestressed reinforcement arrangements…………………………………………………………………………………47  Non-prestressed reinforced …………………………………………………………………………………………………….57  Estimation and placement……………………………………………………………………………………………………….57 Chapter#7SectionLoad Carrying  Cross sections …………………………………………………………………………………………………………………………….58  Cross section load calculations …………………………………………………………………………………………………..58  Cross sectional load calculations ……………………………………………………………………………………………….59  Results ………………………………………………………………………………………………………………………………………60 Chapter#8CalculationofPrestressed SteelBeamLoss (PrestressedLosses)
  • 6.  Calculation tables ……………………………………………………………………………………………………………………….63  Prestressed Loss…………………………………………………………………………………………………………………………64  Steel slack caused by prestressed loss…………………………………………………………………………………………66  Support sections…………………………………………………………………………………………………………………………66  Cross sectional regions ………………………………………………………………………………………………………………67  Ending ………………………………………………………………………………………………………………………………………68 Chapter#9 StressCheckingCalculations  Brief status of stress check ……………………………………………………………………………………………………….70  Mid Span………………………………………………………………………………………………………….70  Support section………………………………………………………………………………………………..71  Calculations …………………………………………………………………………………………………….71  Lasting Positive Stress Checking calculations ……………………………………………………………………………72  Mid span ……………………………………………………………………………………………………….72  Support sections ……………………………………………………………………………………………72  Calculations …………………………………………………………………………………………………..72  Sustained prestressed reinforced stress checking calculations …………………………………………………72  Mid Span……………………………………………………………………………………………………..73  Support Section …………………………………………………………………………………………….73  Calculations ………………………………………………………………………………………………….73 Chapter#10CrackResistanceCheck
  • 7.  Crack resistant of cross section ……………………………………………………………………………………….……..74  Cross sectional crack calculation …………………………………………………………………………………………….75  Support section ……………………………………………………………………………………………………………………..75  Cross section crack resistant ………………………………………………………………………….……………………….77  Shear strength ……………………………………………………………………………………………….……………………….77  Strain Relief ……………………………………………………………………………………………….…………………………..77  Calculations ………………………………………………………………………………………………………………….……….77 Chapter#11theMainBeamDeformation  Details ………………………………………………………………………………………………………………………………….78  Calculations ………………………………………………………………………………………………………………………….78 References END Chapter #1: Introduction
  • 8. Picker to Thisdesign isbasedondesigntasksforthe bookand the highwaybridge onthe provisionsof the regulationof the victoryof the riverbridge programthan anddesign.The designof the bridge,the spirit of the security,utilities,economic,beautiful"principle 8, the designof the three differentbridge type to compare and select.Programforprestressedconcrete continuousGirderBridge,the programforthe secondcombinationof beamsystembridge,ProgramIIIisthe suspensionbridge.Throughthe above principles aswell asthe designandconstructionof variousaspectssuchasconsideration,determine prestressedconcrete continuousGirderBridge tofinal designprograms. The prestressedconcrete continuousGirderBridge,whichwillconsistof three cross-(30m+50 m +30 m) mainspans50 m, side symmetric30 m mainspar; a single enclosure single roomprestressed concrete box beam,cross beamheightis1.5 m to supportbase of 2.8 mLeung,sectional heightbythe secondmeetingof the parabolaformchanges;netdeckswitha widthof 1.5 mx 7+2; the designloadfor the road – Grade. In the design,the use of the bridge designsoftwarebuildbridgesthe Midasmodel andbridges hang download,downloadthe Live andSeoremainedunchangedinconductanalysisandcalculations, and concludedthatthe steel prestressedestimates.Finallythe mainsparstress,etc.forrecalculations. The comparative analysisandindicatesthatthe designof the recalculationscalculationcorrectly,the force distributionandreasonable and inthe designof the requirementsforthe task. 1 Abstract The designisbasedon the requirementsof the designtaskand"highwayregulation". Bridge the design of the bridge iscarriedoutin the rulerof "safety,eight-characterpractically,aesthetic"economically and bycomparingand choosingthe bestone.The firstprogram is continuous prestressedconcrete girderbridge,the secondone the beamcombinationof arch bridge,andthe thirdone isthe bridge.
  • 9. Accordingsuspensiontothe above principlesandconstructionfactorsthe prestressed continuous bridge ischosento the ultimate. The continuous prestressedconcrete girderbridgeisdividedintothree inters,(30m+50m+30m), withthe mainspan of 50m, 30m-symmetryandconcrete box girderprestressedone.isusedasthe main beam;the beamdepthinthe mid-spanadaptorsis1,5 MHz while atthe supportbearingitis2.8m.the sectional depthischangedinthe formof parabolic.The netwidthof the deckis7+2x1.5m, and the designloadisforthe highway-i. In the design,the bridge designsoftware MIDASisused togetthe calculationmodel.Byanalyzing and computingthe deadloadlive loadandinternal force (the estimatedvalue of the prestressedstrand isgot. finally,checkingcalculationiscarriedoutto the stressanddeformationof the mainbeam.the resultsof the analysisandcheckingthe show thatthe designcalculationmethodisdescribesanissue that occurs and the internal force distributionisthe viewtothe designtask. Key words: prestressedcontinuousbeam;concrete;box-girder;non-uniform The design is original information it is the design of K70+364.8 Victory River bridge. Information about terrain and geological tectonics of riverbed cross section are wanted from the riverbed cross-sectional profile, the rest of the related design parameters are as follows: 1. A topographic map and bridge site of the bridge 2. Design loading: Highway Grade ⅠOperated:3.5kN/m2 3. Design speed of 60km/h 4. The width of the bridge deck: Net -7+2×1.5(Walkways) 5. Cross slope of the bridge deck: 1.5%; 6. Navigation Ratings: Ⅳ-(4). 2 Program than option The bridge designisbasedondesigntasksforthe bookand the highwaybridge onthe provisionsof the Regulation,the spiritof the security,utilities,economic,beautiful"8Principles,setoutinthree differentbridge type tocompare andselect.Program forprestressedconcrete continuousGirder Bridge,the programfor the secondcombinationof beamsystembridge,ProgramIIIisthe suspension
  • 10. bridge.Throughthe above principlesaswell asthe designandconstructionof variousaspectssuchas consideration,determineprestressedconcrete continuousGirderBridge tofinal designprograms. The supper structure form and dimensions of 1. The formulationof the mainspan The designof the program afterthe electionthanusingthe three cross-networkedprestressed concrete taperedcontinuousbeamedwithatotal lengthof 110m . Inaccordance withthe net Navigationbridge callsfor,the mainspanis50 m.Edge cross-with0.6 timesthe diameterof the cross, that is,30 m . 2. Shun bridge tothe size of the formulation The beamsin a single enclosuresingle roomprestressedconcretebox beam, crossbeamheightis 1.5 m to supportbase of 2.8 m Leung,sectional heightbythe secondmeetingof the parabolaform changes. 3. Cross the bridge to the size of the Development ChassisPlate Thicknessfrom Mr. Leung20 cm ; cross-inbackplane boardthickness30cmto furnishedprestressedbeampivotsbase platethicknessof 60cm, the middle bottompanel thicknessto linearchange;Abdominalpanel thicknessdue tothe furnishedprestressedsteel beamanchorheadisby usingthe 40 cm ; supportthe size ; takingintoaccount the overrelativelysmall andtherefore only supportfor settingupa cross road divider,panelthicknessof 1 m ; sidewalksare onhold-pavement board. 4. Footbridge Tiles TilesSelecteddecks8cmthickwaterproof concrete pavementasTier,Add2 cm thickasphaltic concrete wear,total 10cm thick. 5. The bridge primarymaterial Main frame usingC 50 concrete prestressedreinforcedwithlow slacktwistedsteel (standard),non- prestressedreinforcedwith NG( 335 grade steel,walkways,railingsusing C20 3 The main spar reinforced computing Prestressedreinforcedshouldmeetthe constructionstage,andbridge tothe operationof the force requirements,steel constructionarrangementincompliance withrequirements,includingprestressed anchorage select,steel beamspace,etc.,andasfar as possible tofacilitate the constructionworks.The
  • 11. use of the midasbridgescomputingsoftware,enterthe twistedsteel categoryfor1x 7 standard,and nominal diameter15.2 mm , cross-sectionalareaof 139 mm 2 , run the analysisoutputaftereach sectionprestressedreinforcedthe forecastquantity.Afterthe sectionalprestressedsteelbeam. By the steel prestressedestimatestable suggeststhatfull-bridge prestressedsteel beamupto87 root,90 root,pre-buriedpipesare metal bellows,eachwithinthe bellowssettings9rootprestressed steel beam,the largestof 10 sticksthe bellows.Asaresultof the imposedbridge prestressedmethodis after,to ensure thatone of the mostconcrete setin concrete placementcanbe passedsmoothlywhen, at the level of the bellowsnetare 5cm. Because the steel withchassisanchormulti-the websof the steelplate,sothe beambendingand vertical barsFlat Bentdesign. A section of carrying capacity Limit status calculations The is a cross-sectionof conductorandloadcalculations,the calculationissectional loadcarrying capacityto meetthe designrequirementsandpressthe calculationresultsof asectioninthe configuration. Steel beam prestressed loss calculation As a resultof the constructionof the tensioningprestressedafterusingone of the followingitemsand therefore prestressedlossonthe calculation: Prestressedreinforcedwithapipe frictionbetweenthe wall;anchorage deformation,steel and retract and seamcompression resilient;Concrete;prestressedreinforcedthe stress ;Concrete shrinkage and Xuremainedunchanged.Finally calculatedincross-sectional andproductionlossprestressed averages.Toprovide the basisforrecalculationsstrainrelief 4 Stresses recalculations
  • 12. Withconcrete curvedmemberbythe use of stagessectionof concrete law to stressandpressure by the steel sectorstrainrelief doesnotexceedthe specifiedlimitsasa standardfora strain relief residue. Crack resistance of recalculations 1. The sectionisof crack resistance Coveredbythe highwaybridge of lastingconditionsshouldfollow the normal usage limitsatthe requestof the state of the componentsof crack resistance of recalculations.The crackresistance of calculations,the role (orloadthe effect) (where the vehicle loadwithouttakingintoaccountthe impact factor) shouldadopta short-termeffectdesigncombinationvalue,structural materialperformance with theirstrengthdesignvalues. 2. A sectionof crack resistance PrestressedConcretebeamis sectionalcrackresistance of recalculationsispassedinconcrete mainpull strainrelief tocontrol the recalculationsThe mainstressrecalculationsincross-pathdirectionshould selectshearandBendingMomentare large seatingof the section.A cross-sectional crackresistance of recalculationsisrequiredonlyif the role (orload) short-termeffectscombinationof concrete mainpull strainrelief. The main spar deformation computing In thisdesignthe mainsparDeformation(calculated) approximate use charpydeflection calculation method.Continuous more charpydue tosupporta negative bendcandramaticallyreduce torque in cross-deflectionandthususingcharpythe calculationmethodincross-deflectionissecure 5
  • 13. Chapter #2: Compare and selectionof project Continuous Beam Bridge, beam-arch Combination Bridge and cable-stayed bridge can be considered as forms of bridge. In comparison of those three kinds of bridges, the bridge form is eventually decided in aspects of security, applicability, economics and art. The Bridge principle of bridge design: 1. Security Security should be assured as the primary condition in bridge design. Amplitude of the bridge should be controlled vertically and laterally to avoid vehicles vibrating and striking. The whole bridge span structure and components of every part should have enough strength, rigidity, stability and durability in process of manufacture, transportation, installation and use. 2. Applicability Applicabilityisthe primaryprinciple of bridge design.itshouldbe assuredthatvehiclesand populationcanpass safelyonthe bridge whichshouldsatisfythe needof trafficvolume increasing. Meanwhile,underthe bridge,flooddischarge andsafelynavigationortransportationshouldbe needed. The bridge builtshouldassure the durable yearsandbe easyforexaminationandmaintainservice. 3. Economics The bridge designshouldreflectthe economical rationality.Whendesigning,the economical technologyshouldbe comparedtomake the leastconsumptionof the total costand materials. Meanwhile, The cost of operation and maintenance should be sufficiently considered 4. Art A bridge should have an artistic appearance, which is in harmony with surroundings. Reasonable structure layout and outlines are the main points instead of mistaking art with luxury decoration. 6
  • 14. The bridge should be evaluated synthetically according to the principles above. 1. continuous beam bridge Beam systemis an old structure system, continuous beam bridge is referred to the one whose bearings of structure only produce vertical reaction without horizontal force under the action of vertical load. Prestressed concrete continuous beam bridge makes use of unloading bending moment to reduce mid-span moment and allocate internal force of span reasonably. The cross-section of component with the same bending strength can build bridges with much longer span. Meanwhile, design and construction of continuous beam bridge are getting improved. 2. beam-arch combination bridge This kind of systemincludes tied arch, truss arch and beam arch in structure with multiplied spans. They make up into united structures by using characteristic of flexural capacity of beam and arch pressure-bearing. Due to the pressure stored in the beam bearing the horizontal force from the arch, pre-stressed concrete structure not only has arch's characteristics, but also is not thrust structure. Besides, it has less request for foundation. But construction of the structure is complex and the cost is much more expensive. 3. Suspension bridge Suspension bridge use cable rope hung on both sides of it as main bearing structure. Under the action of vertical load, suspender is used to make cable rope bear more stress, which needs very large anchorage structure built behind bridge abutments. Suspension bridge is also a structure which has horizontal reaction. So far, wire rope made of high-tensile steel wires is widely used to take full advantage of excellent tensile property. Thus dead load of the structure is small. Another characteristic of suspension bridge volume wire rope is easy to transport and its component is light to make it easy to assemble without support. But dead load of suspension bridge is small, structural rigidity is worse, and in the vehicle dynamic loads and wind loads, it has a major deformation and vibration. 7
  • 15. Continuous Beam Bridge Girder and Arch Combination Bridge Suspension Bridge 8
  • 16. Project comparison Table1-1 Project First project Second project Third project Form prestressed concrete continuous beam bridge beam-arch combination bridge suspension bridge Characterist ics Continuous beam bridge is referred to the one whose bearings of structure only produce vertical reaction without horizontal force under the action of vertical load. It has flexible and beautiful shape, structure stiffness is bigger, and degeneration is smaller. Stress is clear. Meanwhile, design and construction of continuous beam bridge are getting improved. Due to the pressure stored in the beam bearing the horizontal force from the arch, pre-stressed concrete structure not only has arch's characteristics, but also is not thrust structure. Besides, it has less request for foundation. Suspension bridge use cable rope hung on both sides of it as main bearing structure. Under the action of vertical load, suspender is used to make cable rope bear more stress, which needs very large anchorage structure built behind bridge abutments. Appearance Seenfromthe side, clearline,cooperation withthe local terrain, appearingelegant. Large span, beautiful lines, inharmonywith environment Lightstructure; In well harmonywith environment;Large span;Brand new Cost lower Moderate Higher Technology Advancedtechnology; Rich experience; Strict technology; Fewerdevices; Lessroom occupation Rotationmethod; Smallereffect; Buildstructure separatelyandunite themeventually Volume wire rope is easy to transport and its component is light to make it easy to assemble without support.
  • 17. As is known from the list, according to the situation of local hydrogeology, combined with principles of bridge design, choosing the first one is better than other two projects in aspects of span satisfaction, scenes in harmony with environment, ripe experience with technology, less difficulty with construction and short time limit. In allusion of local geography, pile foundation should be used to strengthen the basis. So choosing the first one is the best. 10 Chapter #3: Forms and size formulation of supper structure Time limit shorter longer Moderate
  • 18. According to the information of bridge location, terrain and geological map, this design uses prestressed concrete variable cross-section continuous beam structure, the length of which is 110m.According to the navigation and net capacity requirements, the main span is 50m. According to the requirement of the width of the bridge deck: Net -7+2×1.5(Walkways), single box-type beam is used, width of which is 9.2m. The formulation of the main span The main span is 50m, side span is 0.5~0. 8 times wider than main span on the basis of experience both at home and abroad, and the middle spin is 0.6 time wider, which is 30m.So the whole span is: 30+50+30+110(m) The size formulation of the frame to axle (1) Beam depth of Pivots: In accordance with 【1】, beam depth of Pivots is width of span.The most common is , therefore beam depth of pivots: (2) Beam depth of middle span: In accordance with 【1】, beam depth of Pivots is width of span.The beam depth of Pivots: Within that range. (3) Bottom curve: In accordance with 【1】.use second parabola, A cross-beam bottom as origin, curve equations: 11 Size formulation of horizontal bridge 201~151 181 )m8.218150 (支 h 501~031 )m5.1 (中 h 33/150/5.1  5.14X0.00216576 2 Y
  • 19. In accordance with the net deck’s width: Net -7+2×1.5(Walkways), two sides of the Roadways and the 1.5m sidewalk. In accordance with【3】 choose holistic single box-type cross-sections. Size formulation of main beam sections ‘detail (according to reference literature 【3】as is shown in figure 2-1. Support Section Cross Section 12 Girder plate Thickness is20cm;back plate of middle span is 30 cm thick, to furnish prestress beam pivots’base plate is 60 cm thick, intermediate plate thickness change linearly; web plate
  • 20. thickness is 40cm due to the furnishment of well-prestressed steel beam anchor;and bearing size is . Considering smaller span,only set a diaphragm on bearings, thickness of which is 1m.pedestrian walkway with the on hold-board ,specific size is showed in figure2-3 Sidewalk Plate Structure Deck pavement (Depending on the reference literature【2】, choose 8 cm thick Waterproof concrete as pavement layer, put 2cm thick asphaltic concrete on it, a total of 10 cm thick. Primary material of this bridge Depending on the reference literature【5】, prestressed concrete girder use C50 concrete ; ; ; Prestressed reinforced steel uses low-steel strands of the slack( Standard) of ASTM 13 cmcm 6020  MPaEc 4 1045.3  MPafck 4.32 MPafcd 4.22 65.2tkf MPa MPaftd 83.1 71
  • 21. A416-97a standard, , , normal diameter: 15.24mm;normal area is ; ; Rust inhibitor, pedestrian railings board use concrete C20 ;non-prestressed reinforced: HRB335 level steel, , , ; constructional reinforcement use R235 steel. 14 MPaf pk 1860 MPaf pd 1260 2 140mm MPaEp 5 1095.1  MPafsk 335 MPafsd 280 MPaEs 5 100.2 
  • 22. Chapter#4:Calculationof bridge deck slab (1) The design bending moment of the bridge deck plate According to the REFERENCE 5, pre-compliance requirements:25/4.6=5.43 2, So on the basis of number of cross-continuous directional panel to do in computing. (1) Constant load And internal load calculation (1) Linear meters per board hang: The autumnal tiles: (Bitumen layer of concrete) (Waterproof layer of concrete) Bridge deck slab: exfoliation will support area of assessed contributions to the deck, Then, average thickness The total load is: (2) The Board of m Wind Load Bending Moment The calculation of the deck cross-diameter: Simply press the Panel calculates cross bend moment: 15  :1g mkN/44.0220.102.0  :2g mkN/84.1230.108.0  )(73.2220)302500/()6020( cmt  :3g mkN/68.5250.12273.0  mkNgggg /96.7321  mcmtll 4.4440204200  mkNglMAg  26.1940.496.7 8 1 8 1 22
  • 23. (2) Bearing moment caused by Road Grade Ⅰ (According to the REFERENCE 5- Vehicle Loading lateral placement require vehicle load. Do mid-span moment influence line, as is shown in the figure 3-1, vehicle arrangement makes mid-span moment up to the maximum. The support is between two vehicles and keeps equal distance with two wheels, so the effect to mid-span bending moment can be balanced, only the first car’s effect needed. ① .effective distribution width of one-way slab As is evaluated above, make one back wheel of vehicle loading act on span, make the other one act on support. The force of two backshift: 2P=280kN Touchdown length of the rear wheels of the load is 0.2m, the width is 0.6m. The effective distribution of width on mid-span is: Distance from the pivot point to another wheel near it The effective distribution of the width of the wheel side 16 m l dhaa 27.3 3 40.4 4.1)10.022.0( 3 )2( 1  m bl x 8.0 2 8.0 80.1 2 40.4 2 80.1 2  )2( 1 hax  mxdthaa 63.38.0240.12273.0)10.022.0(2)2( 1 ' 
  • 24. ① Live load bending moment of each wide strip On the basis of the bridge regulation, the local load of vehicle load and impact coefficient on T beam and box beam is 0.3, so mid-span bending moment acted on every wide strip is calculated. The cross-Torque ruled on the wheel of the curve: The cross-curve rolled on the wheel at pivots Therefore, cross-Bend moment of each wide strip (3) Calculation of design bending moment ① Combine with the normal use of the limits of the press, then calculate design bending moment in charpoy’s way As a result of =0.2273/1.5 (minimum) =0.152) , Tertiary row exfoliation design bend a moment of: Cross-Bend moment: Pivot point bend moment: 17 mkN hb l a P M                  66.55 2 1.026.0 40.4 27.38 280 3.1 2 2 8 )1( 1 1  mkNxa P M    03.108.0 63.38 280 3.1 4 2)1( ' 2  mkNMMM Ap  69.6503.1066.5521 mkNMMM ApAg  95.8469.6526.190 ht / 4 1  mkNMM  48.4295.845.05.0 0中 mkNMM  47.5995.847.07.0 0支
  • 25. ② Press the load carrying capacity limits.The composition of the state of the press Charpy Computing Design Bending Moment of, Then By 5, Mr. =0.2273/1 high =0.152 minimum) Tertiary row exfoliation design bend a moment of: Cross-Bend moment: Pivot point bend moment: (2) The calculation of the cantilever slab (4) 1/Hang contained within and its competitiveness computing 1 linear meters per board hang download The autumnal tiles: The arm of the Board: Total: Each side of the pavement railings and board building press (2) Wide Load Bending Moment The length of the cantilever board: 18 mkNMMM ApAg  08.11569.654.126.192.14.12.10 ht / 4 1  mkNMM  54.5708.1155.05.0 0中 mkNMM  55.8008.1157.07.0 0支 mkNg /28.2230.108.0220.102.01     mkNg /43.6250.12.01.2/6.02.02  mkNggg  71.843.628.211 mkNG /0.5 ml 10.20 
  • 26. Root Load Bending Moment: Note:The Role of the joint positionof the sidewalkboard from the boom enddistance of 0.5m ② Bearing moment caused by highway Grade Ⅰ (1) Effective distribution width of one-way slab The rear wheel of the vehicle load is arranged along sidewalk laterally. Built-in as is shown in Figure 3-4 two back shaft force Touchdown length of the rear wheels of the load is 0.2m, the width is 0.6m. From Figure 3-4, to calculate the distance from load pressure side outer edge to the outer edge of the Board to be: The load distribution width is: (2) The meters wide strip of live download bend Torque On the basis of the bridge regulation, the local load of vehicle load and impact coefficient on T beam and box beam is 0.3, so mid-span bending moment acted on every wide strip is 19     mkNlGglM Ag  21.275.010.20.510.271.8 2 1 5.0 2 1 2 0 2 0 kNP 2802      m hb lc 9.0 2 1.026.0 1.15.01.2 2 2 1.15.00      cdhaa 221  m60.39.0240.11.022.0    mkN b l a P M Ap                94.85 2 8.0 10.2 60.32 280 3.1 22 2 1 0
  • 27. (3)Calculation of design bending moment Combine with the normal use of the limits of the press, then calculate design bending moment Press the carrying capacity of the state to limit in combination, Computing Design bend a moment of: (3) The reinforcement of bridge deck (1) pivot reinforcement, calculate in unit 1m width The calculation of the ribbed beam’s section effective height (To meet the requirements 20 mkNMMM ApAgA  15.11394.8521.27     mkNMMM ApAgA  97.15294.854.121.272.14.12.1 mmcmtgshh 7.26667.26 3 1 2 40 2010   0931.0 7.26610001.230.1 1097.152 2 6 01     bhf M c s   55.00979.00931.0211211  bs  951.0 2 0931.0211 2 211      s s  
  • 28. In accordance with HRB335 level steel18@100, then , requirement is met. (2) cross-reinforced, the unit 1m plate width calculation, (To meet the requirements In accordance with HRB335 Level@ 200 is 18 Steel , requirement is met. 21 2 6 0 4.2010 7.266300951.0 1097.152 mm hf M A ys s      2 2540 mmAs  mmcmahh 160164200  0973.0 16010001.230.1 1054.57 2 6 01     bhf M c s   55.01026.00973.0211211  bs  949.0 2 0973.0211 2 211      s s   2 6 0 2.1263 160300949.0 1054.57 mm hf M A ys s      2 1272 mmAs 
  • 29. Chapter #5: Internal force calculation of main girder The division of the whole bridge section (1)for more convenience of bridge construction and better dividing by lifting weight, every 50cm beam section and weight are calculated by computing procedure specifically seen on table Section property calculation table Section Location (m) Beam Heigh t (cm) Beam Thicknes s(cm) Section Property Liang Duanz hong (kN) Beam of the (kN)A(cm 2 ) S(cm3 ) J(cm4 ) Y(cm) 0.0 150.0 30.0 4500 0.00 2.969E+0 6 1.434E+0 8 66.0 0.0 0.0 0.5 150.1 30.6 4526 1.47 3.000E+0 6 1.442E+0 8 66.3 56.4 56.4 1.0 150.2 31.2 4553 1.61 3.035E+0 6 1.453E+0 8 66.6 56.7 113.2 1.5 150.5 31.8 4581 0.41 3.072E+0 6 1.466E+0 8 67.1 57.1 170.2 2.0 150.9 32.4 4609 7.88 3.112E+0 6 1.481E+0 8 67.5 57.4 227.7 2.5 151.4 33.1 4639 4.00 3.154E+0 6 1.500E+0 8 68.0 57.8 285.5 3.0 151.9 33.7 4669 8.79 3.200E+0 6 1.520E+0 8 68.5 58.2 343.7 3.5 152.7 34.3 4701 2.24 3.250E+0 6 1.544E+0 8 69.1 58.6 402.3 4.0 153.5 34.9 4733 4.36 3.302E+0 6 1.571E+0 8 69.8 59.0 461.2
  • 30. 4.5 154.4 35.5 4766 5.14 3.358E+0 6 1.601E+0 8 70.4 59.4 520.6 5.0 155.4 36.1 4800 4.58 3.417E+0 6 1.633E+0 8 71.2 59.8 580.4 5.5 156.6 36.7 4835 2.69 3.480E+0 6 1.669E+0 8 72.0 60.2 640.6 6.0 157.8 37.3 4870 9.45 3.547E+0 6 1.709E+0 8 72.8 60.7 701.3 6.5 159.2 38.0 4907 4.89 3.617E+0 6 1.751E+0 8 73.7 61.1 762.4 7.0 160.6 38.6 4944 8.98 3.692E+0 6 1.798E+0 8 74.7 61.6 824.0 7.5 162.2 39.2 4983 1.74 3.770E+0 6 1.848E+0 8 75.7 62.1 886.0 8.0 163.9 39.8 5022 3.16 3.853E+0 6 1.903E+0 8 76.7 62.5 948.5 8.5 165.6 40.4 5062 3.24 3.940E+0 6 1.961E+0 8 77.8 63.0 1011.6 9.0 167.5 41.0 5103 1.99 4.032E+0 6 2.024E+0 8 79.0 63.5 1075.1 9.5 169.5 41.6 5144 9.40 4.128E+0 6 2.091E+0 8 80.2 64.1 1139.2 10.0 171.7 42.2 5187 5.47 4.229E+0 6 2.163E+0 8 81.5 64.6 1203.7 10.5 173.9 42.9 5231 0.20 4.335E+0 6 2.240E+0 8 82.9 65.1 1268.9 11.0 176.2 43.5 5275 3.60 4.445E+0 6 2.322E+0 8 84.3 65.7 1334.5 11.5 178.6 44.1 5320 5.66 4.561E+0 6 2.410E+0 8 85.7 66.2 1400.7 12.0 181.2 44.7 5366 6.39 4.683E+0 6 2.504E+0 8 87.3 66.8 1467.5 12.5 183.8 45.3 5413 5.78 4.809E+0 6 2.603E+0 8 88.8 67.4 1534.9
  • 31. 13.0 186.6 45.9 5461 3.83 4.942E+0 6 2.709E+0 8 90.5 68.0 1602.9 13.5 189.5 46.5 5510 0.54 5.080E+0 6 2.821E+0 8 92.2 68.6 1671.5 Section Location (m) Beam height (cm) Beam Thicknes s (cm) Section Property Liang Duanz hong (kN) Beam Of the(kN)A(cm2 ) S(cm3 ) J(cm4 ) Y(cm) 14.0 192.4 47.1 55595 .92 5.224E+06 2.940E+08 94.0 69.2 1740.6 14.5 195.5 47.8 56099 .96 5.374E+06 3.067E+08 95.8 69.8 1810.5 15.0 198.7 48.4 56612 .66 5.530E+06 3.201E+08 97.7 70.4 1880.9 15.5 202.0 49.0 57134 .03 5.693E+06 3.343E+08 99.6 71.1 1952.0 16.0 205.4 49.6 57664 .06 5.862E+06 3.493E+08 101.7 71.7 2023.7 16.5 209.0 50.2 58202 .75 6.038E+06 3.652E+08 103.7 72.4 2096.2 17.0 212.6 50.8 58750 .10 6.221E+06 3.820E+08 105.9 73.1 2169.3 17.5 216.3 51.4 59306 .12 6.411E+06 3.998E+08 108.1 73.8 2243.0 18.0 220.2 52.0 59870 .80 6.608E+06 4.185E+08 110.4 74.5 2317.5 18.5 224.1 52.7 60444 .15 6.813E+06 4.383E+08 112.7 75.2 2392.7 19.0 228.2 53.3 61026 .16 7.026E+06 4.593E+08 115.1 75.9 2468.6 19.5 232.4 53.9 61616 .83 7.246E+06 4.813E+08 117.6 76.7 2545.3 20.0 236.6 54.5 62216 .16 7.474E+06 5.045E+08 120.1 77.4 2622.7
  • 32. 20.5 241.0 55.1 62824 .16 7.711E+06 5.290E+08 122.7 78.2 2700.8 21.0 245.5 55.7 63440 .82 7.956E+06 5.548E+08 125.4 78.9 2779.8 21.5 250.1 56.3 64066 .14 8.209E+06 5.820E+08 128.1 79.7 2859.4 22.0 254.8 56.9 64700 .12 8.472E+06 6.106E+08 130.9 80.5 2939.9 22.5 259.6 57.6 65342 .77 8.743E+06 6.407E+08 133.8 81.3 3021.2 23.0 264.6 58.2 65994 .08 9.024E+06 6.723E+08 136.7 82.1 3103.3 23.5 269.6 58.8 66654 .06 9.314E+06 7.056E+08 139.7 82.9 3186.2 24.0 274.7 59.4 67322 .70 9.614E+06 7.405E+08 142.8 83.7 3269.9 24.5 280.0 60.0 68000 .00 9.924E+06 7.772E+08 145.9 84.6 3354.5 25.0 280.0 60.0 68000 .00 9.924E+06 7.772E+08 145.9 84.6 3439.1 (2) Diaphragm weight (3) Main frame construction (40t lifting capacity): Support Housing Department 25.0~24 4.0, 864 340.2 2+171 =340.2KN (including diaphragm) The second paragraph of 24.0~22 4.0m, 3269.9-2939.9=330kN 25       36 84.621102020501406020210200 mV   kNVQ 1712684.626  
  • 33. The third paragraph of 22.0~19.5m, 2939.9-2545.3=394.6kN The fourth paragraph of 19.5~17.0m,2545.3-2169.3=376kN The fifth paragraph of 17.0~14.5m,2169.3-1810.5=358.8kN The sixth paragraph of 14.5~12.0m,1810.5-1467.5=343kN The seventh paragraph of 12.0~9.0m, 1467.5-1075.1=392.4kN The eighth paragraph of 9.0~6.0m, 1075.1-701.3=373.8kN The ninth paragraph of 6.0~3.0m, 701.3-343.7=357.6kN The middle paragraph of 3.0~0m, 343.7-0=343.7kN (4)cross span construction (40t lifting capacity) : Support Housing Department 30.0~29.0m,864 2+171=340.2kN (including diaphragm) The second paragraph of 29.0~27.0m,3269.9-2939.9=330kN The third paragraph of 27.0~24.5m,2939.9-2545.3=394.6kN The fourth paragraph of 24.5~22.0m,2545.3-2169.3=376kN The fifth paragraph of 22.0~19.5m,2169.3-1810.5=358.8kN The sixth paragraph of 19.5~17.0m,1810.5-1467.5=343kN The seventh paragraph of 17.0~14.0m,1467.5-1075.1=392.4kN The eighth paragraph of 14.0~10.0m,1075.1-701.3=373.8kN The ninth paragraph of 10.0~8.0m, 701.3-343.7=357.6kN The tenth paragraph of 8.0~5.0m, 343.7-0=343.7kN The eleventh paragraph of 5.0~0m,full supporting 26 
  • 34. (2) Internal force of dead load and live load On the basis of arrangement of beam and span vertical section, by moving load to most unfavorable position, determine internal force of the control section and combine them, Draw envelope figure. (1) According to the bridge regulation, when the bridge is designed on bearing capacity, it should be conducted as follows: (4. Where: - The Importance of Structural factor ,security level is the level 1 when the 1.1 - under limit state, Load capacity the basic combination of the effects of the combination of the value - Part of the role of the permanent effect design values - Vehicle Load effect city include the vehicle impact, centrifugal force of design values - on the role of the portfolio in addition to Effect Vehicle Load effect city include the vehicle impact, other than the centrifugal force (2) According to the bridge regulation, when the bridge is designed on limit state, it should be conducted as follows: ① short-term benefits - Design value of role of the short-term effect - the standard value of permanent role 27 0 udS             m i n j QjdcdQGid SSS 1 2 10  0 udS GidS dQS 1 c Qjk n j j m i Giksd SSS    1 1 1  sdS GikS
  • 35. - frequent value factor of the first variable effects, Vehicle load = 0.7mm, the crowd load ≤1.0 - frequent value of each variable j effects (2) Long-term benefits - The design values of the long-term effects -- standard value under NO.i permanent role - quasi-permanent value Factor of The role of each variable j effects, Vehicle load = 0.4, the crowd load ≤0.4 - Quasi-permanent value of NO.j variable role Midas bridge calculation software for modeling, as shown in Figure 4-2, the flat is divided into 220 units, each unit 0.5M. Only considering the influence of concrete shrinkage and creep s econdary internal force structure. The bridge model by Midas 28 j1 1 1 j1 QjkS Qjk n j j m i Gikld SSS    1 2 1  ldS GikS j2 2 2 j2 QjkS
  • 36. Output after the operation analysis of dead load and live load inner force and internal force combination according to ultimate limit State, as shown in table 4-2, 4-3. Ultimate limit State moment (KN.m) combined meter Sectio n Dead Load M Live Loads Mmax Live Loads Mmin Creep M Combinati on Mmax Combination Mmin 0 0 0 0 0 0 0 0.5 116.9267 476.126 -92.6515 209.4133 1117.932 216.2907 1 225.7284 919.1819 -186.616 404.301 2158.233 405.644 1.5 326.4051 1331.767 -283.205 584.6633 3124.906 566.0401 2 418.9567 1716.999 -383.726 750.5001 4022.752 695.4649 2.5 503.3834 2078.392 -489.482 901.8114 4857.182 791.9115 3 579.6851 2419.747 -601.77 1038.597 5634.051 853.3845 3.5 647.8618 2745.05 -721.877 1160.858 6359.497 877.9011 4 707.9135 3058.382 -851.078 1268.592 7039.806 863.4959 4.5 759.8402 3363.833 -990.637 1361.802 7681.274 808.2256 5 803.6418 3665.422 -1141.8 1308.875 8145.319 565.3979 5.5 839.3185 3967.015 -1305.79 1366.987 8720.789 416.0151 6 866.8702 4250.472 -1469.79 1411.765 9242.937 243.0253 6.5 886.2969 4515.804 -1633.78 1443.238 9711.812 46.46132 7 897.5986 4763.041 -1797.78 1461.427 10127.48 -173.654 7.5 900.7753 4992.234 -1961.78 1466.352 10490.05 -417.298 8 895.827 5203.456 -2125.78 1458.037 10799.65 -684.445 8.5 882.7536 5396.798 -2289.78 1436.506 11056.46 -975.076 9 861.5553 5572.371 -2453.78 1401.788 11260.67 -1289.15 9.5 832.232 5730.305 -2617.79 1353.911 11412.52 -1626.64 10 794.7837 5870.743 -2781.79 1292.908 11512.26 -1987.5 10.5 749.2104 5993.845 -2945.8 1218.811 11560.17 -2371.71 11 695.5121 6099.788 -3109.8 1131.656 11556.57 -2779.21 11.5 633.6887 6188.756 -3273.81 1031.478 11501.78 -3209.98 12 563.7404 6260.948 -3437.81 918.3144 11396.14 -3663.97 12.5 485.6671 6316.572 -3601.82 792.2049 11240.03 -4141.14 13 399.4688 6355.841 -3765.82 653.1886 11033.8 -4641.45 13.5 305.1455 6378.973 -3929.83 501.3058 10777.85 -5164.84 14 202.6972 6386.209 -4093.84 336.5978 10472.58 -5711.28 14.5 92.12384 6377.77 -4257.84 159.1063 10118.39 -6280.72
  • 37. 15 -26.5745 6353.887 -4421.85 -27.7316 9725.248 -6875.23 15.5 -153.398 6314.793 -4585.85 -217.787 9316.477 -7504.26 16 -288.346 6260.725 -4749.86 -419.699 8862.667 -8157.07 16.5 -431.419 6191.91 -4913.86 -633.426 8364.212 -8833.59 17 -582.618 6108.585 -5077.87 -858.928 7821.521 -9533.79 17.5 -741.941 6010.973 -5241.87 -1096.16 7234.982 -10257.6 18 -909.389 5899.293 -5405.88 -1345.1 6604.977 -11005.1 18.5 -1084.96 5773.76 -5569.89 -1605.68 5931.883 -11776 19 -1268.66 5634.601 -5733.89 -1877.88 5216.091 -12570.5 19.5 -1460.48 5482.019 -5897.9 -2161.65 4457.959 -13388.4 20 -1660.43 5316.218 -6061.9 -2456.96 3657.846 -14229.8 20.5 -1868.51 5137.393 -6225.91 -2763.76 2816.093 -15094.5 21 -2084.7 4945.731 -6389.92 -3082.02 1933.032 -15982.5 21.5 -2309.03 4741.418 -6553.92 -3411.69 1008.992 -16893.8 22 -2541.48 4524.633 -6717.93 -3752.75 44.28965 -17828.4 22.5 -2782.05 4295.541 -6881.93 -4105.14 -960.778 -18786.1 23 -3030.75 4055.181 -7046.81 -4468.84 -2004.57 -19768.4 23.5 -3287.57 3811.445 -7220.32 -4843.81 -3074.89 -20787.1 24 -3552.52 3566.528 -7404.49 -5230.01 -4168.33 -21845.2 24.5 -3825.59 3320.764 -7599.51 -5627.41 -5284.32 -22943.2 25 -4106.79 3074.493 -7805.61 -6035.96 -6422.31 -24081.2 25.5 -4396.11 2828.066 -8022.99 -6455.65 -7581.71 -25259.5 26 -4693.56 2581.845 -8251.92 -6886.42 -8761.94 -26478.5 26.5 -4999.14 2336.207 -8492.65 -7328.25 -9962.37 -27738.6 27 -5312.83 2091.532 -8745.45 -7781.11 -11182.4 -29040.2 27.5 -5634.66 1848.208 -9010.6 -8244.97 -12421.3 -30383.5 28 -5964.61 1606.628 -9288.42 -8719.79 -13678.6 -31769.2 28.5 -6302.68 1436.059 -9579.2 -9205.54 -14847.5 -33197.6 29 -6648.88 1434.888 -9883.28 -9702.19 -15776.4 -34669.2 29.5 -7003.2 1441.835 -10201 -10214.9 -16719.5 -36190.1 30 -7365.65 1457.251 -10532.7 -10746.7 -17679.5 -37764.4 30.5 -6963.49 1414.665 -10010.8 -10159.2 -16656.3 -35783.4 31 -6569.43 1375.222 -9500.53 -9583.96 -15650.9 -33844.8 31.5 -6183.49 1339.126 -9002.93 -9021.03 -14662.7 -31949.8 32 -5805.67 1306.338 -8517.46 -8470.18 -13691.7 -30097.6 32.5 -5435.99 1352.896 -8044.66 -7931.29 -12620.5 -28288.7 33 -5074.42 1496.659 -7584.16 -7404.3 -11421.7 -26522.6 33.5 -4720.98 1642.367 -7136.63 -6889.14 -10241.9 -24800.2 34 -4375.67 1789.939 -6701.66 -6385.77 -9081.08 -23120.8 34.5 -4038.48 1939.291 -6279.46 -5894.15 -7939.39 -21484.7 35 -3709.42 2090.335 -5870.5 -5414.23 -6816.9 -19892.7
  • 38. 35.5 -3388.48 2242.986 -5474.59 -4946 -5713.73 -18344.3 36 -3075.67 2397.152 -5091.92 -4489.42 -4629.98 -16839.8 36.5 -2770.98 2552.743 -4722.66 -4044.47 -3565.77 -15379.5 37 -2474.42 2709.66 -4366.99 -3611.14 -2521.23 -13963.7 37.5 -2185.98 2867.808 -4025.07 -3189.4 -1496.49 -12592.4 38 -1905.67 3027.089 -3697.11 -2779.24 -491.681 -11266.2 38.5 -1633.48 3187.401 -3482.85 -2380.65 493.0546 -10138.5 39 -1369.42 3348.644 -3313.51 -1993.62 1457.572 -9103.42 39.5 -1113.48 3510.712 -3152.53 -1618.14 2401.718 -8104.64 40 -865.666 3673.502 -2999.89 -1254.2 3325.339 -7142.13 40.5 -625.979 3836.907 -2855.58 -901.801 4228.28 -6215.86 41 -394.416 4000.831 -2719.59 -560.935 5110.394 -5325.82 41.5 -170.978 4165.171 -2591.93 -231.602 5971.525 -4472.02 42 44.33495 4329.833 -2472.6 86.19958 6821.284 -3664.22 42.5 251.5228 4494.723 -2361.64 392.4685 7685.598 -2928.53 43 450.5856 4659.763 -2259.07 687.2026 8526.731 -2227.39 43.5 641.5233 4824.901 -2164.94 970.3982 9344.596 -1560.9 44 824.3361 4990.112 -2079.37 1242.05 10139.15 -929.199 44.5 999.0238 5155.481 -2002.54 1502.152 10910.52 -332.612 45 1165.587 5321.745 -1935.32 1865.945 11786.6 354.2973 45.5 1324.024 5498.549 -1887.48 2118.913 12546.28 880.5179 46 1474.337 5678.308 -1851.55 2359.522 13286.19 1365.857 46.5 1616.525 5852.568 -1819.22 2587.758 13993.3 1823.12 47 1750.587 6018.463 -1787.71 2803.608 14663.18 2256.538 47.5 1876.525 6175.239 -1756.43 3007.055 15294.64 2667.038 48 1994.338 6322.639 -1725.23 3198.082 15887.28 3054.81 48.5 2104.025 6460.505 -1694.08 3376.668 16440.83 3419.886 49 2205.588 6588.703 -1662.95 3542.794 16955.05 3762.284 49.5 2299.026 6707.112 -1631.83 3696.435 17429.74 4081.991 50 2384.338 6815.62 -1600.72 3837.567 17864.7 4378.985 50.5 2461.526 6914.125 -1569.62 3966.163 18259.75 4653.242 51 2530.589 7002.532 -1538.53 4082.195 18614.69 4904.733 51.5 2591.526 7080.755 -1507.43 4185.629 18929.37 5133.424 52 2644.339 7148.713 -1476.34 4276.435 19203.62 5339.282 52.5 2689.026 7206.337 -1445.26 4354.574 19437.3 5522.267 53 2725.589 7253.568 -1414.17 4420.01 19630.28 5682.336 53.5 2754.026 7290.355 -1383.09 4472.7 19782.43 5819.445 54 2774.339 7316.659 -1352 4512.601 19893.64 5933.547 54.5 2786.526 7332.454 -1320.92 4539.665 19963.83 6024.589 55 2790.589 7337.72 -1289.84 4549.726 19988.36 6087.988 55.5 2786.526 7332.454 -1320.92 4542.349 19966.78 6027.541
  • 39. 56 2774.339 7316.66 -1352 4521.379 19903.3 5943.203 56.5 2754.026 7290.355 -1383.09 4486.928 19798.08 5835.096 57 2725.589 7253.568 -1414.17 4439.06 19651.24 5703.291 57.5 2689.026 7206.337 -1445.26 4377.826 19462.88 5547.844 58 2644.339 7148.712 -1476.34 4303.273 19233.14 5368.805 58.5 2591.526 7080.756 -1507.43 4215.448 18962.17 5166.225 59 2530.589 7002.533 -1538.53 4114.395 18650.11 4940.153 59.5 2461.526 6914.125 -1569.62 4000.158 18297.14 4690.636 60 2384.338 6815.621 -1600.72 3872.783 17903.44 4417.722 60.5 2299.026 6707.112 -1631.83 3732.315 17469.21 4121.459 61 2205.588 6588.703 -1662.95 3578.801 16994.66 3801.893 61.5 2104.025 6460.506 -1694.08 3412.287 16480.01 3459.067 62 1994.338 6322.641 -1725.23 3232.819 15925.49 3093.021 62.5 1876.525 6175.238 -1756.43 3040.446 15331.37 2703.768 63 1750.587 6018.463 -1787.71 2835.214 14697.94 2291.304 63.5 1616.525 5852.569 -1819.22 2617.172 14025.66 1855.475 64 1474.337 5678.308 -1851.55 2386.368 13315.72 1395.387 64.5 1324.024 5498.55 -1887.48 2142.849 12572.61 906.847 65 1165.587 5321.745 -1935.32 1770.089 11681.16 248.8556 65.5 999.0238 5155.481 -2002.54 1518.276 10928.26 -314.876 66 824.3361 4990.112 -2079.37 1254.686 10153.05 -915.298 66.5 641.5233 4824.9 -2164.94 979.3655 9354.459 -1551.03 67 450.5856 4659.764 -2259.06 692.3582 8532.403 -2221.72 67.5 251.5228 4494.723 -2361.64 393.7084 7686.963 -2927.17 68 44.33495 4329.833 -2472.6 83.45975 6818.27 -3667.23 68.5 -170.978 4165.171 -2591.93 -238.344 5964.109 -4479.44 69 -394.416 4000.831 -2719.59 -571.661 5098.595 -5337.62 69.5 -625.979 3836.908 -2855.58 -916.448 4212.169 -6231.97 70 -865.666 3673.502 -2999.89 -1272.66 3305.031 -7162.44 70.5 -1113.48 3510.713 -3152.53 -1640.26 2377.379 -8128.98 71 -1369.42 3348.644 -3313.51 -2019.21 1429.42 -9131.57 71.5 -1633.48 3187.401 -3482.85 -2409.47 461.3574 -10170.2 72 -1905.67 3027.089 -3697.11 -2810.99 -526.602 -11301.1 72.5 -2185.98 2867.808 -4025.07 -3223.73 -1534.26 -12630.2 73 -2474.42 2709.66 -4366.99 -3647.67 -2561.42 -14003.8 73.5 -2770.98 2552.742 -4722.66 -4082.75 -3607.89 -15421.6 74 -3075.67 2397.152 -5091.92 -4528.96 -4673.47 -16883.3 74.5 -3388.48 2242.986 -5474.59 -4986.24 -5757.99 -18388.5 75 -3709.42 2090.335 -5870.5 -5454.56 -6861.26 -19937 75.5 -4038.48 1939.29 -6279.46 -5933.89 -7983.1 -21528.4 76 -4375.67 1789.939 -6701.66 -6424.19 -9123.34 -23163
  • 40. 76.5 -4720.98 1642.367 -7136.63 -6925.43 -10281.8 -24840.1 77 -5074.42 1496.659 -7584.16 -7437.58 -11458.4 -26559.2 77.5 -5435.99 1352.896 -8044.66 -7960.61 -12652.8 -28320.9 78 -5805.67 1306.338 -8517.46 -8494.48 -13718.4 -30124.3 78.5 -6183.49 1339.126 -9002.93 -9039.16 -14682.7 -31969.8 79 -6569.43 1375.222 -9500.53 -9594.63 -15662.6 -33856.5 79.5 -6963.49 1414.666 -10010.7 -10166 -16663.8 -35790.9 80 -7365.68 1457.493 -10533 -10751.6 -17684.5 -37770.3 80.5 -7003.2 1441.835 -10201 -10222.4 -16727.7 -36198.3 81 -6648.88 1434.888 -9883.28 -9705.53 -15780.1 -34672.9 81.5 -6302.68 1436.059 -9579.2 -9200.98 -14842.5 -33192.6 82 -5964.61 1606.628 -9288.42 -8708.53 -13666.2 -31756.8 82.5 -5634.66 1848.208 -9010.6 -8228.09 -12402.8 -30365 83 -5312.83 2091.532 -8745.45 -7759.57 -11158.7 -29016.5 83.5 -4999.14 2336.207 -8492.65 -7302.94 -9934.52 -27710.8 84 -4693.56 2581.845 -8251.92 -6858.13 -8730.82 -26447.4 84.5 -4396.11 2828.066 -8023 -6425.12 -7548.14 -25225.9 85 -4106.79 3074.493 -7805.61 -6003.88 -6387.02 -24045.9 85.5 -3825.59 3320.764 -7599.51 -5594.38 -5247.99 -22906.8 86 -3552.52 3566.528 -7404.49 -5196.6 -4131.58 -21808.5 86.5 -3287.57 3811.445 -7220.32 -4810.52 -3038.27 -20750.5 87 -3030.75 4055.181 -7046.82 -4436.12 -1968.58 -19732.4 87.5 -2782.05 4295.541 -6881.93 -4073.4 -925.866 -18751.2 88 -2541.48 4524.633 -6717.93 -3722.35 77.72852 -17794.9 88.5 -2309.03 4741.419 -6553.92 -3382.95 1040.614 -16862.2 89 -2084.7 4945.732 -6389.91 -3055.19 1962.539 -15953 89.5 -1868.51 5137.393 -6225.91 -2739.09 2843.232 -15067.3 90 -1660.43 5316.218 -6061.9 -2434.62 3682.412 -14205.2 90.5 -1460.48 5482.019 -5897.9 -2141.8 4479.791 -13366.6 91 -1268.66 5634.601 -5733.89 -1860.63 5235.066 -12551.5 91.5 -1084.96 5773.762 -5569.89 -1591.1 5947.922 -11760 92 -909.389 5899.292 -5405.88 -1333.23 6618.032 -10992 92.5 -741.941 6010.973 -5241.87 -1087.01 7245.055 -10247.6 93 -582.618 6108.586 -5077.87 -852.456 7828.641 -9526.67 93.5 -431.419 6191.91 -4913.86 -629.579 8368.443 -8829.36 94 -288.346 6260.724 -4749.86 -418.389 8864.106 -8155.63 94.5 -153.398 6314.793 -4585.85 -218.897 9315.256 -7505.48 95 -26.5745 6353.885 -4421.85 -34.6477 9717.638 -6882.83 95.5 92.12384 6377.769 -4257.84 153.3302 10112.03 -6287.07 96 202.6972 6386.209 -4093.84 328.7694 10463.97 -5719.89 96.5 305.1455 6378.974 -3929.83 491.6494 10767.23 -5175.46
  • 41. 97 399.4688 6355.841 -3765.82 641.9478 11021.44 -4653.81 97.5 485.6671 6316.572 -3601.82 779.6404 11226.21 -4154.96 98 563.7404 6260.95 -3437.81 904.7007 11381.17 -3678.95 98.5 633.6887 6188.756 -3273.81 1017.1 11485.96 -3225.8 99 695.5121 6099.787 -3109.8 1116.809 11540.24 -2795.54 99.5 749.2104 5993.845 -2945.8 1203.793 11543.65 -2388.23 100 794.7837 5870.742 -2781.79 1278.018 11495.88 -2003.88 100.5 832.232 5730.304 -2617.79 1339.446 11396.6 -1642.55 101 861.5553 5572.37 -2453.78 1388.036 11245.54 -1304.28 101.5 882.7536 5396.798 -2289.78 1423.745 11042.42 -989.113 102 895.827 5203.455 -2125.78 1446.527 10786.99 -697.106 102.5 900.7753 4992.234 -1961.78 1456.332 10479.03 -428.32 103 897.5986 4763.041 -1797.78 1453.108 10118.33 -182.805 103.5 886.2969 4515.804 -1633.78 1436.798 9704.728 39.37709 104 866.8702 4250.472 -1469.79 1407.343 9238.072 238.1605 104.5 839.3185 3967.014 -1305.79 1364.678 8718.248 413.4749 105 803.6418 3665.422 -1141.8 1439.091 8288.556 708.6348 105.5 759.8402 3363.833 -990.637 1360.546 7679.893 806.8444 106 707.9135 3058.382 -851.078 1267.477 7038.578 862.2687 106.5 647.8618 2745.049 -721.877 1159.881 6358.423 876.827 107 579.6851 2419.747 -601.77 1037.76 5633.13 852.4639 107.5 503.3834 2078.392 -489.482 901.114 4856.415 791.1445 108 418.9567 1716.999 -383.726 749.9422 4022.138 694.8511 108.5 326.4051 1331.767 -283.205 584.2449 3124.445 565.5798 109 225.7284 919.1819 -186.616 404.0221 2157.926 405.337 109.5 116.9267 476.126 -92.6515 209.2738 1117.778 216.1373 110 0 0 0 0 0 0 Ultimate Limit State Shear (KN) Combined meter Sectio n Dead Load V Live Loads Vmax Live Loads Vmin Creep V Combinati on Vmax Coombinat ionVmin 0 -241.978 205.2042 -1138.28 -433.352 -426.849 -2549.05 0.5 -225.728 208.3238 -1094.68 -404.301 -372.214 -2428.5 1 -209.478 214.743 -1055.29 -375.25 -312.497 -2314.43 1.5 -193.228 224.4014 -1020.84 -346.199 -247.792 -2207.97 2 -176.978 237.218 -991.915 -317.148 -178.223 -2110.02 2.5 -160.728 253.0947 -968.944 -288.097 -103.942 -2021.24 3 -144.478 276.5913 -952.217 -259.046 -17.9263 -1942.08
  • 42. 3.5 -128.228 298.318 -941.906 -229.995 65.36379 -1872.79 4 -111.978 317.8914 -938.072 -200.944 145.338 -1813.48 4.5 -95.7284 344.7603 -940.675 -171.893 236.5472 -1764.08 5 -79.4784 374.0115 -949.581 -129.839 345.7289 -1710.09 5.5 -63.2283 376.2641 -922.686 -103.435 396.1167 -1618.18 6 -46.9782 379.1804 -896.012 -77.0332 447.5254 -1526.61 6.5 -30.7281 399.9734 -869.576 -50.6405 526.4536 -1435.41 7 -14.4782 420.9515 -843.392 -24.263 605.65 -1344.62 7.5 1.77159 442.0986 -817.475 2.0946 685.4744 -1254.66 8 18.02105 463.3986 -791.841 28.42833 768.6928 -1168.34 8.5 34.27016 484.8361 -766.503 54.73461 852.0923 -1082.51 9 50.51884 506.3954 -741.475 81.01027 935.6451 -997.189 9.5 66.76701 528.0613 -716.769 107.2524 1019.324 -912.402 10 83.01459 549.8198 -692.396 133.4584 1103.106 -828.17 10.5 99.26149 571.6566 -668.368 159.6259 1186.965 -744.511 11 115.5076 593.5588 -644.694 185.7527 1270.879 -661.443 11.5 131.7529 615.513 -621.385 211.8368 1354.824 -578.984 12 147.9972 637.5073 -598.447 237.8763 1438.781 -497.147 12.5 164.2405 659.5306 -575.887 263.8696 1522.731 -415.945 13 180.4827 681.5727 -553.712 289.8151 1606.656 -335.389 13.5 196.7236 703.6233 -531.928 315.7114 1690.538 -255.49 14 212.9631 725.6731 -510.538 341.5572 1774.361 -176.256 14.5 229.2012 747.7142 -489.546 367.3514 1858.112 -97.6926 15 245.4377 769.7388 -468.954 368.1455 1914.336 -47.2477 15.5 261.6726 791.7403 -448.764 392.2094 1996.118 28.1732 16 277.9056 813.7125 -428.977 416.2221 2077.797 102.916 16.5 294.1368 835.6504 -409.593 440.1831 2159.364 176.9793 17 310.3659 857.5488 -390.61 464.0916 2240.809 250.3635 17.5 326.5928 879.404 -372.028 487.947 2322.126 323.0702 18 342.8175 901.2131 -353.844 511.7489 2403.311 395.1025 18.5 359.0398 922.9732 -336.056 535.4968 2484.358 466.464 19 375.2595 944.6813 -318.66 559.1903 2565.261 537.1577 19.5 391.4765 966.3357 -301.654 582.8292 2646.018 607.1891 20 407.6907 987.9351 -285.033 606.4131 2726.626 676.5639 20.5 423.902 1009.478 -268.792 629.9419 2807.083 745.2888 21 440.1103 1030.966 -252.927 653.4153 2887.39 813.3711 21.5 456.3153 1052.396 -237.432 676.8334 2967.543 880.8182
  • 43. 22 472.5169 1073.77 -222.303 700.1959 3047.544 947.638 22.5 488.7151 1095.089 -207.533 723.5028 3127.394 1013.839 23 504.9096 1116.352 -193.117 746.7542 3207.093 1079.43 23.5 521.1004 1137.561 -179.048 769.9501 3286.642 1144.422 24 537.2873 1158.718 -165.321 793.0906 3366.045 1208.822 24.5 553.4702 1179.824 -151.929 816.1758 3445.303 1272.641 25 569.6489 1200.88 -138.865 839.2057 3524.418 1335.888 25.5 585.8232 1221.889 -126.124 862.1806 3603.394 1398.573 26 601.9931 1242.851 -113.699 885.1006 3682.232 1460.707 26.5 618.1585 1263.771 -101.583 907.9659 3760.938 1522.299 27 634.3191 1284.648 -89.7709 930.7768 3839.513 1583.358 27.5 650.4748 1305.485 -78.2556 953.5335 3917.961 1643.896 28 666.6256 1326.285 -67.031 976.2363 3996.285 1703.92 28.5 682.7713 1347.05 -58.4664 998.8855 4074.489 1759.784 29 698.9117 1367.781 -58.0697 1021.481 4152.576 1803.005 29.5 716.7716 1391.832 -57.9362 1047.073 4241.339 1851.007 30 -812.5 108.7211 -1486.42 -1187.66 -2032.75 -4668.01 30.5 -794.421 108.59 -1466.91 -1161.38 -1984.15 -4585.19 31 -778.291 108.7712 -1450.91 -1137.9 -1940.3 -4513.43 31.5 -762.155 109.0176 -1434.85 -1114.47 -1896.4 -4441.63 32 -746.014 109.3306 -1418.73 -1091.07 -1852.42 -4369.75 32.5 -729.867 109.7119 -1402.54 -1067.69 -1808.36 -4297.79 33 -713.716 110.1629 -1386.28 -1044.33 -1764.2 -4225.74 33.5 -697.559 110.6854 -1369.95 -1020.98 -1719.94 -4153.58 34 -681.398 111.281 -1353.55 -997.646 -1675.58 -4081.32 34.5 -665.232 111.9513 -1337.08 -974.313 -1631.09 -4008.95 35 -649.061 112.6983 -1320.53 -950.984 -1586.49 -3936.45 35.5 -632.886 113.5237 -1303.9 -927.655 -1541.77 -3863.84 36 -616.707 117.0719 -1287.2 -904.324 -1492.84 -3791.09 36.5 -600.523 124.9087 -1270.41 -880.99 -1437.3 -3718.22 37 -584.335 132.99 -1253.55 -857.65 -1381.38 -3645.2 37.5 -568.144 141.3209 -1236.6 -834.304 -1325.06 -3572.05 38 -551.949 149.9066 -1219.57 -810.948 -1268.33 -3498.76 38.5 -535.75 158.7523 -1202.46 -787.581 -1211.19 -3425.31 39 -519.548 167.8629 -1185.26 -764.203 -1153.62 -3351.73 39.5 -503.342 177.2428 -1167.97 -740.81 -1095.61 -3277.98 40 -487.133 186.8964 -1150.61 -717.403 -1037.17 -3204.09
  • 44. 40.5 -470.922 196.828 -1133.15 -693.979 -978.275 -3130.05 41 -454.707 207.0415 -1115.61 -670.536 -918.923 -3055.85 41.5 -438.49 217.5407 -1097.99 -647.074 -859.107 -2981.49 42 -422.269 228.3288 -1080.29 -623.59 -798.819 -2906.99 42.5 -406.047 239.4081 -1062.5 -600.084 -738.056 -2832.33 43 -389.822 250.7812 -1044.64 -576.554 -676.81 -2757.52 43.5 -373.595 262.4504 -1026.71 -552.998 -615.078 -2682.57 44 -357.365 274.4174 -1008.7 -529.415 -552.855 -2607.47 44.5 -341.134 286.6829 -990.617 -505.803 -490.139 -2532.23 45 -324.901 299.2473 -972.474 -514.702 -462.722 -2492.65 45.5 -308.666 312.1105 -954.271 -489.43 -397.255 -2415.39 46 -292.429 325.2714 -936.013 -464.121 -331.287 -2338 46.5 -276.191 338.7285 -917.707 -438.775 -264.82 -2260.49 47 -259.951 352.4797 -899.357 -413.389 -197.855 -2182.87 47.5 -243.71 366.5216 -880.973 -387.96 -130.394 -2105.15 48 -227.468 380.8502 -862.562 -362.488 -62.4425 -2027.34 48.5 -211.225 395.4609 -844.132 -336.97 5.995867 -1949.45 49 -194.98 410.3486 -825.692 -311.403 74.9153 -1871.48 49.5 -178.735 425.5072 -807.252 -285.785 144.3087 -1793.46 50 -162.489 440.9295 -788.822 -260.114 214.1678 -1715.4 50.5 -146.242 456.6079 -770.413 -234.388 284.4834 -1637.3 51 -129.995 472.5338 -752.036 -208.602 355.2454 -1559.19 51.5 -113.747 488.6984 -733.702 -182.756 426.4431 -1481.08 52 -97.4979 505.0918 -715.423 -156.845 498.0645 -1402.98 52.5 -81.2489 521.7035 -697.213 -130.866 570.0967 -1324.91 53 -64.9995 538.5224 -679.084 -104.817 642.5262 -1246.89 53.5 -48.7498 555.5371 -661.048 -78.6937 715.3393 -1168.93 54 -32.5 572.7358 -643.12 -52.4923 788.5215 -1091.05 54.5 -16.25 590.1058 -625.311 -26.2091 862.0579 -1013.26 55 0.00001 607.6348 -607.635 0.15982 935.9334 -935.582 55.5 16.25001 625.3098 -590.105 26.54508 1013.627 -861.687 56 32.4999 643.1178 -572.734 52.91733 1091.51 -788.051 56.5 48.74963 661.0454 -555.534 79.2711 1169.558 -714.7 57 64.99911 679.0801 -538.519 105.602 1247.744 -641.658 57.5 81.24826 697.2081 -521.699 131.9061 1326.045 -568.947 58 97.49702 715.417 -505.087 158.1802 1404.436 -496.589 58.5 113.7453 733.6939 -488.693 184.4211 1482.896 -424.604
  • 45. 59 129.993 752.0265 -472.528 210.6262 1561.4 -353.012 59.5 146.2401 770.4024 -456.601 236.7929 1639.929 -281.83 60 162.4865 788.8101 -440.922 262.919 1718.461 -211.075 60.5 178.732 807.2383 -425.5 289.0023 1796.976 -140.762 61 194.9766 825.6768 -410.341 315.0409 1875.456 -70.9053 61.5 211.2203 844.1148 -395.452 341.0331 1953.884 -1.51805 62 227.4628 862.5429 -380.841 366.9773 2032.242 67.38854 62.5 243.7042 880.9518 -366.512 392.872 2110.514 135.8046 63 259.9442 899.3338 -352.47 418.7158 2188.688 203.7219 63.5 276.1829 917.6808 -338.719 444.5076 2266.748 271.1327 64 292.4201 935.9851 -325.261 470.2461 2344.682 338.0302 64.5 308.6556 954.2403 -312.1 495.9305 2422.479 404.4105 65 324.8894 972.4409 -299.237 488.5902 2463.862 434.0028 65.5 341.1214 990.5815 -286.672 512.5469 2539.577 497.5598 66 357.3514 1008.657 -274.407 536.4505 2615.131 560.596 66.5 373.5793 1026.664 -262.439 560.3006 2690.517 623.111 67 389.805 1044.598 -250.77 584.0964 2765.729 685.1054 67.5 406.0283 1062.456 -239.397 607.8376 2840.761 746.581 68 422.2492 1080.236 -228.318 631.5238 2915.609 807.5411 68.5 438.4675 1097.937 -217.53 655.1547 2990.269 867.9888 69 454.683 1115.554 -207.03 678.7299 3064.738 927.9273 69.5 470.8957 1133.089 -196.817 702.2493 3139.014 987.3614 70 487.1054 1150.539 -186.886 725.7126 3213.093 1046.296 70.5 503.3119 1167.905 -177.232 749.1197 3286.977 1104.738 71 519.5152 1185.185 -167.852 772.4707 3360.662 1162.692 71.5 535.715 1202.38 -158.742 795.7653 3434.151 1220.166 72 551.9113 1219.49 -149.896 819.0037 3507.442 1277.166 72.5 568.1039 1236.516 -141.311 842.1858 3580.536 1333.7 73 584.2927 1253.458 -132.98 865.3118 3653.435 1389.775 73.5 600.4775 1270.318 -124.899 888.3816 3726.14 1445.4 74 616.6582 1287.097 -117.063 911.3956 3798.653 1500.583 74.5 632.8346 1303.796 -113.515 934.3537 3870.976 1549.095 75 649.0067 1320.416 -112.689 957.2563 3943.112 1593.348 75.5 665.1742 1336.96 -111.942 980.1035 4015.062 1637.415 76 681.337 1353.428 -111.271 1002.895 4086.83 1681.298 76.5 697.4951 1369.823 -110.675 1025.633 4158.417 1725 77 713.6482 1386.146 -110.153 1048.315 4229.827 1768.524
  • 46. 77.5 729.7962 1402.4 -109.701 1070.943 4301.064 1811.873 78 745.9391 1418.585 -109.32 1093.517 4372.129 1855.049 78.5 762.0766 1434.704 -109.007 1116.038 4443.027 1898.056 79 778.2086 1450.758 -108.76 1138.505 4513.759 1940.894 79.5 796.25 1470.283 -108.827 1164.196 4595.901 1988.896 80 -733.022 57.79134 -1412.71 -1071.07 -1895.5 -4321.34 80.5 -715.124 57.80306 -1388.63 -1044.94 -1847.05 -4231.89 81 -698.986 58.07584 -1367.93 -1021.44 -1803.03 -4152.85 81.5 -682.842 58.4724 -1347.19 -997.984 -1758.86 -4073.8 82 -666.693 67.0377 -1326.42 -974.554 -1702.13 -3994.73 82.5 -650.538 78.26319 -1305.61 -951.142 -1641.32 -3915.61 83 -634.379 89.77937 -1284.77 -927.744 -1580.08 -3836.44 83.5 -618.215 101.5925 -1263.89 -904.354 -1518.37 -3757.22 84 -602.047 113.7089 -1242.96 -880.971 -1456.21 -3677.93 84.5 -585.874 126.1349 -1221.99 -857.59 -1393.56 -3598.57 85 -569.697 138.8767 -1200.98 -834.209 -1330.43 -3519.14 85.5 -553.515 151.9409 -1179.92 -810.826 -1266.79 -3439.62 86 -537.33 165.3337 -1158.81 -787.438 -1202.63 -3360.02 86.5 -521.14 179.0617 -1137.65 -764.044 -1137.95 -3280.33 87 -504.947 193.1309 -1116.43 -740.642 -1072.73 -3200.54 87.5 -488.75 207.5476 -1095.17 -717.23 -1006.95 -3120.66 88 -472.549 222.3178 -1073.84 -693.807 -940.622 -3040.67 88.5 -456.345 237.4475 -1052.47 -670.37 -873.717 -2960.58 89 -440.138 252.9425 -1031.03 -646.918 -806.23 -2880.38 89.5 -423.928 268.8081 -1009.54 -623.45 -738.15 -2800.07 90 -407.714 285.0491 -987.992 -599.963 -669.47 -2719.65 90.5 -391.498 301.6707 -966.389 -576.458 -600.178 -2639.12 91 -375.279 318.6772 -944.731 -552.931 -530.268 -2558.48 91.5 -359.058 336.0729 -923.02 -529.381 -459.731 -2477.73 92 -342.834 353.8614 -901.256 -505.808 -388.56 -2396.86 92.5 -326.608 372.0453 -879.444 -482.209 -316.749 -2315.9 93 -310.379 390.6271 -857.586 -458.583 -244.293 -2234.82 93.5 -294.149 409.6094 -835.685 -434.928 -171.186 -2153.65 94 -277.916 428.9937 -813.744 -411.243 -97.4246 -2072.38 94.5 -261.682 448.7807 -791.769 -387.525 -23.0059 -1991.02 95 -245.446 468.9702 -769.765 -388.42 24.96108 -1936.69 95.5 -229.209 489.5617 -747.738 -363.028 102.4642 -1853.4
  • 47. 96 -212.97 510.5534 -725.695 -337.597 180.6291 -1770.05 96.5 -196.729 531.9428 -703.643 -312.124 259.4539 -1686.63 97 -180.487 553.7269 -681.591 -286.606 338.9362 -1603.16 97.5 -164.245 575.9012 -659.547 -261.043 419.0712 -1519.65 98 -148.001 598.4601 -637.522 -235.432 499.8526 -1436.12 98.5 -131.756 621.3976 -615.526 -209.77 581.2737 -1352.57 99 -115.51 644.7068 -593.57 -184.056 663.3263 -1269.03 99.5 -99.2632 668.3796 -571.667 -158.286 746.0008 -1185.51 100 -83.0159 692.4069 -549.828 -132.458 829.2855 -1102.02 100.5 -66.768 716.7786 -528.069 -106.569 913.1682 -1018.59 101 -50.5195 741.4839 -506.402 -80.6168 997.6354 -935.223 101.5 -34.2705 766.5114 -484.841 -54.5978 1082.672 -851.95 102 -18.0212 791.8483 -463.403 -28.509 1168.263 -768.788 102.5 -1.77161 817.4814 -442.102 -2.34697 1254.391 -685.757 103 14.47823 843.3966 -420.954 23.89172 1344.223 -606.062 103.5 30.72822 869.5794 -399.975 50.21084 1434.946 -526.929 104 46.97829 896.0149 -379.182 76.61434 1526.15 -447.988 104.5 63.22836 922.6872 -376.265 103.1064 1617.817 -396.479 105 79.47837 911.9806 -351.612 142.5633 1666.181 -297.237 105.5 95.72837 907.4177 -340.208 171.6142 1712.56 -229.844 106 111.9784 909.1759 -324.487 200.6652 1768.674 -155.802 106.5 128.2284 917.3415 -304.641 229.7162 1834.655 -75.4082 107 144.4784 931.9039 -280.948 258.7672 1910.487 10.91008 107.5 160.7284 952.7473 -253.776 287.8182 1995.992 102.5855 108 176.9784 979.6398 -225.759 316.8691 2090.813 195.5632 108.5 193.2284 1012.222 -215.754 345.9201 2194.395 260.8015 109 209.4784 1049.991 -208.951 374.9711 2305.966 321.1102 109.5 225.7284 1092.29 -205.418 404.0221 2424.512 376.3817 110 241.9784 1138.282 -205.204 433.073 2548.746 426.5421
  • 48. According to the tables 4-2 and 4-3 can be drawn under ultimate limit State moment envelope and the corresponding shear force envel ope diagram, Bending moment envelope diagrams (KN) Shear force envelope diagram (KN) 41
  • 49. Chapter #6: Mainbeam reinforcement 1. Estimation of prestressed reinforcement principle 1. Equipped with beam principle: Construction of prestressed reinforcement should meet the stage and bridge operating force re quirements and reinforcement placement in accordance with construction requirements, including anchorage options, steel beam space layout, etc., and to facilitate the construction. 2. Beam distribution formula In accordance with the provisions of the code for design of reinforced concrete and prestressed concrete highway bridges and culverts, first prestressed concrete continuous beams under stress to meet load requirements. Under normal circumstances, upper and lower edge of compressive stress is not the controlling factor, simple plan, can be considered only on margin and margin does not appear under tensile stress for restrictions. According to the conditions of this type is expressed as: 0 上 min 上  W M y , That is 上 上 W M y min  (5-1) 0max  下 下 W M y , That is 下 下 W M y max  (5-2) Type: 上y , 下y --on a section by prestressing force and stress generated by the lower edge; Mmax, Mmin- section of maximum and minimum bending moment, positive moment is positive negative nega tive bending moment; 上W 、 下W --Namely the section the upper and lower edge of flexural modulus. According to section forces, there are three possible forms of reinforcement: sectionare arranged on the upper and lower margin of reinforced to resist positive and negative moment; only in the se ction margin under layout of tendons to resist bendingmoments; or only in assigning the upper edge reinforced to resist the negative moment. 42
  • 50. ① Sections are arranged on the upper and lower margin of prestressed tendons Reinforced by force and in cross section and lower margin of stress are: 上 下下下 上 上上上 上= W eN A N W eN A N y  (5-3) 下 下下下 下 上上上 下= W eN A N W eN A N y  (5-4) Order yyfnN 上上  , yyfnN 下下  (5-5) We have: ))(( )()( 下上下上 下下上下下上下上 上 eekk ekkekk f A n yy yy      (5-6) ))(( )()( 下上下上 下上下上下下上下 上 eekk ekkekk f A n yy yy      (5-7) Type: 上n , 下n ,--and lower margin of prestressing steel on the section number; A--Concrete area; yf --Each beam (unit) cross-sectional area of the prestressing steel; y -- The persistent stress of prestressed reinforcement. Estimated number of bars is desirable for pr e Standard strength of stress bars; 上k , 下k --Section and lower margin of the core distance; 上e , 下e --Section upper and lower edge of prestressing to cross the center of gravity the Centre of gravity range; ② Margin layout only under section prestressed tendons Section lower edge only in the layout of tendons to resist bending moments, by thelower edge of prestressing steel upper and lower stress in the cross section, respectively Lower stress are: 43
  • 51. 上 下下下 上= W eN A N y  (5-8) 下 下下下 下= W eN A N y  (5-9) Order yyfnN 上上  , (5-10) We have: 下下 下上 下 ek k f A n y yy     (5-11) 下上 下下 下 ek k f A n y yy     (5-12) ③ Margin only in arrangement of prestressed tendons The same can be obtained now does not appear on the tensile stress is the sectionmargin number of prestressing: 下下 下上 上 ek k f A n y yy     (5-13) 下下 下上 上 ek k f A n y yy     (5-14) ④ Criterion of upper and lower reinforcement Number of prestressed concrete flexural reinforcement not only associated with the cross section subjected to bending moment and also needs to consider the effect ofsectional properti es. Thus, reinforcement calculation, should not be considered onlywhen under positive and neg ative bending moment interaction only when upper and lower reinforcement, but should be based (5-6) and (5-7) on the basis of criterionreinforcement is derived. (5-6), 0上n is available only in the lower reinforcement of conditions:    上下下下下上下上 ekkekk y  y (5-15) 43
  • 52. (5-7), 0下n is available only at the upper edge reinforced conditions:   下下下上上上 kekk y y (5-16) 2. Estimation of prestressing tendon Using Midas bridge calculation software, enter- strand type 1x7 standard, and nominal diameter of 15.2mm, 139 mm2 cross- sectional area, run the analysis section of the output for prestressing the estimated number, as shown in table 5-1, unit area mm2 steel beam, steel beams for the root. The estimation of prestressed steel bar table Section Location Steel beam area Steel beam Section Location Steel beam area Steel beam Section Location Steel beam area Steel beam 1 Bottom 0 0 13 Bottom 6170.462 44 26 Top 3686.675 27 1 Top 0 0 13 Top 1032.651 7 27 Bottom 7599.847 55 2 Bottom 712.7601 5 14 Bottom 6507.636 47 27 Top 3902.692 28 2 Top 9.8904 0 14 Top 1214.273 9 28 Bottom 7454.531 54 3 Bottom 1376.08 10 15 Bottom 6807.931 49 28 Top 4118.126 30 3 Top 28.5689 0 15 Top 1401.367 10 29 Bottom 7282.321 52 4 Bottom 1993.172 14 16 Bottom 7071.044 51 29 Top 4332.579 31 4 Top 57.6569 0 16 Top 1593.487 11 30 Bottom 7084.691 51 5 Bottom 2567.889 18 17 Bottom 7296.853 52 30 Top 4545.673 33 5 Top 98.7715 1 17 Top 1790.176 13 31 Bottom 6867.276 49 6 Bottom 3104.573 22 18 Bottom 7485.428 54 31 Top 4761.172 34 6 Top 153.5238 1 18 Top 1990.97 14 32 Bottom 6642.613 48 7 Bottom 3607.922 26 19 Bottom 7637.015 55 32 Top 4989.748 36 7 Top 223.516 2 19 Top 2195.379 16 33 Bottom 6397.83 46
  • 53. 8 Bottom 4082.864 29 20 Bottom 7752.035 56 33 Top 5216.677 38 8 Top 310.3395 2 20 Top 2402.915 17 34 Bottom 6134.395 44 9 Bottom 4534.441 33 21 Bottom 7831.068 56 34 Top 5441.61 39 9 Top 415.5722 3 21 Top 2613.09 19 35 Bottom 5853.772 42 10 Bottom 4967.708 36 22 Bottom 7874.848 57 35 Top 5664.226 41 10 Top 540.7754 4 22 Top 2825.414 20 36 Top 5884.226 42 11 Bottom 5387.633 39 23 Bottom 7884.252 57 36 Bottom 5557.399 40 11 Top 687.4897 5 23 Top 3039.405 22 37 Top 6101.339 44 12 Bottom 5796.9 42 24 Bottom 7860.286 57 37 Bottom 5246.677 38 38 Top 6315.319 45 50 Top 8629.933 62 63 Top 10158.81 73 38 Bottom 4922.982 35 50 Bottom 509.2788 4 63 Bottom 0 0 39 Top 6525.946 47 51 Top 8823.058 63 64 Top 9783.585 70 39 Bottom 4587.653 33 51 Bottom 150.9798 1 64 Bottom 0 0 40 Top 6733.022 48 52 Top 9019.307 65 65 Top 9403.285 68 40 Bottom 4241.975 31 52 Bottom 0 0 65 Bottom 0 0 41 Top 6936.375 50 53 Top 9218.433 66 66 Top 9018.479 65 41 Bottom 3887.183 28 53 Bottom 0 0 66 Bottom 0 0 42 Top 7135.852 51 54 Top 9420.219 68 67 Top 8629.122 62 42 Bottom 3524.459 25 54 Bottom 0 0 67 Bottom 0 0 43 Top 7331.329 53 55 Top 9624.461 69 68 Top 8235.954 59 43 Bottom 3154.928 23 55 Bottom 0 0 68 Bottom 0 0 44 Top 7522.692 54 56 Top 9830.978 71 69 Top 7838.963 56 44 Bottom 2779.664 20 56 Bottom 0 0 69 Bottom 0 0 45 Top 7709.86 55 57 Top 10039.59 72 70 Top 7438.641 54 45 Bottom 2399.677 17 57 Bottom 0 0 70 Bottom 0 0 46 Top 7892.759 57 58 Top 10250.16 74 71 Top 7035.699 51
  • 54. 46 Bottom 2015.922 15 58 Bottom 0 0 71 Bottom 0 0 47 Top 8072.077 58 59 Top 10462.54 75 72 Top 6630.404 48 47 Bottom 1630.032 12 59 Bottom 0 0 72 Bottom 0 0 48 Top 8254.138 59 60 Top 10676.61 77 73 Top 6223.356 45 48 Bottom 1249.198 9 60 Bottom 0 0 73 Bottom 211.3078 2 49 Top 8440.194 61 61 Top 11102.49 80 74 Top 5815.195 42 49 Bottom 875.475 6 61 Bottom 0 0 74 Bottom 523.5213 4 50 Top 8629.933 62 62 Top 10529.13 76 75 Top 5406.606 39 50 Bottom 509.2788 4 62 Bottom 0 0 75 Bottom 843.0748 6 86 Top 2137.151 15 97 Bottom 9329.945 67 76 Top 4998.319 36 87 Bottom 5218.671 38 97 Top 277.005 2 76 Bottom 1169.808 8 87 Top 1918.268 14 98 Bottom 9685.449 70 77 Top 4591.147 33 88 Bottom 5633.838 41 98 Top 152.1454 1 77 Bottom 1503.525 11 88 Top 1706.63 12 99 Bottom 10021.13 72 78 Top 4274.028 31 89 Bottom 6050.037 44 99 Top 31.7917 0 78 Bottom 1843.993 13 89 Top 1503.042 11 100 Bottom 10335.63 74 79 Top 3990.569 29 90 Bottom 6466.62 47 100 Top 0 0 79 Bottom 2190.939 16 90 Top 1308.435 9 101 Bottom 10627.66 76 80 Top 3709.288 27 91 Bottom 6883.605 50 101 Top 0 0 80 Bottom 2544.049 18 91 Top 1124.468 8 102 Bottom 10895.98 78 81 Top 3430.742 25 92 Bottom 7310.719 53 102 Top 0 0 81 Bottom 2902.964 21 92 Top 962.5553 7 103 Bottom 11139.42 80 82 Bottom 3267.285 24 93 Bottom 7739.214 56 103 Top 0 0 82 Top 3155.527 23 93 Top 815.6824 6 104 Bottom 11356.92 82 83 Bottom 3636.569 26 94 Bottom 8158.808 59 104 Top 0 0 83 Top 2884.266 21 94 Top 675.3281 5 105 Bottom 11547.5 83
  • 55. 84 Bottom 4010.328 29 95 Bottom 8565.112 62 105 Top 0 0 84 Top 2617.622 19 95 Top 538.8761 4 106 Bottom 11710.29 84 85 Bottom 4394.272 32 96 Bottom 8956.014 64 106 Top 0 0 85 Top 2362.532 17 96 Top 406.0257 3 107 Bottom 11844.53 85 2. Prestressed reinforced arrangements 1. Steel beam Layout: Because no method in bridge prestressed post-tensioned, prestressed steel bar prestressing horizontal spacing between, should guarantee the maximum aggregate in conc rete in concrete can go through. Settings for the post-tensioning prestressing steel pipe Should be guided by the following principles: ① Longitudinal reinforcement of prestressed steel beams for the structure of the main, for eas e of design and construction, symmetric beam, bolt-head layout as close as possible to stress; ② When arranged in a cross section, straight beam near the top position, bending beams in or near the webs, easy to bend under anchorage; ③ the horizontal spacing between the straight-pipe shall be not less than 40mm, and not less than 0.6 times times the pipe diameter; for embedded corrugated metal pipe And vertically between the two pipes superimposition; ④ Cross-sectional area of the pipe diameter should not be less than twice of prestressed steel area times; ⑤ Steel beam layout shall comply with construction requirements 47
  • 56. 2. Arrangement of steel beams: By prestressed steel beam estimates table known, full bridge prestressed steel beam up at for 87 root, take for 90 root, so, pre buried pipeline used metal corrugated tube, each root corrugated tube set 9 root prestressed steel beam, forces maximum at layout 10 root corrugated tube; anchor pad form used, installation aperture for M10, installation hole from for 135mm; anchor Board used,; tension end anchor with used OVM13-9 anchor with; tension Jack model for YCW150B. (1) Cross and bearing arrangement of prestressed steel beam Prestressing of post-tensioned prestressed concrete flexural pipe layout should be in conformity with the road bridge in respect of the relevant structural requirements,reference the existing design drawings and the structural requirements of the bridge Board, cross (see Figure 5- 1), and the support section (see Figure 5-2) preliminarylayout of the prestressing steel. Cross section prestressed steel beam (in mm) Bearing calculation of prestressed steel beam position (in mm) 48
  • 57. (2) The steel beam vertical bend location and tilt computing 1. Steel beam crooking shapes, bend angle and its bend radius Using the straight to the Arc of the curve bend the way to make the prestressed reinforced pre-force Better anchor and anchor plate’s aao, prestressed reinforced the vertical angle bend Derived Rust Inhibitor steel beam bending radius are taken to : Down on the property Make sure that the cable anchor point Distance from the point of the horizontal distance: Down on the property Determine if the bent wires start point to the point of the horizontal distance: Therefore, bend the start point to the anchor point of the horizontal distance: In accordance with the nature of the arc tangent figure, bend points along the lines for the direction to lead the distance and bend the start point to the point of the horizontal distance from the wire is equal, and therefore, bent wires for the point-to-point of the horizontal distance: In this design all the main spar prestressed Steel Vertical bend with the above calculations. 49    80  mmRN 15000 0cot cLd mmcLd 14238cot200cot 0    2 tan 0 2   RLb mmRLb 10494tan15000 2 tan 0 2   mmLLL bdw 2472104914232  mmLL bb 10398cos1049cos 021   
  • 58. (3) Steel beam bending the position of the flat and flat bent corners City backplane or top of the twisted steel in cross-market in or support base section in the same level of, and in, when the majority of anchor in web anchor center line on the steel in order to achieve this kind of tendon way centers are not in Web line prestressing steel strand must be transferred from another location, turn into the side of the connection center line, in order to facilitate the construction of the pipeline furnished prestressed abdominal panel center on both sides of the line and the twisted steel flat bent in the same form. Prestressed steel roof 5-55-Shu Ping bend as shown in Figure 7 below, shown in bottom plate of prestressed steel Shu Ping bend as shown in Figure 5-7. For N2, N4,N11, N13, the offset distance of 12cm, connected to the two adjoining circular curve, circular curve radius R=1878cm, bending angle of arc in each p aragraph  58.4 150 1878 sinsin  arc l R arc . For N1, N1, the offset distance is 24cm, also uses a two-stage connected to the arc, arc RADIUSR=3756cm, bending angle of arc in each paragraph  58.4 300 3756 sinsin  arc l R arc . N5, N15 steel beam, steel beams, anchoring of roof and floor respectively. Due to symmetric reinforcement on both sides in the middle section, so the steel beams are not drawn in the figure on the right in the middle. In accordance with the above calculation of the shaft bending and bending, arrangement of prestressed steel beam welded connction, all the bridge section of prestressed steel beam known as shown in table 5-2. Due to the full- bridge arrangement ofsteel cross section in symmetrical, so that only the left half of the bridge span steel beam arrangement. Left half of the bridge span prestressed steel strands of layout tables Section TopLayer LowerNumbersOfthe bar a=10 a=30 a=10 a=30 0.5 2 0 4 0
  • 59. 1 2 0 4 0 1.5 2 0 4 0 2 2 0 4 0 2.5 2 0 4 0 3 2 0 4 0 3.5 2 0 4 0 4 2 0 4 0 4.5 2 0 4 0 5 2 0 4 2 5.5 2 0 4 2 6 2 0 4 0 6.5 2 0 4 0 7 2 0 4 0 7.5 2 0 4 0 8 2 2 4 2 8.5 2 0 6 0 9 2 0 6 0 9.5 2 0 6 0 Section TopLayer LowerNumbersOfthe bar a=10 a=30 a=10 a=30 10 2 0 6 0 10.5 2 0 6 0 11 2 0 8 0 11.5 4 0 8 0 12 4 0 6 0 12.5 4 0 6 0 13 4 0 6 0 13.5 4 0 6 0 14 4 2 6 2 14.5 4 0 6 0 15 4 0 6 0
  • 60. 15.5 4 0 6 0 16 4 0 6 0 16.5 4 0 6 0 17 4 0 6 0 17.5 6 0 4 0 18 6 0 4 0 18.5 6 0 4 0 19 6 0 4 0 Section TopLayer LowerNumbersOfThe bar a=10 a=30 a=10 a=30 19.5 6 0 4 2 20 6 0 2 0 20.5 6 0 2 0 21 6 0 2 0 21.5 6 0 2 0 22 6 2 2 2 22.5 6 0 2 0 23 6 0 2 0 23.5 6 0 2 0 24 6 0 2 0 24.5 6 0 2 0 25 8 0 0 0 25.5 8 0 0 0 26 8 0 0 0 26.5 8 0 0 0 27 8 2 0 0 27.5 8 0 0 0 28 8 0 0 0 28.5 8 0 0 0 29 8 0 0 0
  • 61. 29.5 10 0 0 0 30 10 0 0 0 30.5 10 0 0 0 31 10 0 0 0 31.5 8 0 0 0 32 8 0 0 0 32.5 8 0 0 0 33 8 2 0 0 33.5 6 0 0 0 34 6 0 0 0 34.5 6 0 0 0 35 6 0 0 0 35.5 6 2 2 0 36 4 0 2 0 36.5 4 0 2 0 37 4 0 2 0 Section TopLayer LowerNumbersOfThe Bar a=10 a=30 a=10 a=30 38.5 4 0 2 0 37.5 4 0 2 0 38 4 2 2 2 39 4 0 2 0 39.5 4 0 2 0 40 4 0 2 0 40.5 4 0 2 0 41 2 0 2 0 41.5 2 0 2 0 42 2 0 2 0
  • 62. 42.5 2 0 2 0 43 2 2 2 2 43.5 2 0 4 0 44 2 0 4 0 44.5 2 0 4 0 45 2 0 4 0 45.5 2 0 4 0 46 2 0 4 2 46.5 2 0 6 0 47 2 0 6 0 47.5 2 0 6 0 48 2 0 6 0 48.5 2 0 6 0 49 2 0 6 2 49.5 0 0 8 0 50 0 0 8 0 50.5 0 0 8 0 51 0 0 8 0 51.5 0 0 8 0 52 0 0 8 0 52.5 0 0 10 0 53 0 0 10 0 53.5 0 0 10 0 54 0 0 10 0 54.5 0 0 10 0 55 0 0 10 0 54
  • 63. Select 1 (full beam) , steel beam layout (see figure, and 5-8, and 5-9) is shown. 1 Calculation of prestressed steel beam position (in cm) 8 calculation of prestressed steel beam position (in cm) 55
  • 64. 4. Non-prestressed reinforced estimations and placement (1) Non-prestressed reinforced estimate Press the component load carrying capacity limit status request estimate Non-prestressed reinforced quantity: In determining the number of prestressed reinforced non-prestressed reinforced on the basis of section is carrying capacity limit state's requirements to determine, Set prestressed reinforced and non-prestressed reinforced the joint effort to point to the bottom edge of the distance of the Section you have The case of cross-sectional area of the press into glyphs sections, such as shown in the figure GA5-11c: ① The equivalent of panel thickness: ② On the Support area per capita assessments on the wings, the equivalent on wing panel thickness: ③ The support area per capita assessments on the wings, the equivalent of the wing panel thickness: The assumption that the equivalent sections for the first category of T type section by formula, X computing pressure areas is highly tertiary 56 mma 80 mmahh 27208028000  cmb 80240  cmhf 86.22 80920 22060 20    上 cmhf 4.62 500 2060 60   下  20 ' 0 xhxbfM fcdd   2272092004.22103.377700.1 6 xx 
  • 65. Job-seekers could read as: Based on the load carrying capacity of the Section is the computing needs of non- prestressed reinforced area of: Visible, Full DR simply press the construct Configuration vertical non-prestressed reinforced. (2) Non-prestressed reinforced furnished In accordance with the reference of the ±5- Reinforced concrete road and prestressed concrete bridge design specification for Covered by 9.3.6, 9.3, 8, of the regulations on the basis of construction to configure the non-prestressed reinforced. 57 mmhmmx f 6.22824.68  上 0 330 12600126024.6892004.22 '      sd ppdfcd s f Afxbf A
  • 66. Chapter#7: Section load carrying capacity limit status calculations 1.A cross-section, load calculations The maximum torque curve of the Section are sectional load carrying capacity calculations. (1) For pressure areas height x First press the first category of T-Sectional Leung, omitting the construction of steel impact calculated by concrete pressure areas height, namely: skip x Pressure areas are all located on the flange on the inside of the description is indeed the first class T Type section,. (2) Are cross-sectional load calculations The Support Block-section prestressed reinforced diagram See Figure prestressed reinforced the joint force to point to the distance from the top edge of the section, (cross the placement of the level of steel As can be seen from table 4-2, Dr Support Section to bend the torque converter portfolio design values the mobile phone crashes occasionally sectional flexural load: (A ratio of 6 to 1 58 mmhmm bf AfAf x f fcd ssdppd 6.22877 92004.22 0330126001260       上 mma 100 mkNMd  3.37770  20 ' xhxbfM fcdu      3.337703.337700.142233 1042233 27727007792004.22 0 6    dMmkN mmN 
  • 67. Visible, stand-section is sectional load carrying capacity to meet the requirements. 2. A cross-sectional load calculations (1) Support slanting sectional shear load calculations First, in accordance with the formula for cross-sectional shear strength upper and lower limits of the review, namely, (A ratio of 6 to 2 In, Drug Drama - Concrete Strength Rating by the 5050MPAmanagement C - Conversion of the section of the Plate Thickness b= 800mm to operate - corresponding to the combination of the values of the shear the cross-sectional effective height, - Increase the factor by prestressed Drug Drama - Concrete Tensile Strength value by Design Therefore Be: Calculations show that, sectional dimensions satisfy the requirements but you need to configure anti-cut steel, 59 0, 3 002 3 1051.0105.0 bhfVbhf kcudtd    kNVd 4668 kcuf , b 0h mmahh 270010028000  2 25.12  tdf MPaftd 83.1 kNVd 466846680.10  dtd VkNbhf 0 3 02 3 5.2470270080083.125.1105.0105.0    dkcu Vbhf 0 3 0, 3 5.77892700800501051.01051.0  
  • 68. A cross-sectional shear load press boards (6:3 Computing (6) Than In, (6-4) (6) Including: - The ability of bend torque impact factor, = 1.0 - Increase the factor by prestressed =1.25 - Pressure flange impact coefficient, 1.1 A dual-band clamp diameter of 14mm limbs of HRB335 steel = 280MPAspacing tertiary = 100mm, The Tertiary And as a result of the so tertiary As a result of the support of the non-prestressed reinforced the curves, therefore vpd = 0 , 60 pdcsd VVV 0   svsvkcucs ffpbhV  ,0 3 321 6.021045.0   ppdpdpd AfV sin1075.0 3   1 1 2 2 3 3 583.0 2700800 12600 100100100 0      bh AAA p spbp  svf vs 2 8.3079.1532 mmAsv  00385.0 8000100 8.307    bs A v sv sv 139.08sinsin   p   28000385.050583.06.0227008001045.01.125.10.1 3   csV kN35.5656 kNVV dcs 466835.5656 0  
  • 69. Support of the city of shear the largest bevel-Section to meet the requirements of the Anti- cut, non-prestressed reinforced as the bearer of the construction of the reserve is not to be taken into account. 61
  • 70. Chapter#8. Calculation of prestressed steel beam loss Prestressed beam tensioning control stress, in the light of the documentation of the ±5- Reinforced concrete and prestressed concrete road bridge covered by the relevant provisions of the design specification The component in the pre-load of stress prestressed steel strand of anchor the control strain relief should be consistent with, The As a result of the construction of the tensioning prestressed after Zhang law, so on the basis of reference [5], para. 6.2. 1, shall calculate the following losses: prestressed Prestressed reinforced with a pipe friction between the wall Rust inhibitor, anchorage deformed steel retracted and seam Compression the flexibility of the rust inhibitor concrete Compression Rust Inhibitor prestressed reinforced the stress Rust Inhibitor concrete shrinkage and Xu change Log in first. (1) Pipes with steel prestressed wall between the friction loss Press the norms, is calculated as follows: In, - In the prestressed reinforced anchor tension control stress - 6.7 prestressed reinforced with a pipe between the walls of the coefficient of friction - From the tensioning end-to calculate the sectional curve Pipes section of the angle of the Trans condylar tangent and the red particle diameter --Tubes per meter local deviation of friction Impact Factor 62 b ycon R75.0 MPacon 1395186075.0  1l 2l 4l 5l 6l 1l   ]1[1 kx conl e     con   k
  • 71. - from the tensioning end-to calculate the length of the pipe sections of m), is an approximate read its longitudinal axis in the projection on the length. The cross-section and support beam and pipe prestressed steel wall between the friction loss the results of the calculations such as tables, ##, 7-2. Steel beam number 2 N 6 9.22° 0.25 0.0015 9 1395 73 68.2 N 27 8° 0.25 0.0015 6 1395 59.9 2 N 8 9.22° 0.25 0.0015 12 1395 78.9 2 N 9 9.22° 0.25 0.0015 17 1395 88.7 N 210 0 0.25 0.0015 19.5 1395 40.2 Steel beam number N 21 9.22° 0.25 0.0015 13 1395 80.9 62.2 2 N 2 9.22° 0.25 0.0015 5.5 1395 66 2 N 3 8° 0.25 0.0015 3 1395 53.9 N 24 9.22° 0.25 0.0015 8 1395 71 2 N 5 0 0.25 0.0015 19 1395 39.2 (2), a straight line from the steel prestressed anchorage deformed steel retracted and seamcompression loss arising from the strain relief In, - prestressed reinforced the effective length of - The Anchor head to distort steel retracted and seam compression value, 63 x 1l   k x con 1l 1l   k x con 1l 1l 2l pl E l l 2 l l Cross-sectional friction loss in the strain relief Table 7-11l Support Housing Section friction loss strain relief Table 7-21l
  • 72. Table 6.2. 3, 6 on each side of the steel retracted and anchorage deformation of the inflection values in mm. The cross-section and support by the anchorage deformation, steel and retract and seamcompression loss arising from the strain relief for calculations, the Results Table 7-3, 7-4 below. Steel beam number 2 N 6 2 x 6 18000 195×105 130 124 N 27 2 x 6 12000 9556x 105 195 N 28 2 x 6 24000 195×105 97.5 2 N 9 4×6 34,000 195×105 1.376 2 N 10 2 x 6 39000 9556x 105 60 Steel beam number N 21 4×6 26000 195×105 180 219.2 N 22 2 x 6 11000 9556x 105 212.7 N 23 2 x 6 6000 195×105 390 2 N 4 2 x 6 16000 9556x 105 Additional commitment authority146.3 N 25 4×6 28000 9556x 105 167.1 (1) After the French prestressed concrete components when using batch tension before tensioning of steel by Chang-down after the steel concrete prestressing compression resilient loss, 64 2l l l pE 2l 2l l l pE 2l 2l 4l    pcEpl m  2 1 4 Cross-sectional prestressed losses. Table 7- 3. 2l Support Housing Section prestressed losses the calculation of the 2l
  • 73. In, m- prestressed reinforced tensioning batch number of them - Prestressed reinforced concrete and Modulus Of Elasticity Modulus of elasticity of the ratio of Cheung-down when the actual strength of concrete level, 6.7 Calculations The strength of the design is assumed to be 90%, i.e. = C, 45 Look up table was, = 3.5×104MPAor tertiary Drug Drama - in the calculation of the first section of the gravity of the tension of steel, after the tension arising from the installments of steel concrete law to stress MPA Including: - the pre-load prestressed reinforced by the joint forces of the Strain Relief Drug Drama - The pre-load prestressed reinforced the synergies of strain relief To Section to the distance between the mandrel. (1) The cross-section of they are: Down on the property Guangdong Guangdong Guangdong A: Therefore, 65 Ep ckf ' ckf ' ckf ' cE' 82.5 1035.3 1095.1 4 5    Ep pc   m IeNAN m ppppc pc 2     pN pllconp AN )( 21   pe pN mmep 690 2 12600109140 mmAp  6 105.4 A 412 1043.1 mmI  kNN p 1515528012600)1242.681395(    MPa m pc pc 84.0 10 10434.174015155280105.415155280 1226      MPa m pcEpl 0.2284.082.5 2 110 2 1 4       
  • 74. (2) To support cross-sections are: Down on the property Guangdong Guangdong Guangdong A: Therefore, (1) Steel slack caused by the loss of prestressed (4 of 7) And - Pull Coefficient, a time when pulled, - Steel Slack Factor for Grade Ⅱslack, city), the slack - The power when the anchor for the rear sheet steel strain relief law components, ① The cross-section of the are: The (2) To support cross-sections are: 66 mmep 1359 2 12600109140 mmAp  6 108.6 A 412 10772.7 mmI  kNN p 1403136012600)2.2192.621395(    MPa m pc pc 591.0 10 10772.7135914031360108.614031360 1226      MPa m pcEpl 47.15591.082.5 2 110 2 1 4        5l pe pk pe l f             26.052.05  0.1  3.0 pe 421 lllconpe   MPape 8.11800.221242.681395  MPal 8.248.118026.0 1860 8.1180 52.03.00.15        MPape 13.109847.152.2192.621395 