SlideShare a Scribd company logo
1 of 16
Aalto University Janne Hanka
CIV-E4040 Reinforced Concrete Structures 16-Feb-18
Homework assignments and solutions, 2018
All rights reserved by the author.
Foreword:
This educational material includes assignments of the course named CIV-E4040 Reinforced
Concrete Structures from the spring term 2018. Course is part of the Master’s degree programme
of Structural Engineering and Building Technology in Aalto University.
Each assignment has a description of the problem and the model solution by the author. Description
of the problems and the solutions are in English. European standards EN 1990 and EN 1992-1-1 are
applied in the problems.
Questions or comments about the assignments or the model solutions can be sent to the author.
Author: MSc. Janne Hanka
janne.hanka@aalto.fi / janne.hanka@alumni.aalto.fi
Place: Finland
Year: 2018
Table of contents:
Homework 1. Principles
Homework 2. Design of slab-beam structure in ULS
Homework 3. Analysis of beam structure in SLS
Homework 4. Design for biaxial bending and normal force in ultimate limit state
Homework 5. Strut and tie design in ultimate limit state
Aalto University    Janne Hanka 
CIV‐E4040 Reinforced Concrete Structures 2018    3.1.2018 
Homework 1, Principles    1(2) 
Return to MyCourses in PDF‐format. 
 
Goal of this assignment is to form simplified calculation models for one casting area in a typical parking 
structure. 
a) Form the calculation model of the beam at Module D‐E/3 
b) Calculate the effect of actions (Bending moment and Shear force in Ultimate Limit State) at critical 
sections for the beam 
c) Form the calculation model of the slab (supported by the beams) between modules 1‐6/E‐D 
d) Calculate the effect of actions (Bending moment and Shear force in Ultimate Limit State) at critical 
sections for the slab 
e) Sketch a principle drawing showing the placement of tensile reinforcement in the beam (see fig. 2) 
f) Sketch a principle drawing showing the placement of tensile reinforcement in the slab (see fig. 2) 
 
 
Figure 1. Plan view of a parking structure. TS=Construction joint. LS=Movement joint.  
Deflection curve and support reactions   Bending moment curve:             Placement of reinforcement:   
 
Figure 2. Example for a one‐span cantilever beam calculation model and placement of rebar: 
LS
TS TS
Sustainable engineering and design
PERUSTASO = Plan view of a typical floor
Consequence class = CC2
LOADS
qk=2.5 kN/m2 (Class F)
gk=0,25 kN/m2
sw=25 kN/m3 (selfweight of concrete)
Structure will be pos-tensioned. However in
this case you disregard any post-tensioning
effects and consider the structure as RC-
structure.
CONSTRUCTION
JOINT
MOVEMENT JOINT
CONSTRUCTION
JOINT
BEAM UNDER
CONSIDERATION
Sustainable engineering and design
SLAB
thicnkness=180mm
BEAM UNDER
CONSIDERATION
height=750mm
width=800mm
Sustainable engineering and design
Aalto University    Janne Hanka 
CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018 
Homework 2, Design of reinforced beam‐slab structure in ULS  1(2) 
Return to MyCourses in PDF‐format. 
 
You are designing a cast‐on‐situ beam‐slab parking structure (figure 1). Beam height is H and width Bw. 
Slab (beam flange) thickness is hL. Beams are supported by circular columns that have diameter D600, 
height=3000mm. Structure is braced with the columns. Column connection to the foundation slab is 
assumed to be fixed. 
 
‐ Beam concrete strength at final condition:  C35/45 
‐ Exposure classes XC4, XF2, XD1. Design working life: 50 years. Consequence class CC2 
‐ Rebar fyk=500MPa, Es=200GPa 
‐ Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m. 
‐ Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3. 
‐ Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages) 
‐ Concrete cover to rebar is c=40mm 
 
a) Form calculation models of the middle beam and slab. Choose the slab thickness hL, beam height H and 
beam width Bw. Calculate the effect of actions in Ultimate Limit State (bending moment MEd.beam  & MEd.slab 
and shear force VEd.beam  & VEd.slab) at critical sections. 
 
b) Design the required amount of beam flexural reinforcement AS.BEAM (diameter and amount) at critical 
section for due to bending moment obtained in (a).  
 
c) Design the required amount of slab flexural reinforcement AS.SLAB (diameter and spacing) at critical 
section due to bending moment obtained in (a).  
 
d) Design the required amount of beam shear reinforcement ASW (diameter, number of legs and spacing) at 
critical section due to shear force obtained in (a).  
 
e) Check the shear resistance without shear reinforcement of the slab (VRd.c.slab>VEd.slab) at critical section. 
 
f) Draw schematic drawings (cross sections) of the beam and the slab with the designed reinforcement.  
 
   
Aalto University    Janne Hanka 
CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018 
Homework 2, Design of reinforced beam‐slab structure in ULS  2(2) 
Return to MyCourses in PDF‐format. 
 
 
 
Figure 1. Slab‐beam rc‐structure. 
Aalto University    Janne Hanka 
CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018 
Homework 3, Analysis reinforced beam in SLS    1(2) 
Return to MyCourses in PDF‐format. 
 
You are designing a cast‐on‐situ beam that is a part of beam‐slab structure (figure 1). Beam height is H and 
width Bw. Slab (beam flange) thickness is hL. Beams are supported by circular columns that have diameter 
D600, height=3000mm. Structure is braced with the columns. Column connection to the foundation slab is 
assumed to be fixed. 
 
‐ Beam concrete strength at final condition:  C35/45 
‐ Exposure classes XC4, XF2, XD1. Design working life: 50 years. Consequence class CC2 
‐ Rebar fyk=500MPa, Es=200GPa 
‐ Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m. 
‐ Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3. 
‐ Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages) 
‐ Assumed loading history for structure will be following: pk(t=28…29d)=selfweight only ; 
pk(t=29…30d)=characteristic combination ; pk(t=30d…50years)=quasi‐permanent combination. 
‐ Concrete cover is c=40mm 
 
a) Choose the slab thickness hL, beam height H and beam width Bw. Form the calculation model of the 
middle beam. Calculate the effects of actions at Service Limit State at critical section for the beam: * 
‐ For quasi permanent combination      MEk.qp 
‐ For characteristic combination      MEk.c 
 
b) Calculate the cross‐section properties used in the analysis (Use transformed cross section properties): * 
‐ Moment of inertia for uncracked section       IUC 
‐ Cracking moment section         MCr  
‐ Moment of inertia for cracked section       ICR 
 
Check the SLS conditions for the beam critical section: 
c) Calculate the concrete stress in top of section for characteristic combination. 
 
d) Calculate the stress in bottom reinforcement for characteristic combination. 
 
e) Calculate the crack width at bottom reinforcement for quasi‐permanent combination. 
 
f) Calculate the beam deflection for quasi‐permanent combination. ** 
 
 
  Condition #  Combination EN1990  Limitation  EC2 Clause 
Final 
I  Max concrete compression  Characteristic  σcc.c < 0,6*fck  7.2(2) 
I  Max rebar tension  Characteristic  σs.c < 0,8*fyk  7.2(2) 
II  Max concrete compression  Quasi‐permanent  σcc.c < 0,45*fck  7.2(3) 
III  Max deflection  Quasi‐permanent 
Creep factor = 2 
Δ < Span / 250  7.4.1(4) 
IV  Max crack width  Quasi‐permanent  wk.max < 0,3mm  7.3.1(5) 
 
 
*You can use the same dimensions and rebar chosen in HW1. Or you can use the following:    
hL=300mm ; bw=1800mm ; H=1500mm. Stirrups: Φsw=16mm. Bottom rebar: 20pcs–Φ32mm in one row 
 
**Consider the loading history   
Aalto University    Janne Hanka 
CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018 
Homework 3, Analysis reinforced beam in SLS    2(2) 
Return to MyCourses in PDF‐format. 
 
 
Figure 1. Slab‐beam rc‐structure. 
 
Aalto University Janne Hanka
CIV-E4040 Reinforced Concrete Structures 2018 25.1.2018
Homework 4, Design of rectangular column in ULS 1(2)
Return to MyCourses in PDF-format.
Goal of this assignment is to design a typical rectangular column (AT MODULE 5/F) in a warehouse hall
against biaxial bending and normal force. Column is supporting roof made of steel trusses. Structure is
surfaced with claddings around the perimeter. Structure is surfaced with claddings around the warehouse.
Cladding walls are supported laterally by the columns.
- Column concrete strength at final condition: C40/50 Rebar: fyk=500MPa
- Consequence class CC2.
- Structure main geometry: see the attachments. Length of the column is 8,4m
- Concrete selfweight ρc=25kN/m3. Concrete cover to rebar c=40 mm
- Vertical loads acting on the roof that is supported by the columns:
o Total weifght of one steel-truss Gtruss= 70kN
o Deadload: gsDL= 0,8 kN/m2. Liveload qLL=2 kN/m2. Comb. factors: ψ0=0,7; ψ1=0,5; ψ2=0,3
- Horizontal loads acting on the cladding walls:
o Wind load: qwind=0,5 kN/m2
Comb. factors: ψ0=0,6 ; ψ1=0,2 ; ψ2=0,2
a) Choose the dimensions of the columns cross section (h x h). Form the calculation model of the column.
Calculate the loads acting on the column.
b) Calculate the design axial force NEd and design bending moment MEd for the column.
c) Choose the amount+diameter of main rebars. Calculate the simplified N-M interaction (capacity)
diagram of the cross section.
d) Place the calculated effects of action from (a) to the N-M interaction diagram calculated in (b).
Determine the bending moment capacity of the cross section MRd.
e) Is the capacity of the cross section adequate against biaxial bending and normal force? If not, how
could it be improved?
Figure 1. Structure and cross section of typical column.
Aalto University Janne Hanka
CIV-E4040 Reinforced Concrete Structures 2018 25.1.2018
Homework 4, Design of rectangular column in ULS 2(2)
Return to MyCourses in PDF-format.
Tip b: Simplified N-M interaction diagram of the cross section can be calculated using the following strain
distributions of the cross section according (refer to EC2 figure 6.1):
1. Pure tensile failure: Tensile strain of ɛs=1% in top and bottom reinforcement.
2. Balanced failure: Tensile strain of ɛs=fyk/Es in bottom reinforcement
and ultimate compressive strain ɛc=-0,35% at the top of concrete section.
3. Ultimate compressive strain ɛc=-0,35% at the top of concrete section and compressive strain of ɛc=-0,20% at
the centroid of the cross section.
4. Pure compression failure: Uniform strain of ɛc=-0,20% in bottom and top of cross section.
Tip c: How to evaluate bending moment capacity MRd for the given normal force NEd from the N-M diagram:
Tip (d): Resistance of the cross section against biaxial bending and normal force can be checked using the
following criterion: [EN 1992-1-1 5.8.9(4) equation (5.39)]
1
.
.
.
.















a
zRd
zEd
a
yRd
yEd
M
M
M
M
MEd z/y = design moment around the respective axis
MRd z/y = moment resistance in the respective direction
a = exponent for rectangular cross sections with linear interpolation for intermediate values:
NEd/NRd = 0,1 0,7 1,0
a = 1,0 1,5 2,0
NEd = design value of axial force
NRd = Acfcd + Asfyd, is the design axial resistance of section.
Ac = area of the concrete section As = area of longitudinal reinforcement
Tip b: Design bending moment and moments due to imperfection and second order effects can be estimated
with the following equations (According to RakMK B4 §2.2.5.4)* :
Design bending moment: MEd = MEd.0 + Mi + M2
Moment due to actions (hor. force etc) MEd.0
Moment due to imperfections Mi = D/20 + L0/500
Moment due to 2nd order effects M2 = (λ/145)2D*NEd
NEd = Design normal force
D = Diameter of circular column or height of rectangular column
L0 = L*μ = Buckling length of column
λ = 4L0/D = Slenderness ratio for circular columns
λ = 3,464*L0/D = Slenderness ratio for rectangular columns
μ = Buckling factor. μ=2 for mast columns. μ=1 for braced columns
* RakMK method can be used in exercise because, EC2 calculation method for 2nd
order effects is rather cumbersome. RakMK is yields generally
more conservative results, thus the design on the safe side. Detailed design method acc. to EC2 has been shown in:
http://www.elementtisuunnittelu.fi/fi/runkorakenteet/pilarit/nurjahduspituus
http://eurocodes.fi/1992/paasivu1992/sahkoinen1992/Leaflet_5_Pilarit.pdf
LASTAUSLAITURI
JA -KATOS
VARASTO
A A
BB
~1585,2m2
MYYMÄLÄ-
TILA
111,6m2
SÄVYTYS
81,9m2
TEKN.
TILAT
19,1m2
PALAVAN
AINEEN
VARASTO
24,4m2
hissi-
varaus
+47.8
+46.6
+47.8
NOSTO-OVI +
PIKARULLAOVI
6m x ?m
NOSTO-OVI +
PIKARULLAOVI
4m x ?m
sähköinen
kuormaussilta
sähköinen
kuorm
aussilta
NOSTO-OVI
4m x ?m
ovilämpöpuhallin
SOSIAALI-
TILAT
51,9m2
VSS/
SOS.TILAT
32,2m2
NÄYTTELY-
TILA
57,1m2
KOULUTUS-
TILA
46,1m2
KONE-
HUOLTO
22,7m2
TK
TSTOH
2 hlöä
SIIV. WC
TSTOH
2 hlöä
TSTOH
2 hlöä
TSTOH
2 hlöä
PRH
20,9m2
KÄY
34,3m2
23,5m2 23,5m2
23,5m2
23,5m2
KÄY
9,6m2
KÄY
9,6m2
LE-WC
5,7m2
3,3m2
3,5m2
5,9m2
kt
kt
kt
TRUKKIEN LATAUSPISTEET 6 KPL
0m 2 5 10 20
VARASTO-/TUOTANTOTILAA
POHJA-LAYOUT, 1.KRS 1:250
HAKKILA, VANTAA
08.12.2017
RAK5
ALUSTAVA, VE2
1. KRS:
HUONEISTO-ALA: n. 2237 m²
KERROSALA: n. 2282 m²
Column to be designed
A
A
BB
PLAN VIEW OF A
WAREHOUSE
NÄYTTELYTILA
AULA
VARASTO
KONE-
HUOLTO
IV-KONEH.
KOULUTUS-
TILA
NEUV.
0m 2 5 10 20
VARASTO-/TUOTANTOTILAA
LEIKKAUS A-A 1:250
HAKKILA, VANTAA
08.12.2017
RAK 5
ALUSTAVA, VE2
A-A
Roof and columns are braced
with truss members in
longer (x-) direction
VARASTO
0m 2 5 10
VARASTO-/TUOTANTOTILAA
LEIKKAUS B-B, 1:100
HAKKILA, VANTAA
08.12.2017
RAK 5
ALUSTAVA, VE2
8,400mm
8,400mm
B-B
Steel trusses.
Total weight of ONE truss is
Gtruss=70kN
Pad (ground bearing) foundations.
Size of foundations:
Lenght x Width = 3000 x 3000mm
Thickness = 1000mm
Coefficient of subgrade reaction for the soil under the
foundation is: cu=100MN/m^3
Columns are masts in lateral (short) direction.
Lenght of column = 8400mm
Fixed connection be-
tween foundation and
column
Pin-connection be-
tween roof truss and
column
Dead load of the roof
DL=0,8 kN/m2
Live load on the roof
LL = 2 kN/m2
Wind load on the
walls
qwind=0,5kN/m2
Wind load on the
walls
qwind=0,5kN/m2
Aalto University Janne Hanka
CIV-E4040 Reinforced Concrete Structures 2018 28.1.2018
Homework 5, Strut and tie design 1(2)
Return to MyCourses in PDF-format.
You are designing a corbel connection within a cast-in-situ slab structure. Casting area #1 RC-BEAMS are
supporting the casting area #2 RC-BEAMS with beam corbels. Bearings are placed to the connection (figure2)
that transfers only the vertical force.
-Beam concrete strength at final condition: C35/45 Consequence class CC2
-Rebar fyk=500MPa, Es=200GPa
-Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m. Cantilever L3=3,4m
-Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3.
-Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages)
-Concrete cover to rebar is c=40mm
-Slab thickness hL=300mm. Beam height H=1500mm, width Bw=1600mm.
a) Form calculation model of the RC-BEAM-3 and RC-BEAM-1. Calculate the ULS design force to be used in the
Corbel design.
b) Formulate and draw the calculation model of the corbel connection between RC-BEAM-1 and RC-BEAM-2
using strut-and-tie theory.
b) Calculate the design forces in the struts and ties.
d) Calculate the required amounts of reinforcements in the tensile struts.
e) Check is the allowable compressive stress in concrete exceeded in any struts?
f) Choose the actual amount of reinforcements and place them to the structure. Draw a sketch of the structure
with the reinforcement. Pay attention to detailing and anchoring of tensile struts!
Figure 1. Plan view of the structure.
Figure 2. Detail and dimenstions of the beam corbel.
Aalto University Janne Hanka
CIV-E4040 Reinforced Concrete Structures 2018 28.1.2018
Homework 5, Strut and tie design 2(2)
Return to MyCourses in PDF-format.
Tip (d-e):
Allowable stress for a concrete strut may be calculated using equation:
σRd.max = fcd (with compressive transverse stress or without transverse stress, EC2 fig.6.23)
σRd.max= 0,6 (1 – fck/250) fcd (with tensile transverse stress, EC2 fig.6.23)
Allowable stress for a node may be calculated using equation:
σRd.max = k v’ fcd where:
k= 1 (compression node without tensile ties, EC2 fig.6.26)
k=0,85 (compression-tension node with reinforcement from one direction, EC2 fig.6.27)
k=0,75 (compression-tension node with reinforcement provided in two directions, EC2 fig.6.28)
Figure 6.26: Compression node
without ties.
Figure 6.27: Compression tension
node with reinforcement provided
in one direction.
Figure 6.28: Compression
tension node with
reinforcement provided in
two directions.

More Related Content

What's hot

Prestressed concrete course assignments 2020
Prestressed concrete course assignments 2020Prestressed concrete course assignments 2020
Prestressed concrete course assignments 2020JanneHanka
 
Reinforced concrete assignments 2017
Reinforced concrete assignments 2017Reinforced concrete assignments 2017
Reinforced concrete assignments 2017JanneHanka
 
Prestressed concrete Course assignments, 2016
Prestressed concrete Course assignments, 2016Prestressed concrete Course assignments, 2016
Prestressed concrete Course assignments, 2016JanneHanka
 
Prestressed concrete Course assignments, 2014
Prestressed concrete Course assignments, 2014Prestressed concrete Course assignments, 2014
Prestressed concrete Course assignments, 2014JanneHanka
 
TALAT Lecture 2711: Design of a Helicopter Deck
TALAT Lecture 2711: Design of a Helicopter DeckTALAT Lecture 2711: Design of a Helicopter Deck
TALAT Lecture 2711: Design of a Helicopter DeckCORE-Materials
 
Prestressed concrete Course assignments, 2015
Prestressed concrete Course assignments, 2015Prestressed concrete Course assignments, 2015
Prestressed concrete Course assignments, 2015JanneHanka
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsMUST,Mirpur AJK,Pakistan
 
Lec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rLec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rMUST,Mirpur AJK,Pakistan
 
Lec.3 working stress 1
Lec.3   working stress 1Lec.3   working stress 1
Lec.3 working stress 1Muthanna Abbu
 
Lec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rLec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rMUST,Mirpur AJK,Pakistan
 
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Lec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsLec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsMUST,Mirpur AJK,Pakistan
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concreteJo Gijbels
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2Muthanna Abbu
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2Muthanna Abbu
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...Hossam Shafiq II
 
Composite beams-and-slabs1
Composite beams-and-slabs1Composite beams-and-slabs1
Composite beams-and-slabs1Jj Teng
 

What's hot (19)

Prestressed concrete course assignments 2020
Prestressed concrete course assignments 2020Prestressed concrete course assignments 2020
Prestressed concrete course assignments 2020
 
Reinforced concrete assignments 2017
Reinforced concrete assignments 2017Reinforced concrete assignments 2017
Reinforced concrete assignments 2017
 
Prestressed concrete Course assignments, 2016
Prestressed concrete Course assignments, 2016Prestressed concrete Course assignments, 2016
Prestressed concrete Course assignments, 2016
 
Prestressed concrete Course assignments, 2014
Prestressed concrete Course assignments, 2014Prestressed concrete Course assignments, 2014
Prestressed concrete Course assignments, 2014
 
TALAT Lecture 2711: Design of a Helicopter Deck
TALAT Lecture 2711: Design of a Helicopter DeckTALAT Lecture 2711: Design of a Helicopter Deck
TALAT Lecture 2711: Design of a Helicopter Deck
 
Prestressed concrete Course assignments, 2015
Prestressed concrete Course assignments, 2015Prestressed concrete Course assignments, 2015
Prestressed concrete Course assignments, 2015
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
Lec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rLec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-r
 
Lec.3 working stress 1
Lec.3   working stress 1Lec.3   working stress 1
Lec.3 working stress 1
 
Lec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rLec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-r
 
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
 
Lec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsLec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamns
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2
 
10 columns
10 columns10 columns
10 columns
 
Lec.6 strength design method rectangular sections 2
Lec.6   strength design method rectangular sections  2Lec.6   strength design method rectangular sections  2
Lec.6 strength design method rectangular sections 2
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
 
Composite beams-and-slabs1
Composite beams-and-slabs1Composite beams-and-slabs1
Composite beams-and-slabs1
 

Similar to Reinforced concrete Course assignments, 2018

Reinforced concrete Course Assignments, 2023
Reinforced concrete Course Assignments, 2023Reinforced concrete Course Assignments, 2023
Reinforced concrete Course Assignments, 2023JanneHanka
 
Prestressed concrete course assignments 2023
Prestressed concrete course assignments 2023Prestressed concrete course assignments 2023
Prestressed concrete course assignments 2023JanneHanka
 
Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2Yusuf Yıldız
 
Reinforced concrete Course assignments, 2018
Reinforced concrete Course assignments, 2018Reinforced concrete Course assignments, 2018
Reinforced concrete Course assignments, 2018JanneHanka
 
Large span structures_new
Large span structures_newLarge span structures_new
Large span structures_newAditya Sanyal
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET Journal
 
BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT jolynnTJL
 
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdf
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdfAdvanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdf
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdfTinhTLe
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2En Huey
 
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Franco Bontempi Org Didattica
 
Optimization of Precast Post-tensioned Concrete I-Girder Bridge
Optimization of Precast Post-tensioned Concrete I-Girder BridgeOptimization of Precast Post-tensioned Concrete I-Girder Bridge
Optimization of Precast Post-tensioned Concrete I-Girder BridgeIRJET Journal
 
Lec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rLec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rCivil Zone
 
IRJET- Analytical Investigation on Precast Concrete Column to Column Conn...
IRJET-  	  Analytical Investigation on Precast Concrete Column to Column Conn...IRJET-  	  Analytical Investigation on Precast Concrete Column to Column Conn...
IRJET- Analytical Investigation on Precast Concrete Column to Column Conn...IRJET Journal
 
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...IRJET Journal
 
Analysis of Multistory Steel Structure with Different Infills
Analysis of Multistory Steel Structure with Different InfillsAnalysis of Multistory Steel Structure with Different Infills
Analysis of Multistory Steel Structure with Different InfillsIRJET Journal
 
An analytical and experimental study of concrete encased column
An analytical and experimental study of concrete encased columnAn analytical and experimental study of concrete encased column
An analytical and experimental study of concrete encased columnIRJET Journal
 

Similar to Reinforced concrete Course assignments, 2018 (20)

Reinforced concrete Course Assignments, 2023
Reinforced concrete Course Assignments, 2023Reinforced concrete Course Assignments, 2023
Reinforced concrete Course Assignments, 2023
 
Prestressed concrete course assignments 2023
Prestressed concrete course assignments 2023Prestressed concrete course assignments 2023
Prestressed concrete course assignments 2023
 
Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2Economic Concrete Frame Elements to Eurocode 2
Economic Concrete Frame Elements to Eurocode 2
 
Reinforced concrete Course assignments, 2018
Reinforced concrete Course assignments, 2018Reinforced concrete Course assignments, 2018
Reinforced concrete Course assignments, 2018
 
Large span structures_new
Large span structures_newLarge span structures_new
Large span structures_new
 
Presentation
PresentationPresentation
Presentation
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
 
BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT BUILDING STRUCTURE FINAL REPORT
BUILDING STRUCTURE FINAL REPORT
 
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdf
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdfAdvanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdf
Advanced Structural Concrete Design -STRUT-AND-TIE METHODS.pdf
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2
 
J012427496
J012427496J012427496
J012427496
 
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
Corso di dottorato in Ottimizzazione Strutturale - applicazione a una mensola...
 
Optimization of Precast Post-tensioned Concrete I-Girder Bridge
Optimization of Precast Post-tensioned Concrete I-Girder BridgeOptimization of Precast Post-tensioned Concrete I-Girder Bridge
Optimization of Precast Post-tensioned Concrete I-Girder Bridge
 
DESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTUREDESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTURE
 
Lec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-rLec 13-14-15-flexural analysis and design of beams-2007-r
Lec 13-14-15-flexural analysis and design of beams-2007-r
 
Lec 13-14-15
Lec 13-14-15Lec 13-14-15
Lec 13-14-15
 
IRJET- Analytical Investigation on Precast Concrete Column to Column Conn...
IRJET-  	  Analytical Investigation on Precast Concrete Column to Column Conn...IRJET-  	  Analytical Investigation on Precast Concrete Column to Column Conn...
IRJET- Analytical Investigation on Precast Concrete Column to Column Conn...
 
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
STUDY OF HARPS PERIPHERAL AND PERIMETRAL BRACINGS PATTERN SHAPE IN PRE ENGINE...
 
Analysis of Multistory Steel Structure with Different Infills
Analysis of Multistory Steel Structure with Different InfillsAnalysis of Multistory Steel Structure with Different Infills
Analysis of Multistory Steel Structure with Different Infills
 
An analytical and experimental study of concrete encased column
An analytical and experimental study of concrete encased columnAn analytical and experimental study of concrete encased column
An analytical and experimental study of concrete encased column
 

Recently uploaded

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 

Recently uploaded (20)

CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 

Reinforced concrete Course assignments, 2018

  • 1. Aalto University Janne Hanka CIV-E4040 Reinforced Concrete Structures 16-Feb-18 Homework assignments and solutions, 2018 All rights reserved by the author. Foreword: This educational material includes assignments of the course named CIV-E4040 Reinforced Concrete Structures from the spring term 2018. Course is part of the Master’s degree programme of Structural Engineering and Building Technology in Aalto University. Each assignment has a description of the problem and the model solution by the author. Description of the problems and the solutions are in English. European standards EN 1990 and EN 1992-1-1 are applied in the problems. Questions or comments about the assignments or the model solutions can be sent to the author. Author: MSc. Janne Hanka janne.hanka@aalto.fi / janne.hanka@alumni.aalto.fi Place: Finland Year: 2018 Table of contents: Homework 1. Principles Homework 2. Design of slab-beam structure in ULS Homework 3. Analysis of beam structure in SLS Homework 4. Design for biaxial bending and normal force in ultimate limit state Homework 5. Strut and tie design in ultimate limit state
  • 2. Aalto University    Janne Hanka  CIV‐E4040 Reinforced Concrete Structures 2018    3.1.2018  Homework 1, Principles    1(2)  Return to MyCourses in PDF‐format.    Goal of this assignment is to form simplified calculation models for one casting area in a typical parking  structure.  a) Form the calculation model of the beam at Module D‐E/3  b) Calculate the effect of actions (Bending moment and Shear force in Ultimate Limit State) at critical  sections for the beam  c) Form the calculation model of the slab (supported by the beams) between modules 1‐6/E‐D  d) Calculate the effect of actions (Bending moment and Shear force in Ultimate Limit State) at critical  sections for the slab  e) Sketch a principle drawing showing the placement of tensile reinforcement in the beam (see fig. 2)  f) Sketch a principle drawing showing the placement of tensile reinforcement in the slab (see fig. 2)      Figure 1. Plan view of a parking structure. TS=Construction joint. LS=Movement joint.   Deflection curve and support reactions   Bending moment curve:             Placement of reinforcement:      Figure 2. Example for a one‐span cantilever beam calculation model and placement of rebar:  LS TS TS
  • 3. Sustainable engineering and design PERUSTASO = Plan view of a typical floor Consequence class = CC2 LOADS qk=2.5 kN/m2 (Class F) gk=0,25 kN/m2 sw=25 kN/m3 (selfweight of concrete) Structure will be pos-tensioned. However in this case you disregard any post-tensioning effects and consider the structure as RC- structure. CONSTRUCTION JOINT MOVEMENT JOINT CONSTRUCTION JOINT BEAM UNDER CONSIDERATION
  • 4. Sustainable engineering and design SLAB thicnkness=180mm BEAM UNDER CONSIDERATION height=750mm width=800mm
  • 6. Aalto University    Janne Hanka  CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018  Homework 2, Design of reinforced beam‐slab structure in ULS  1(2)  Return to MyCourses in PDF‐format.    You are designing a cast‐on‐situ beam‐slab parking structure (figure 1). Beam height is H and width Bw.  Slab (beam flange) thickness is hL. Beams are supported by circular columns that have diameter D600,  height=3000mm. Structure is braced with the columns. Column connection to the foundation slab is  assumed to be fixed.    ‐ Beam concrete strength at final condition:  C35/45  ‐ Exposure classes XC4, XF2, XD1. Design working life: 50 years. Consequence class CC2  ‐ Rebar fyk=500MPa, Es=200GPa  ‐ Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m.  ‐ Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3.  ‐ Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages)  ‐ Concrete cover to rebar is c=40mm    a) Form calculation models of the middle beam and slab. Choose the slab thickness hL, beam height H and  beam width Bw. Calculate the effect of actions in Ultimate Limit State (bending moment MEd.beam  & MEd.slab  and shear force VEd.beam  & VEd.slab) at critical sections.    b) Design the required amount of beam flexural reinforcement AS.BEAM (diameter and amount) at critical  section for due to bending moment obtained in (a).     c) Design the required amount of slab flexural reinforcement AS.SLAB (diameter and spacing) at critical  section due to bending moment obtained in (a).     d) Design the required amount of beam shear reinforcement ASW (diameter, number of legs and spacing) at  critical section due to shear force obtained in (a).     e) Check the shear resistance without shear reinforcement of the slab (VRd.c.slab>VEd.slab) at critical section.    f) Draw schematic drawings (cross sections) of the beam and the slab with the designed reinforcement.        
  • 7. Aalto University    Janne Hanka  CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018  Homework 2, Design of reinforced beam‐slab structure in ULS  2(2)  Return to MyCourses in PDF‐format.        Figure 1. Slab‐beam rc‐structure. 
  • 8. Aalto University    Janne Hanka  CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018  Homework 3, Analysis reinforced beam in SLS    1(2)  Return to MyCourses in PDF‐format.    You are designing a cast‐on‐situ beam that is a part of beam‐slab structure (figure 1). Beam height is H and  width Bw. Slab (beam flange) thickness is hL. Beams are supported by circular columns that have diameter  D600, height=3000mm. Structure is braced with the columns. Column connection to the foundation slab is  assumed to be fixed.    ‐ Beam concrete strength at final condition:  C35/45  ‐ Exposure classes XC4, XF2, XD1. Design working life: 50 years. Consequence class CC2  ‐ Rebar fyk=500MPa, Es=200GPa  ‐ Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m.  ‐ Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3.  ‐ Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages)  ‐ Assumed loading history for structure will be following: pk(t=28…29d)=selfweight only ;  pk(t=29…30d)=characteristic combination ; pk(t=30d…50years)=quasi‐permanent combination.  ‐ Concrete cover is c=40mm    a) Choose the slab thickness hL, beam height H and beam width Bw. Form the calculation model of the  middle beam. Calculate the effects of actions at Service Limit State at critical section for the beam: *  ‐ For quasi permanent combination      MEk.qp  ‐ For characteristic combination      MEk.c    b) Calculate the cross‐section properties used in the analysis (Use transformed cross section properties): *  ‐ Moment of inertia for uncracked section       IUC  ‐ Cracking moment section         MCr   ‐ Moment of inertia for cracked section       ICR    Check the SLS conditions for the beam critical section:  c) Calculate the concrete stress in top of section for characteristic combination.    d) Calculate the stress in bottom reinforcement for characteristic combination.    e) Calculate the crack width at bottom reinforcement for quasi‐permanent combination.    f) Calculate the beam deflection for quasi‐permanent combination. **        Condition #  Combination EN1990  Limitation  EC2 Clause  Final  I  Max concrete compression  Characteristic  σcc.c < 0,6*fck  7.2(2)  I  Max rebar tension  Characteristic  σs.c < 0,8*fyk  7.2(2)  II  Max concrete compression  Quasi‐permanent  σcc.c < 0,45*fck  7.2(3)  III  Max deflection  Quasi‐permanent  Creep factor = 2  Δ < Span / 250  7.4.1(4)  IV  Max crack width  Quasi‐permanent  wk.max < 0,3mm  7.3.1(5)      *You can use the same dimensions and rebar chosen in HW1. Or you can use the following:     hL=300mm ; bw=1800mm ; H=1500mm. Stirrups: Φsw=16mm. Bottom rebar: 20pcs–Φ32mm in one row    **Consider the loading history   
  • 9. Aalto University    Janne Hanka  CIV‐E4040 Reinforced Concrete Structures 2018    5.1.2018  Homework 3, Analysis reinforced beam in SLS    2(2)  Return to MyCourses in PDF‐format.      Figure 1. Slab‐beam rc‐structure.   
  • 10. Aalto University Janne Hanka CIV-E4040 Reinforced Concrete Structures 2018 25.1.2018 Homework 4, Design of rectangular column in ULS 1(2) Return to MyCourses in PDF-format. Goal of this assignment is to design a typical rectangular column (AT MODULE 5/F) in a warehouse hall against biaxial bending and normal force. Column is supporting roof made of steel trusses. Structure is surfaced with claddings around the perimeter. Structure is surfaced with claddings around the warehouse. Cladding walls are supported laterally by the columns. - Column concrete strength at final condition: C40/50 Rebar: fyk=500MPa - Consequence class CC2. - Structure main geometry: see the attachments. Length of the column is 8,4m - Concrete selfweight ρc=25kN/m3. Concrete cover to rebar c=40 mm - Vertical loads acting on the roof that is supported by the columns: o Total weifght of one steel-truss Gtruss= 70kN o Deadload: gsDL= 0,8 kN/m2. Liveload qLL=2 kN/m2. Comb. factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 - Horizontal loads acting on the cladding walls: o Wind load: qwind=0,5 kN/m2 Comb. factors: ψ0=0,6 ; ψ1=0,2 ; ψ2=0,2 a) Choose the dimensions of the columns cross section (h x h). Form the calculation model of the column. Calculate the loads acting on the column. b) Calculate the design axial force NEd and design bending moment MEd for the column. c) Choose the amount+diameter of main rebars. Calculate the simplified N-M interaction (capacity) diagram of the cross section. d) Place the calculated effects of action from (a) to the N-M interaction diagram calculated in (b). Determine the bending moment capacity of the cross section MRd. e) Is the capacity of the cross section adequate against biaxial bending and normal force? If not, how could it be improved? Figure 1. Structure and cross section of typical column.
  • 11. Aalto University Janne Hanka CIV-E4040 Reinforced Concrete Structures 2018 25.1.2018 Homework 4, Design of rectangular column in ULS 2(2) Return to MyCourses in PDF-format. Tip b: Simplified N-M interaction diagram of the cross section can be calculated using the following strain distributions of the cross section according (refer to EC2 figure 6.1): 1. Pure tensile failure: Tensile strain of ɛs=1% in top and bottom reinforcement. 2. Balanced failure: Tensile strain of ɛs=fyk/Es in bottom reinforcement and ultimate compressive strain ɛc=-0,35% at the top of concrete section. 3. Ultimate compressive strain ɛc=-0,35% at the top of concrete section and compressive strain of ɛc=-0,20% at the centroid of the cross section. 4. Pure compression failure: Uniform strain of ɛc=-0,20% in bottom and top of cross section. Tip c: How to evaluate bending moment capacity MRd for the given normal force NEd from the N-M diagram: Tip (d): Resistance of the cross section against biaxial bending and normal force can be checked using the following criterion: [EN 1992-1-1 5.8.9(4) equation (5.39)] 1 . . . .                a zRd zEd a yRd yEd M M M M MEd z/y = design moment around the respective axis MRd z/y = moment resistance in the respective direction a = exponent for rectangular cross sections with linear interpolation for intermediate values: NEd/NRd = 0,1 0,7 1,0 a = 1,0 1,5 2,0 NEd = design value of axial force NRd = Acfcd + Asfyd, is the design axial resistance of section. Ac = area of the concrete section As = area of longitudinal reinforcement Tip b: Design bending moment and moments due to imperfection and second order effects can be estimated with the following equations (According to RakMK B4 §2.2.5.4)* : Design bending moment: MEd = MEd.0 + Mi + M2 Moment due to actions (hor. force etc) MEd.0 Moment due to imperfections Mi = D/20 + L0/500 Moment due to 2nd order effects M2 = (λ/145)2D*NEd NEd = Design normal force D = Diameter of circular column or height of rectangular column L0 = L*μ = Buckling length of column λ = 4L0/D = Slenderness ratio for circular columns λ = 3,464*L0/D = Slenderness ratio for rectangular columns μ = Buckling factor. μ=2 for mast columns. μ=1 for braced columns * RakMK method can be used in exercise because, EC2 calculation method for 2nd order effects is rather cumbersome. RakMK is yields generally more conservative results, thus the design on the safe side. Detailed design method acc. to EC2 has been shown in: http://www.elementtisuunnittelu.fi/fi/runkorakenteet/pilarit/nurjahduspituus http://eurocodes.fi/1992/paasivu1992/sahkoinen1992/Leaflet_5_Pilarit.pdf
  • 12. LASTAUSLAITURI JA -KATOS VARASTO A A BB ~1585,2m2 MYYMÄLÄ- TILA 111,6m2 SÄVYTYS 81,9m2 TEKN. TILAT 19,1m2 PALAVAN AINEEN VARASTO 24,4m2 hissi- varaus +47.8 +46.6 +47.8 NOSTO-OVI + PIKARULLAOVI 6m x ?m NOSTO-OVI + PIKARULLAOVI 4m x ?m sähköinen kuormaussilta sähköinen kuorm aussilta NOSTO-OVI 4m x ?m ovilämpöpuhallin SOSIAALI- TILAT 51,9m2 VSS/ SOS.TILAT 32,2m2 NÄYTTELY- TILA 57,1m2 KOULUTUS- TILA 46,1m2 KONE- HUOLTO 22,7m2 TK TSTOH 2 hlöä SIIV. WC TSTOH 2 hlöä TSTOH 2 hlöä TSTOH 2 hlöä PRH 20,9m2 KÄY 34,3m2 23,5m2 23,5m2 23,5m2 23,5m2 KÄY 9,6m2 KÄY 9,6m2 LE-WC 5,7m2 3,3m2 3,5m2 5,9m2 kt kt kt TRUKKIEN LATAUSPISTEET 6 KPL 0m 2 5 10 20 VARASTO-/TUOTANTOTILAA POHJA-LAYOUT, 1.KRS 1:250 HAKKILA, VANTAA 08.12.2017 RAK5 ALUSTAVA, VE2 1. KRS: HUONEISTO-ALA: n. 2237 m² KERROSALA: n. 2282 m² Column to be designed A A BB PLAN VIEW OF A WAREHOUSE
  • 13. NÄYTTELYTILA AULA VARASTO KONE- HUOLTO IV-KONEH. KOULUTUS- TILA NEUV. 0m 2 5 10 20 VARASTO-/TUOTANTOTILAA LEIKKAUS A-A 1:250 HAKKILA, VANTAA 08.12.2017 RAK 5 ALUSTAVA, VE2 A-A Roof and columns are braced with truss members in longer (x-) direction
  • 14. VARASTO 0m 2 5 10 VARASTO-/TUOTANTOTILAA LEIKKAUS B-B, 1:100 HAKKILA, VANTAA 08.12.2017 RAK 5 ALUSTAVA, VE2 8,400mm 8,400mm B-B Steel trusses. Total weight of ONE truss is Gtruss=70kN Pad (ground bearing) foundations. Size of foundations: Lenght x Width = 3000 x 3000mm Thickness = 1000mm Coefficient of subgrade reaction for the soil under the foundation is: cu=100MN/m^3 Columns are masts in lateral (short) direction. Lenght of column = 8400mm Fixed connection be- tween foundation and column Pin-connection be- tween roof truss and column Dead load of the roof DL=0,8 kN/m2 Live load on the roof LL = 2 kN/m2 Wind load on the walls qwind=0,5kN/m2 Wind load on the walls qwind=0,5kN/m2
  • 15. Aalto University Janne Hanka CIV-E4040 Reinforced Concrete Structures 2018 28.1.2018 Homework 5, Strut and tie design 1(2) Return to MyCourses in PDF-format. You are designing a corbel connection within a cast-in-situ slab structure. Casting area #1 RC-BEAMS are supporting the casting area #2 RC-BEAMS with beam corbels. Bearings are placed to the connection (figure2) that transfers only the vertical force. -Beam concrete strength at final condition: C35/45 Consequence class CC2 -Rebar fyk=500MPa, Es=200GPa -Beam span length: L1=17m. Spacing of beams (slab span lengths) L2=8,1m. Cantilever L3=3,4m -Superimposed dead load: gsDL= 0,5 kN/m2. Concrete selfweight ρc=25kN/m3. -Liveload qLL=5 kN/m2. Combination factors: ψ0=0,7; ψ1=0,5; ψ2=0,3 (EN 1990 Class G, garages) -Concrete cover to rebar is c=40mm -Slab thickness hL=300mm. Beam height H=1500mm, width Bw=1600mm. a) Form calculation model of the RC-BEAM-3 and RC-BEAM-1. Calculate the ULS design force to be used in the Corbel design. b) Formulate and draw the calculation model of the corbel connection between RC-BEAM-1 and RC-BEAM-2 using strut-and-tie theory. b) Calculate the design forces in the struts and ties. d) Calculate the required amounts of reinforcements in the tensile struts. e) Check is the allowable compressive stress in concrete exceeded in any struts? f) Choose the actual amount of reinforcements and place them to the structure. Draw a sketch of the structure with the reinforcement. Pay attention to detailing and anchoring of tensile struts! Figure 1. Plan view of the structure. Figure 2. Detail and dimenstions of the beam corbel.
  • 16. Aalto University Janne Hanka CIV-E4040 Reinforced Concrete Structures 2018 28.1.2018 Homework 5, Strut and tie design 2(2) Return to MyCourses in PDF-format. Tip (d-e): Allowable stress for a concrete strut may be calculated using equation: σRd.max = fcd (with compressive transverse stress or without transverse stress, EC2 fig.6.23) σRd.max= 0,6 (1 – fck/250) fcd (with tensile transverse stress, EC2 fig.6.23) Allowable stress for a node may be calculated using equation: σRd.max = k v’ fcd where: k= 1 (compression node without tensile ties, EC2 fig.6.26) k=0,85 (compression-tension node with reinforcement from one direction, EC2 fig.6.27) k=0,75 (compression-tension node with reinforcement provided in two directions, EC2 fig.6.28) Figure 6.26: Compression node without ties. Figure 6.27: Compression tension node with reinforcement provided in one direction. Figure 6.28: Compression tension node with reinforcement provided in two directions.