Hideki Tanaka PyCon APAC 2015
Marsface Project
Detecting Pseudo-artificial Structures on Mars
x
SciPyTalk
SciFiTalk
http://marproject.org/index2.html
Image: CC BY: International Space Apps Challenge Tokyo on Flickr
International Space Apps Challenge
(https://2015.spaceappschallenge.org/)
[ISAC]
@atelierhide
?@atelierhide =
= Lens Designer@atelierhide
= Photographer@atelierhide
© Hideki Tanaka
© Hideki Tanaka
= Organizer@atelierhide
http://pydatatokyo.connpass.com/
[PyData.Tokyo]
@PyDataTokyo Organizers
@iktakahiro@madyagi
@atelierhide@kaita
Venue Sponsor = Denso IT Laboratory
© PyData.Tokyo
http://pydataokinawa.connpass.com/
[PyData.Okinawa]
The CFP for PyCon JP is open until July 15!
(https://pycon.jp/2015/en/)
[PyCon JP]
What is Marsface Project?
1976
NASA’s Viking spacecraft discovered
the ”Face on Mars.”
[Face on Mars]
2001
The ”Face on Mars” turned out
to be an optical illusion.
[Face on Mars]
However, some people think
it is evidence of life on Mars,
that NASA would rather hide.
[Human on Mars]
Marsface Detector
Marsobject Detector Pseudo-artificial
Structures
Satellite
Images
19,000+ space images are available!
[NASA/JPL]
Computational Resources
Supported by Microsoft Azure Research Award Program
32 compute instances
10 TB of storage
1 billion storage transactions
10 shared websites/10 shared mobile services
100 million service bus messages
100 GB SQL database
2 TBs network egress/month
The estimated total market value: $40,000
How Marsface Detector works?
Related Research: [Geoface Project]
Face-like structures on Google Maps
(Kazutaka Kurihara, EC 2010)
Face detection with Haar-like features
[OpenCV]
OpenCV-Python bindings
Lots of false positives…
[LROC]
[LROC]
[LROC]
[LROC]
[LROC]
3.0km
“Face on Moon South Pole”
[Wikipedia]
http://en.wikipedia.org/wiki/Face_on_Moon_South_Pole
Space Souvenirs!!!
131,880 JPY = 32,760 TWD = 1,064 USD
(Gold)
3D Printed Mold
[DMM1]
http://make.dmm.com/item/116196/
Other Discoveries…
OpenCV, LibCCV (Surf-based detector) etc…
Algorithms
False positives
LessMore
SophisticatedSimple
Detected Faces
Human-likeAlien-like
How Marsobject Detector works?
Deep Learning
input output
hidden × n
[Kaggle]
Accuracy: 98.5% with Deep Learning!!!
[Kaggle]
ImageNet Large Scale Visual Recognition Challenge 2012
Method
SuperVision
SuperVision
ISI
Team Name
Error
(5 guesses)
7 CNNs
5 CNNs
Fisher Vectors
15.3%
16.4%
26.2%
Image classification with 1000 categories
Convolutional Neural Networks (CNNs)
[SuperVision]
Input Convolutional Layers Fully
Connected
Output
Cat
Core
Language
Binding
Theano/Pylearn2
cuda-convnet
OverFeat
DeCAF
Caffe
Python
C++
Lua
Python
C++
-
Python
Python
-
Python
Pre-trained
Models
Framework
×
×
○
○
○
Deep Learning Frameworks
ImageNet
[Model Zoo]
Obj.
Tabby Cat
Tiger Cat
Egyptian Cat
Red Fox
Lynx
Scores
0.31
0.21
0.13
0.13
0.07
[Notebook]
Obj.
Orangutan
Chimpanzee
Car Mirror
Gorilla
Hippopotamus
Scores
0.23
0.10
0.07
0.04
0.03
[Cat & Dog]
[Selective Search]
Search over position,
scale, aspect ratio
Grouping parts of
image at different scales
Sliding Window Selective Search
Segmentation as Selective Search for Object Recognition
R-CNN
(Regions with Convolutional Neural Network Features)
Selective Search(MATLAB) + CNNs(C++)
[R-CNN]
“Happy Face Creator”
Lizard?
African Grey
Golf Ball…
Future Works
1. New segmentation techniques
2. Object recognition by IBM Watson
3. Crowdsourcing as a screening tool (oDesk)
4. More interesting applications
Project Giant Reap
Image: CC BY-SA: http://free-photos.gatag.net/2013/12/05/110000.html
Space × Oriental Medicine
Giant Leap = 3D Printed Reflexology Sandals
56,400 JPY = 14,000 TWD = 455 USD
[DMM2]
http://make.dmm.com/item/242572/
[Maker]
http://makezine.jp/event/mft2015/
"That's one small step for [a] man,
one giant leap for mankind.”
Neil Armstrong
References
[ISAC] https://2015.spaceappschallenge.org/
[PyData.Tokyo] http://pydatatokyo.connpass.com/
[PyData.Okinawa] http://pydataokinawa.connpass.com/
[PlaY data] http://www.meetup.com/playdata/
[PyCon JP] https://pycon.jp/2015/ja/talks/cfp/
[Face on Mars] http://en.wikipedia.org/wiki/Cydonia_%28region_of_Mars%29
[NASA/JPL] http://www.jpl.nasa.gov/spaceimages/
[Human on Mars] http://www.space.com/4876-female-figure-mars-rock.html
[Geoface Project] https://sites.google.com/site/geofaceproject/
References
[OpenCV] https://github.com/kylemcdonald/AppropriatingNewTechnologies/wiki/
Week-2
[LROC] http://target.lroc.asu.edu/q3/
[Wikipedia] http://en.wikipedia.org/wiki/Face_on_Moon_South_Pole
[DMM1] http://make.dmm.com/item/116196/
[Kaggle] https://www.kaggle.com/c/dogs-vs-cats
[Model Zoo] http://caffe.berkeleyvision.org/model_zoo.html
[SuperVision] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. NIPS, 2012.
[Notebook] http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/
filter_visualization.ipynb
References
[Cat & Dog] http://netgeek.biz/archives/25449
[Selective Search] Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers,
Arnold W. M. Smeulders. Selective Search for Object Recognition. IJCV, 2013.
[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. CVPR, 2014.
[DMM2] http://make.dmm.com/item/242572/
[Maker] http://makezine.jp/event/mft2015/

Marsface Project: Detecting Pseudo-artificial Structures on Mars