SlideShare a Scribd company logo
CFD EVALUATION OF SUITABLE
SITE FOR WIND TURBINE OF THE
      FLOW OVER TERRAIN


                            THITIPONG UNCHAI
                                      Advisor
            ASST.PROF.DR.ADUN JANYALERTADUN
Topics

∗   Introductions
∗   Objective
∗   Scope of works
∗   Research Procedure
∗   Theory, Literature reviews and Results of
    ∗ Potential Energy Assessments
    ∗ CFD simulations
       ∗ Pha Taem Hill
       ∗ Comparison of terrain and geometry shape
    ∗ Chart generation
∗ Discussions
Objective


∗ Investigate wind energy potential of Ubonratchathani
  region.
∗ Find suitable site of wind turbine using CFD
  simulations.
∗ Generate suitable site chart for trapezoid hill shape.
Scope of the work


∗ Wind data collection at 10, 30 40 m height.
∗ Wind energy potential assessment using Weibull
  distribution.
∗ CFD simulation of Pha Taem hill.
∗ CFD simulation compare of terrain and geometry
  shape.
∗ Generate wind turbine suitable site chart using
  extrapolation technique.
Introduction
     ∗ Wind energy




Source : http://www.jewishpolicycenter.org/1415/investment-opportunity-of-the-21st-century
Introduction

                              At a height of 10 m                        Height of 50 m
         Wind
                             Wind                                   Wind
         Power
                             Power               Speed              Power               Speed
         Class
                            Density              (m/s)             Density              (m/s)
                            (W/m2)                                 (W/m2)

             1              0 – 100              0 – 4.4            0 – 200             0 – 5.6

             2             100 – 150           4.4 – 5.1           200 – 300           5.6 – 6.4

            3              150 – 200           5.1 – 5.6           300 – 400           6.4 – 7.0

            4              200 – 250           5.6 – 6.0           400 – 500           7.0 – 7.5

            5              250 – 300           6.0 – 6.4           500 – 600           7.5 – 8.0

            6              300 – 400           6.4 – 7.0          600 – 800            8.0 – 8.8

            7             400 – 1000           7.0 – 9.4          800 – 2000          8.8 – 11.9

Source : The U.S. Dept. of Energy defined a wind power scale in the Wind Energy Resource Atlas of the
United States, published in 1986.
Introduction
∗ Wind turbine site
Introduction
    ∗ Wind potential site in Thailand
                                                                      Wind speed
             Region                         Province    Power Class                  Wind power
                                                                        (50 m)
Tai Rom Yen National Park         Nakhon Si Thammarat      6-7        8.00 – 11.90   600 – 2,000

Khao Luang National Park          Nakhon Si Thammarat      6–7        8.00 – 11.90   600 – 2,000

Khao Pu - Khao Ya National Park   Phatthalung              6–7        8.00 – 11.90   600 – 2,000

Wong – Jao National Park          Tak                       6         8.00 – 8.80     600 – 800

Doi Inthanon                      Chiang Mai                4         7.00 – 7.50     400 – 500

Kaeng Krung National Park         Surat Thani              4–5        7.00 – 8.00     400 – 600

Pranom-Benja National Park        Krabi                     6         8.00 – 8.80    600 – 800

Ranot                             Songkhla                  4         7.00 – 7.50     400 – 500

Songkhla Lake                     Songkhla                 5–6        7.50 – 8.00     500 – 700

Gulf of Pattani                   Pattani                   4         7.00 – 7.50     400 – 500

Hua Sai                           Nakhon Si Thammarat       3         6.40 – 7.00     300 – 400
Introduction
∗ Alternative Energy Development Plan: 2012-2021
Introduction
       ∗ Wind turbine site




Source : http://www.acusim.com/html/apps/windTurbSiting.html
Introduction


       ∗ Wind turbine site




Source : http://www.lec.ethz.ch/research/wind_energy/cfd
Introduction


       ∗ Wind turbine site




Source : Paul Stangroom. CFD Modelling of Wind Flow Over Terrain. Ph.D. thesis of University of Nottingham.
2004
Introduction

       ∗ Wind turbine site




Source : Keith W. Ayotte. Computational modelling for wind energy assessment. Journal of Wind Engineering
and Industrial Aerodynamics. 96: 2008, 1571–1590
Research Procedure


∗   Wind measurement and potential energy assessment.
∗   Simulation of Pha Taem hill.
∗   Comparison of terrain and geometry shape.
∗   Generate suitable position site chart.
Wind measurement
∗ Literature reviews

     Researchers            Heights                Periods
     A. Keyhani et al.      10 m                   11 years

     Ramazan Kose           10, 30 m               20 months

     Meishen Li             10 m                   5 years

     Murat Gokcek et al.    10 m                   5 months

     Murat Gokcek et al.    6 – 12 m (11 stations) 3 years

     W. Al-Nassar et al.    10, 30, 60 m*          46 years
* Extrapolation from the data using the Power-Law are presented.
Anemometer   Wind Vane
                  Wind measurement
    Parameters             Details

Location           Khong Chiam, UBN                     Anemometer
Height from sea
                   123 m
level
Sampling Period    1 hr

                   January 1, 2008 to
Data collected
                   December 31, 2010




                                        Thermometer &    Anemometer
                                          Barometer

                                        Data Logger
Wind measurement

                           2008      2009       2010       Average
             4.0
               ∗ Wind speed
             3.0
Wind Speed (m/s)




             2.0

             1.0

             0.0
                   Jan   Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                                           Month
Wind Speed (m/s)




                     0.0
                            1.0
                                   2.0
                                         3.0
                                               4.0
              0:00
              2:00
              4:00
                                               10 m

              6:00
              8:00
         10:00
                                               30 m




         12:00


Hour of Day
         14:00
         16:00
                                                      Wind measurement




         18:00
                                               40 m




         20:00
         22:00
Wind measurement
∗ Wind direction
                             N
                       15%       NNE
                NW     10%          NE
                        5%            ENE
            W           0%                   E
                                            ESE
                SW                     SE
                     SSW         SSE
                             S
Potential energy assessment

∗ Power of the wind
                           1
                        P = ρAV 3
                           2
∗ Wind power density developed by Weibull distribution
                   ∞
                P    1             1 3  k +3
                  = ∫ ρV f (V )dV = ρc Γ
                        3
                                             
                A 02               2     k 

where k is shape factor and c is scalar factor
Potential energy assessment
∗ Weibull distribution
  ∗ Graphical method
      ln[− ln (1 − F (V ≤ V0 ))] = − k ln (c ) + k ln (V0 )
              b 
                 
              −k 
      c=e
  ∗ Approximated method
                 −1.086
         σ 
      k = 
         V 
          m

             Vm
     c=
          Γ(1 + 1 / k )
Potential energy assessment
                                  Meteorological            Weibull approximated       Weibull graphical
    Month           Vm
                                P/A            E/A            P/A            E/A      P/A            E/A
                               (W/m2)       (kWh/m2)         (W/m2)       (kWh/m2)   (W/m2)       (kWh/m2)
January            3.91        36.61          27.24           85.97         63.96     82.23        61.18
February           3.72        31.53          21.19           62.39          41.92   59.79         40.18
March              3.64        29.54          21.98           64.05         47.65     61.31        45.61
April              3.31        22.21          15.99           103.17        74.28    93.59         67.39
May                3.23        20.64          15.36           78.47         58.38     88.11        65.55
June               3.29        21.81          15.70           111.25        80.10     97.45        70.17
July               3.50        26.26          19.54           171.73        127.77   122.22        90.93
August             3.53        26.94          20.04          136.13         101.28   123.13        91.61
September          2.83        13.88          10.00           97.52          70.21    91.76        66.07
October            3.46        25.37          18.88          100.86         75.04    94.96         70.65
November           4.19        45.06          32.44          113.08          81.42   80.58         58.01
December           3.73        31.79          23.65          104.42         77.69    107.07        79.66


Annual             3.53        331.65         242.00        1,229.03        899.71   1,102.20      807.01

  Note : Details of wind power density calculations are indicated in Appendix B
Pha Taem hill
Geographic Information System

∗ Geographic information system (GIS) is a system
  designed to capture, store, manipulate, analyze,
  manage, and present all types of geographical data.
Geographic Information System


   ∗ Literature reviews




Source : Atsushi Yamaguchi, Takeshi Ishihar and Yozo Fujino. Experimental study of the wind flow
in a coastal region of Japan. Journal of Wind Engineering and Industrial Aerodynamics 91 (2003)
247–264
Geographic Information System


   ∗ Literature reviews




Source : Paul Stangroom. CFD Modelling of Wind Flow Over Terrain. Ph.D. thesis of University of
Nottingham. 2004
Pha Taem hill



  Contour                     Terrain topography


Parameters          Details
Resolution          1 : 50,000
height              240 m
Front slope         20.06°
Rear slope          1.66°
Ground              Rocky flat plate
Computational Fluid Dynamics


       Applying the fundamental laws of mechanics to


                 𝜕𝜕
a fluid gives the governing equations for a fluid. The


                    + 𝛻 ∙ 𝜌𝜌 = 0
conservation of mass equation

                 𝜕𝑡

       𝜕𝑉
     𝜌    + 𝜌 𝑉 ∙ 𝛻 𝑉 = −𝛻𝛻 + 𝜌𝑔 + 𝛻 ∙ 𝜏 𝑖𝑖
                               ⃗
and the conservation of momentum equation


       𝜕𝑡
Computational Fluid Dynamics


        The term 𝜏 𝑖𝑖 in the equation is the Reynolds

                     𝜏 𝑖𝑖 = −𝑢′𝑖 𝑢′
stress for Reynolds Averaged Navier-Stokes equations
                                  𝑗


                  𝜏 𝑖𝑖 = � 𝑖 � 𝑗 − 𝑢′𝑖 𝑢′
                         𝑢 𝑢
and the subgrid-scale stress for Large Eddy Simulation
                                        𝑗
Turbulence Models dependence
  • Literature reviews
     Researcher              Article                  Topics                Knowledge
                     Comparison of
                                                                      •   k-l model indicated
                     turbulence models for   •   Use k-l and k-ε
Ove Undheim                                                               more inaccuracy
                     wind evaluation in          model
                     complex terrain
                     Investigation of wind   •   Use k-ω, k-ε model
Pual Carpenter and                                                    •   k-ω model
                     speeds over multiple    •   Imported model
Nicholas Locke                                                            improved k-ε
                     2D hills                    from GIS data
                                                                      •   Wind Atlas using
                                             •   Comparison LES
                     Computational                                        extrapolation
                                                 simulation with
Keith W. Ayotte      modelling for wind                                   method to predict
                                                 European Wind
                     energy assessment                                    speed in vertical
                                                 Atlas
                                                                          and horizontal
                     A new low-Reynolds-
                                             •   low-Reynolds-        •   In low-Reynolds-
                     number nonlinear two-
D.D. Apsley and                                  number flow              number flow, RSM
                     equation turbulence
M.A. Leschziner                              •   Use RSM , k-ε            is better than k-ε
                     model for complex
                                                 model
                     flows
Turbulence Models


∗ Standard k-ε model
  ∗ The two-equation k-ε turbulence model and its variants

                               𝑘2
                     𝜇𝑡 = 𝐶𝜇 𝜌
    are most commonly used in wind energy researches.

                                𝜀

   where
   k is turbulence kinetic energy
   ε is dissipation rate
Turbulence Models


∗ Standard k-ω model
  ∗ One of the advantages of the k-ω formulation is the near

                                𝑘
                         𝜇𝑡 = 𝜌
    wall treatment for low-Reynolds number computations.

                                𝜔

   where
   k is turbulence kinetic energy
   ω is specific dissipation rate
Turbulence Models


∗ Reynolds Stress Model

    the individual Reynolds stresses, 𝑢′𝑖 𝑢′ . The individual
  ∗ Using differential transport equations for calculation of
                                           𝑗
    Reynolds stresses are then used to obtain closure of the
    Reynolds-averaged momentum equation.
Grid dependence
Properties             Coarse             Medium          Fine

Dimension              2,000×1,000 m      2,000×1,000 m   2,000×1,000 m

First grid cell size   0.25493 m          0.04181 m       0.00709 m

Increasing rate        8%                 10%             12%

Largest cell size      70.20 m            85.64 m         96.59 m




           Coarse                      Medium                    Fine
Grid dependence
          ∗ Grid resolution sensitivity


          1.10
                     Coarse        x/H = 0                           x/H = 1                   x/H = 3
          1.08
                     Medium
Height (Z/H)




          1.06
                     Fine
          1.04
                     Measure
          1.02
          1.00
                 0   1         2   3         4   0   1       2      3          4   0   1   2   3         4
                                                         Wind Speed
Initial and boundary conditions
      ∗ Literature reviews
            Researcher                 Article                             Topics
                         Turbulence characteristics of
                                                             •   Increased porous fences
T. Takahashi et al.,     wind over a hill with a rough
                                                                 from 0% to 100%.
                         surface
                                                             •   Simulated problem of wall
                         CFD simulation of the                   function.
Bert Blocken             atmospheric boundary layer : wall   •   Irrespective of the wall
                         function problems                       functions and near wall grid
                                                                 resolution.
                         On the use of the k–ε model in
D.M. Hargreaves and      commercial CFD software to          •   Shear stress applied to the
N.G. Wright              model the neutral atmospheric           top boundary of the domain.
                         boundary layer
                                                             •   The influence of a roughness
                                                                 change spreads upwards in
                         2D simulations of terrain effects
O. Undheim                                                       the boundary layer
                         on atmospheric flow
                                                                 downstream from the
                                                                 roughness change.
Initial and boundary conditions
            Parameters                          Type
  Solver                          Segregated
  Formulation                     Implicit
  Space                           3D
  Time                            Unsteady
  Velocity Formulation            Absolute
  Unsteady Formulation            1st Order Implicit
  Turbulent Model             -    standard k-ε model
                              -    standard k-ω model
                              -    Reynolds Stress Model
  Near Wall Treatment             Enhance Wall Treatment
  Model Constant                  Cμ , Cε1 , Cε2 , σk , σε
  Air Density                     1.225 kg/m3
  Time Step                       0.1 second
  Max Iteration / Time Step       20,000
  Inflow boundary                 Velocity inlet
  Outflow boundary                Pressure outlet
  Top boundary                    Zero-gradient
  Ground boundary                 Wall
Results
         ∗ Wind velocity profile at reference station


                          k-epsilon       k-omega        Reynolds stress   measure
                0.2
               0.15
Height (Z/H)




                0.1
               0.05
                 0
                      0      0.5      1         1.5        2        2.5    3         3.5   4
                                                    Wind speed (m/s)
Results
         ∗ Comparison of increasing speed at hill top

                  k-epsilon   k-omega      Reynolds stress     measure
                                   0.20
                                   0.15
Height (Z/H)




                                   0.10
                                   0.05
                                   0.00
      -20%             -10%               0%                 10%         20%
                              Wind speed increase (%)
Results
      ∗ Comparison of velocity in longitudinal direction


         500
                       x/H = -1.0                 x/H = 0                 x/H = 1.0                 x/H = 2.0
         400
Height (Z/H)




         300
         200
         100
               0
                   0         1      2   3   4 0        1    2   3   4 0        1      2   3   4 0        1      2   3   4
Results
                 ∗ Comparison of turbulence kinetic energy in
                   longitudinal direction
        500
                               x/H = -1.0                     x/H = 0                    x/H = 1.0                       x/H = 2.0
        400
        300
Height (m)




        200
        100
             0
                 0.00 0.05 0.10 2 2
                                  0.15 0.20 0   0.05 0.1 2 2 0.15   0.2 0.00 0.05 0.10 2 2 0.15 0.20 0.00   0.05 0.10 2 2 0.15   0.20
                         TKE (m /s )                TKE (m /s )                  TKE (m /s )                    TKE (m /s )
Comparison of Pha Taem geography
         and geometry shape
     0.5                                       Geometry             Geography hill
Height




            0
                0                              1               Distance         2                               3

                        y = 0.3653x - 0.0352                                                     y = -0.029x + 0.3994
                             R² = 0.9549                                                              R² = 0.9543
            0.4                                    0.4
   Height




            0.2                                    0.2



            0.0                                     0
                  0.0       0.5          1.0             1.0              2.0              3.0                  4.0
                         Distance                                               Distance
Results
                  ∗ Comparison of increasing speed
                      1.2                1.2                             1.2
Vertical height (Z/H)




                            1.1                   1.1                    1.1




                              1.0                  1.0                   1.0
                        -20%-10% 0% 10% 20%   -20%-10% 0% 10% 20%   -20%-10% 0% 10% 20%
                           k-epsilon model       k-omega model      Reynolds Stress model
Results
  ∗ Comparison of increasing turbulence kinetic energy

               1.2                          1.2                     1.2
Vertical height (Z/H)




               1.1                          1.1                     1.1



               1.0                          1.0                     1.0
                        0% 10% 20% 30%            0% 10% 20% 30%          0% 10% 20% 30%
                          k-epsilon model           k-omega model          Reynolds Stress model
Wind turbine suitable site chart
                                                                        Typical Roughness Length
             Land Cover Types
                                                                                     (m)
             Farmland and grassy plains                                 0.002-0.30
                           Many trees and hedges, a few buildings       0.30
                           Scattered trees and hedges                   0.15
                           Many hedges                                  0.085
                           Few trees (summer)                           0.055
                           Crops and tall grass                         0.050
                           Isolated trees                               0.025
                           Few trees (winter)                           0.010
                           Snow-covered cultivated farmland             0.002
             Large expanses of water                                    0.0001-0.001
             Flat desert                                                0.0001-0.001
             Snow-covered flat ground                                   0.0001
             Mud flats and ice                                          0.00001-0.00003



Parameters                                                  Details
Hill angle                                                  5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°
Wind speed                                                  2, 4, 6, 8, 10 m/s
Roughness height                                            0.0001, 0.001, 0.01, 0.1 m
Wind turbine suitable site chart
                                0.20
                                                                                            Suitable site chart for trapezoid terrain
                                                                                                      (Roughness 0.0001)




                                0.15         40°
height ( Time of hill height)




                                             30°

                                             20°

                                0.10         10°




                                                                                                40
                                                                                       30
                                0.05
                                                                            20
                                                                10




                                0.00
                                       0.0         0.1   0.2                         0.3                       0.4                      0.5
                                                           length ( Time of hill height)
Wind turbine suitable site chart
         0.20
                                                        Suitable site chart for trapezoid terrain
                                                                   (Roughness 0.001)




         0.15         40°

                      30°

                      20°
height




         0.10         10°


                                                                                 40
                                                                  30

         0.05                                      20
                                        10




         0.00
                0.0         0.1   0.2            0.3                       0.4                      0.5
                                        length
Wind turbine suitable site chart
                                0.20
                                                                                                 Suitable site chart for trapezoid terrain
                                                                                                             (Roughness 0.01)



                                             40°
                                0.15
                                             30°
height ( Time of hill height)




                                             20°

                                0.10         10°
                                                                                                                                  40
                                                                                                                 30
                                                                                            20
                                                                 10

                                0.05




                                0.00
                                       0.0         0.1   0.2                          0.3                           0.4                      0.5
                                                           length ( Time of hill height)
Wind turbine suitable site chart
         0.20
                                                       Suitable site chart for trapezoid terrain
                                                                   (Roughness 0.1)



                      40°
         0.15
                      30°


                      20°
                                                                                                   40
height




         0.10         10°                                                              30
                                                            20
                                            10



         0.05




         0.00
                0.0         0.1   0.2            0.3                      0.4                      0.5
                                        length
Concluding Remarks


∗ Wind energy potential of UBN regions is about
  1,102 – 1,229 W/m2
∗ The simulation results of Pha Taem hill indicated that
  RSM method is most similar with measurements.
∗ Comparison of hill and geometry are 95.46% matching
  terrain with 9.72% of difference results.
∗ Extrapolation technique have been used to generated
  wind turbine suitable site charts.
Suggestion


∗ More measure station with more frequency and more
  sensitive instruments should be provided to collect
  most accurate wind data.
∗ The measurement data from the station in single row
  do not indicated that same particle of the air.
∗ The 1:50,000 scales of data include much error into
  the simulations because GIS data non-included any
  obstacles.
Thank you

More Related Content

Viewers also liked

Electricmotors
ElectricmotorsElectricmotors
Electricmotors
Senthil Kumar
 
Como ser un gran maestro
Como ser un gran maestroComo ser un gran maestro
Como ser un gran maestro
Werton Bastos
 
Expert systems and solutions - B.E Projects ECE, EEE, EIE
Expert systems and solutions - B.E Projects ECE, EEE, EIEExpert systems and solutions - B.E Projects ECE, EEE, EIE
Expert systems and solutions - B.E Projects ECE, EEE, EIE
Senthil Kumar
 
Economic dispatch using fuzzy logic
Economic dispatch using fuzzy logicEconomic dispatch using fuzzy logic
Economic dispatch using fuzzy logic
Senthil Kumar
 
High Performance Apps: Tips for Speed, Power and Data
High Performance Apps: Tips for Speed, Power and DataHigh Performance Apps: Tips for Speed, Power and Data
High Performance Apps: Tips for Speed, Power and Data
Doug Sillars
 
24566431 objet-des-sciences-sociales
24566431 objet-des-sciences-sociales24566431 objet-des-sciences-sociales
24566431 objet-des-sciences-socialeslabibihcene
 
Fa2 activity poem
Fa2 activity poemFa2 activity poem
Fa2 activity poem
hnazrsh
 
Mec chapter 8
Mec chapter 8Mec chapter 8
Mec chapter 8
Michael Sun
 
Circuitanlys3
Circuitanlys3Circuitanlys3
Circuitanlys3
Senthil Kumar
 
Prezi de estudios!
Prezi de estudios!Prezi de estudios!
Prezi de estudios!
roosiimunoz27
 
Smarter Content for Bigger Results
Smarter Content for Bigger ResultsSmarter Content for Bigger Results
Smarter Content for Bigger Results
Stephen Dupont, APR
 
English
EnglishEnglish
TewksburyRowell2012
TewksburyRowell2012TewksburyRowell2012
TewksburyRowell2012
tewksjj
 
Ob chap3
Ob chap3Ob chap3
Digitalfilter2
Digitalfilter2Digitalfilter2
Digitalfilter2
Senthil Kumar
 
Design Considerations When Building Cross Platform Mobile Applications
 Design Considerations When Building Cross Platform Mobile Applications Design Considerations When Building Cross Platform Mobile Applications
Design Considerations When Building Cross Platform Mobile Applications
SuperConnect
 
Awnex presentation
Awnex presentationAwnex presentation
Awnex presentation
jpanek13
 
Enhance WordPress Search Using Sphinx
Enhance WordPress Search Using SphinxEnhance WordPress Search Using Sphinx
Enhance WordPress Search Using Sphinx
Roshan Bhattarai
 
Deepak strategic managemt -apple
Deepak  strategic managemt -appleDeepak  strategic managemt -apple
Deepak strategic managemt -apple
Deepak R Gorad
 
Calculo leithold
Calculo leitholdCalculo leithold

Viewers also liked (20)

Electricmotors
ElectricmotorsElectricmotors
Electricmotors
 
Como ser un gran maestro
Como ser un gran maestroComo ser un gran maestro
Como ser un gran maestro
 
Expert systems and solutions - B.E Projects ECE, EEE, EIE
Expert systems and solutions - B.E Projects ECE, EEE, EIEExpert systems and solutions - B.E Projects ECE, EEE, EIE
Expert systems and solutions - B.E Projects ECE, EEE, EIE
 
Economic dispatch using fuzzy logic
Economic dispatch using fuzzy logicEconomic dispatch using fuzzy logic
Economic dispatch using fuzzy logic
 
High Performance Apps: Tips for Speed, Power and Data
High Performance Apps: Tips for Speed, Power and DataHigh Performance Apps: Tips for Speed, Power and Data
High Performance Apps: Tips for Speed, Power and Data
 
24566431 objet-des-sciences-sociales
24566431 objet-des-sciences-sociales24566431 objet-des-sciences-sociales
24566431 objet-des-sciences-sociales
 
Fa2 activity poem
Fa2 activity poemFa2 activity poem
Fa2 activity poem
 
Mec chapter 8
Mec chapter 8Mec chapter 8
Mec chapter 8
 
Circuitanlys3
Circuitanlys3Circuitanlys3
Circuitanlys3
 
Prezi de estudios!
Prezi de estudios!Prezi de estudios!
Prezi de estudios!
 
Smarter Content for Bigger Results
Smarter Content for Bigger ResultsSmarter Content for Bigger Results
Smarter Content for Bigger Results
 
English
EnglishEnglish
English
 
TewksburyRowell2012
TewksburyRowell2012TewksburyRowell2012
TewksburyRowell2012
 
Ob chap3
Ob chap3Ob chap3
Ob chap3
 
Digitalfilter2
Digitalfilter2Digitalfilter2
Digitalfilter2
 
Design Considerations When Building Cross Platform Mobile Applications
 Design Considerations When Building Cross Platform Mobile Applications Design Considerations When Building Cross Platform Mobile Applications
Design Considerations When Building Cross Platform Mobile Applications
 
Awnex presentation
Awnex presentationAwnex presentation
Awnex presentation
 
Enhance WordPress Search Using Sphinx
Enhance WordPress Search Using SphinxEnhance WordPress Search Using Sphinx
Enhance WordPress Search Using Sphinx
 
Deepak strategic managemt -apple
Deepak  strategic managemt -appleDeepak  strategic managemt -apple
Deepak strategic managemt -apple
 
Calculo leithold
Calculo leitholdCalculo leithold
Calculo leithold
 

Similar to Present 14 08-2012

PARABLE POSTER
PARABLE POSTERPARABLE POSTER
PARABLE POSTER
Gurpreet Singh
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
inventionjournals
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
Toshihiro FUJII
 
Solar Energy materials and its operation
Solar Energy materials and its operationSolar Energy materials and its operation
Solar Energy materials and its operation
Anish Das
 
Lalit Anjum Wind Resource_PPT
Lalit Anjum Wind Resource_PPTLalit Anjum Wind Resource_PPT
Lalit Anjum Wind Resource_PPT
Lalit Anjum
 
MODIS
MODISMODIS
I Workshop Wind GlobalGeo e 3TIER - Matt
I Workshop Wind GlobalGeo e 3TIER - MattI Workshop Wind GlobalGeo e 3TIER - Matt
I Workshop Wind GlobalGeo e 3TIER - Matt
GlobalGeo Geotecnologias
 
Application of ST Radar data for Atmospheric characterization ppt.pdf
Application of ST Radar data for Atmospheric characterization ppt.pdfApplication of ST Radar data for Atmospheric characterization ppt.pdf
Application of ST Radar data for Atmospheric characterization ppt.pdf
Arkadev Kundu
 
Understanding wind power made easy
Understanding wind power made easyUnderstanding wind power made easy
Understanding wind power made easy
Centre for Application of renewable Energy
 
Design of vertical axis wind turbine for harnessing optimum power
Design of vertical axis wind turbine for harnessing optimum powerDesign of vertical axis wind turbine for harnessing optimum power
Design of vertical axis wind turbine for harnessing optimum power
IAEME Publication
 
Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...
ECRD IN
 
Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...
ECRD2015
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
Toshihiro FUJII
 
IRJET- Seismic Study of 400 M High RC Chimney
IRJET-  	  Seismic Study of 400 M High RC ChimneyIRJET-  	  Seismic Study of 400 M High RC Chimney
IRJET- Seismic Study of 400 M High RC Chimney
IRJET Journal
 
Capacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in moroccoCapacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in morocco
RCREEE
 
Capacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in moroccoCapacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in morocco
RCREEE
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
Roman Hodson
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
Daniel Maierhafer
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
Toshihiro FUJII
 
Military Geophysics Program
Military Geophysics ProgramMilitary Geophysics Program
Military Geophysics Program
Ali Osman Öncel
 

Similar to Present 14 08-2012 (20)

PARABLE POSTER
PARABLE POSTERPARABLE POSTER
PARABLE POSTER
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Solar Energy materials and its operation
Solar Energy materials and its operationSolar Energy materials and its operation
Solar Energy materials and its operation
 
Lalit Anjum Wind Resource_PPT
Lalit Anjum Wind Resource_PPTLalit Anjum Wind Resource_PPT
Lalit Anjum Wind Resource_PPT
 
MODIS
MODISMODIS
MODIS
 
I Workshop Wind GlobalGeo e 3TIER - Matt
I Workshop Wind GlobalGeo e 3TIER - MattI Workshop Wind GlobalGeo e 3TIER - Matt
I Workshop Wind GlobalGeo e 3TIER - Matt
 
Application of ST Radar data for Atmospheric characterization ppt.pdf
Application of ST Radar data for Atmospheric characterization ppt.pdfApplication of ST Radar data for Atmospheric characterization ppt.pdf
Application of ST Radar data for Atmospheric characterization ppt.pdf
 
Understanding wind power made easy
Understanding wind power made easyUnderstanding wind power made easy
Understanding wind power made easy
 
Design of vertical axis wind turbine for harnessing optimum power
Design of vertical axis wind turbine for harnessing optimum powerDesign of vertical axis wind turbine for harnessing optimum power
Design of vertical axis wind turbine for harnessing optimum power
 
Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...
 
Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...Minutes of brain storming session on air pollution load carrying capacity of ...
Minutes of brain storming session on air pollution load carrying capacity of ...
 
First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...First results from a prototype for the Fluorescence detector Array of Single-...
First results from a prototype for the Fluorescence detector Array of Single-...
 
IRJET- Seismic Study of 400 M High RC Chimney
IRJET-  	  Seismic Study of 400 M High RC ChimneyIRJET-  	  Seismic Study of 400 M High RC Chimney
IRJET- Seismic Study of 400 M High RC Chimney
 
Capacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in moroccoCapacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in morocco
 
Capacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in moroccoCapacity building 2010 day 1 wind energy in morocco
Capacity building 2010 day 1 wind energy in morocco
 
Compiled presentations MOS
Compiled presentations MOSCompiled presentations MOS
Compiled presentations MOS
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Military Geophysics Program
Military Geophysics ProgramMilitary Geophysics Program
Military Geophysics Program
 

Recently uploaded

Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results
 
The Most Inspiring Entrepreneurs to Follow in 2024.pdf
The Most Inspiring Entrepreneurs to Follow in 2024.pdfThe Most Inspiring Entrepreneurs to Follow in 2024.pdf
The Most Inspiring Entrepreneurs to Follow in 2024.pdf
thesiliconleaders
 
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper PresentationKirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip
 
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
➒➌➎➏➑➐➋➑➐➐Dpboss Matka Guessing Satta Matka Kalyan Chart Indian Matka
 
Innovation Management Frameworks: Your Guide to Creativity & Innovation
Innovation Management Frameworks: Your Guide to Creativity & InnovationInnovation Management Frameworks: Your Guide to Creativity & Innovation
Innovation Management Frameworks: Your Guide to Creativity & Innovation
Operational Excellence Consulting
 
IMG_20240615_091110.pdf dpboss guessing
IMG_20240615_091110.pdf dpboss  guessingIMG_20240615_091110.pdf dpboss  guessing
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
Cambridge Product Management Network
 
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women MagazineEllen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
CIOWomenMagazine
 
Discover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling ServiceDiscover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling Service
obriengroupinc04
 
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
BBPMedia1
 
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
IPLTech Electric
 
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
ISONIKELtd
 
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
➑➌➋➑➒➎➑➑➊➍
 
Lukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptxLukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptx
pavelborek
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
Eternity Paralegal Services
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
valvereliz227
 
Prescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPTPrescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPT
Freelance
 
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
concepsionchomo153
 
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
Herman Kienhuis
 
list of states and organizations .pdf
list of  states  and  organizations .pdflist of  states  and  organizations .pdf
list of states and organizations .pdf
Rbc Rbcua
 

Recently uploaded (20)

Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan ChartSatta Matka Dpboss Kalyan Matka Results Kalyan Chart
Satta Matka Dpboss Kalyan Matka Results Kalyan Chart
 
The Most Inspiring Entrepreneurs to Follow in 2024.pdf
The Most Inspiring Entrepreneurs to Follow in 2024.pdfThe Most Inspiring Entrepreneurs to Follow in 2024.pdf
The Most Inspiring Entrepreneurs to Follow in 2024.pdf
 
Kirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper PresentationKirill Klip GEM Royalty TNR Gold Copper Presentation
Kirill Klip GEM Royalty TNR Gold Copper Presentation
 
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
Dpboss Matka Guessing Satta Matta Matka Kalyan panel Chart Indian Matka Dpbos...
 
Innovation Management Frameworks: Your Guide to Creativity & Innovation
Innovation Management Frameworks: Your Guide to Creativity & InnovationInnovation Management Frameworks: Your Guide to Creativity & Innovation
Innovation Management Frameworks: Your Guide to Creativity & Innovation
 
IMG_20240615_091110.pdf dpboss guessing
IMG_20240615_091110.pdf dpboss  guessingIMG_20240615_091110.pdf dpboss  guessing
IMG_20240615_091110.pdf dpboss guessing
 
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
2024.06 CPMN Cambridge - Beyond Now-Next-Later.pdf
 
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women MagazineEllen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
Ellen Burstyn: From Detroit Dreamer to Hollywood Legend | CIO Women Magazine
 
Discover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling ServiceDiscover the Beauty and Functionality of The Expert Remodeling Service
Discover the Beauty and Functionality of The Expert Remodeling Service
 
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
NIMA2024 | De toegevoegde waarde van DEI en ESG in campagnes | Nathalie Lam |...
 
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
Sustainable Logistics for Cost Reduction_ IPLTech Electric's Eco-Friendly Tra...
 
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
1 Circular 003_2023 ISO 27001_2022 Transition Arrangments v3.pdf
 
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN8328958814KALYAN MATKA | MATKA RESULT | KALYAN
8328958814KALYAN MATKA | MATKA RESULT | KALYAN
 
Lukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptxLukas Rycek - GreenChemForCE - project structure.pptx
Lukas Rycek - GreenChemForCE - project structure.pptx
 
Pro Tips for Effortless Contract Management
Pro Tips for Effortless Contract ManagementPro Tips for Effortless Contract Management
Pro Tips for Effortless Contract Management
 
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
欧洲杯赌球-欧洲杯赌球买球官方官网-欧洲杯赌球比赛投注官网|【​网址​🎉ac55.net🎉​】
 
Prescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPTPrescriptive analytics BA4206 Anna University PPT
Prescriptive analytics BA4206 Anna University PPT
 
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注外围盘口-欧洲杯投注盘口app|【​网址​🎉ac22.net🎉​】
 
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
Presentation by Herman Kienhuis (Curiosity VC) on Investing in AI for ABS Alu...
 
list of states and organizations .pdf
list of  states  and  organizations .pdflist of  states  and  organizations .pdf
list of states and organizations .pdf
 

Present 14 08-2012

  • 1. CFD EVALUATION OF SUITABLE SITE FOR WIND TURBINE OF THE FLOW OVER TERRAIN THITIPONG UNCHAI Advisor ASST.PROF.DR.ADUN JANYALERTADUN
  • 2. Topics ∗ Introductions ∗ Objective ∗ Scope of works ∗ Research Procedure ∗ Theory, Literature reviews and Results of ∗ Potential Energy Assessments ∗ CFD simulations ∗ Pha Taem Hill ∗ Comparison of terrain and geometry shape ∗ Chart generation ∗ Discussions
  • 3. Objective ∗ Investigate wind energy potential of Ubonratchathani region. ∗ Find suitable site of wind turbine using CFD simulations. ∗ Generate suitable site chart for trapezoid hill shape.
  • 4. Scope of the work ∗ Wind data collection at 10, 30 40 m height. ∗ Wind energy potential assessment using Weibull distribution. ∗ CFD simulation of Pha Taem hill. ∗ CFD simulation compare of terrain and geometry shape. ∗ Generate wind turbine suitable site chart using extrapolation technique.
  • 5. Introduction ∗ Wind energy Source : http://www.jewishpolicycenter.org/1415/investment-opportunity-of-the-21st-century
  • 6. Introduction At a height of 10 m Height of 50 m Wind Wind Wind Power Power Speed Power Speed Class Density (m/s) Density (m/s) (W/m2) (W/m2) 1 0 – 100 0 – 4.4 0 – 200 0 – 5.6 2 100 – 150 4.4 – 5.1 200 – 300 5.6 – 6.4 3 150 – 200 5.1 – 5.6 300 – 400 6.4 – 7.0 4 200 – 250 5.6 – 6.0 400 – 500 7.0 – 7.5 5 250 – 300 6.0 – 6.4 500 – 600 7.5 – 8.0 6 300 – 400 6.4 – 7.0 600 – 800 8.0 – 8.8 7 400 – 1000 7.0 – 9.4 800 – 2000 8.8 – 11.9 Source : The U.S. Dept. of Energy defined a wind power scale in the Wind Energy Resource Atlas of the United States, published in 1986.
  • 8. Introduction ∗ Wind potential site in Thailand Wind speed Region Province Power Class Wind power (50 m) Tai Rom Yen National Park Nakhon Si Thammarat 6-7 8.00 – 11.90 600 – 2,000 Khao Luang National Park Nakhon Si Thammarat 6–7 8.00 – 11.90 600 – 2,000 Khao Pu - Khao Ya National Park Phatthalung 6–7 8.00 – 11.90 600 – 2,000 Wong – Jao National Park Tak 6 8.00 – 8.80 600 – 800 Doi Inthanon Chiang Mai 4 7.00 – 7.50 400 – 500 Kaeng Krung National Park Surat Thani 4–5 7.00 – 8.00 400 – 600 Pranom-Benja National Park Krabi 6 8.00 – 8.80 600 – 800 Ranot Songkhla 4 7.00 – 7.50 400 – 500 Songkhla Lake Songkhla 5–6 7.50 – 8.00 500 – 700 Gulf of Pattani Pattani 4 7.00 – 7.50 400 – 500 Hua Sai Nakhon Si Thammarat 3 6.40 – 7.00 300 – 400
  • 9. Introduction ∗ Alternative Energy Development Plan: 2012-2021
  • 10. Introduction ∗ Wind turbine site Source : http://www.acusim.com/html/apps/windTurbSiting.html
  • 11. Introduction ∗ Wind turbine site Source : http://www.lec.ethz.ch/research/wind_energy/cfd
  • 12. Introduction ∗ Wind turbine site Source : Paul Stangroom. CFD Modelling of Wind Flow Over Terrain. Ph.D. thesis of University of Nottingham. 2004
  • 13. Introduction ∗ Wind turbine site Source : Keith W. Ayotte. Computational modelling for wind energy assessment. Journal of Wind Engineering and Industrial Aerodynamics. 96: 2008, 1571–1590
  • 14. Research Procedure ∗ Wind measurement and potential energy assessment. ∗ Simulation of Pha Taem hill. ∗ Comparison of terrain and geometry shape. ∗ Generate suitable position site chart.
  • 15. Wind measurement ∗ Literature reviews Researchers Heights Periods A. Keyhani et al. 10 m 11 years Ramazan Kose 10, 30 m 20 months Meishen Li 10 m 5 years Murat Gokcek et al. 10 m 5 months Murat Gokcek et al. 6 – 12 m (11 stations) 3 years W. Al-Nassar et al. 10, 30, 60 m* 46 years * Extrapolation from the data using the Power-Law are presented.
  • 16. Anemometer Wind Vane Wind measurement Parameters Details Location Khong Chiam, UBN Anemometer Height from sea 123 m level Sampling Period 1 hr January 1, 2008 to Data collected December 31, 2010 Thermometer & Anemometer Barometer Data Logger
  • 17. Wind measurement 2008 2009 2010 Average 4.0 ∗ Wind speed 3.0 Wind Speed (m/s) 2.0 1.0 0.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month
  • 18. Wind Speed (m/s) 0.0 1.0 2.0 3.0 4.0 0:00 2:00 4:00 10 m 6:00 8:00 10:00 30 m 12:00 Hour of Day 14:00 16:00 Wind measurement 18:00 40 m 20:00 22:00
  • 19. Wind measurement ∗ Wind direction N 15% NNE NW 10% NE 5% ENE W 0% E ESE SW SE SSW SSE S
  • 20. Potential energy assessment ∗ Power of the wind 1 P = ρAV 3 2 ∗ Wind power density developed by Weibull distribution ∞ P 1 1 3  k +3 = ∫ ρV f (V )dV = ρc Γ 3  A 02 2  k  where k is shape factor and c is scalar factor
  • 21. Potential energy assessment ∗ Weibull distribution ∗ Graphical method ln[− ln (1 − F (V ≤ V0 ))] = − k ln (c ) + k ln (V0 )  b     −k  c=e ∗ Approximated method −1.086 σ  k =  V   m Vm c= Γ(1 + 1 / k )
  • 22. Potential energy assessment Meteorological Weibull approximated Weibull graphical Month Vm P/A E/A P/A E/A P/A E/A (W/m2) (kWh/m2) (W/m2) (kWh/m2) (W/m2) (kWh/m2) January 3.91 36.61 27.24 85.97 63.96 82.23 61.18 February 3.72 31.53 21.19 62.39 41.92 59.79 40.18 March 3.64 29.54 21.98 64.05 47.65 61.31 45.61 April 3.31 22.21 15.99 103.17 74.28 93.59 67.39 May 3.23 20.64 15.36 78.47 58.38 88.11 65.55 June 3.29 21.81 15.70 111.25 80.10 97.45 70.17 July 3.50 26.26 19.54 171.73 127.77 122.22 90.93 August 3.53 26.94 20.04 136.13 101.28 123.13 91.61 September 2.83 13.88 10.00 97.52 70.21 91.76 66.07 October 3.46 25.37 18.88 100.86 75.04 94.96 70.65 November 4.19 45.06 32.44 113.08 81.42 80.58 58.01 December 3.73 31.79 23.65 104.42 77.69 107.07 79.66 Annual 3.53 331.65 242.00 1,229.03 899.71 1,102.20 807.01 Note : Details of wind power density calculations are indicated in Appendix B
  • 24. Geographic Information System ∗ Geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data.
  • 25. Geographic Information System ∗ Literature reviews Source : Atsushi Yamaguchi, Takeshi Ishihar and Yozo Fujino. Experimental study of the wind flow in a coastal region of Japan. Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 247–264
  • 26. Geographic Information System ∗ Literature reviews Source : Paul Stangroom. CFD Modelling of Wind Flow Over Terrain. Ph.D. thesis of University of Nottingham. 2004
  • 27. Pha Taem hill Contour Terrain topography Parameters Details Resolution 1 : 50,000 height 240 m Front slope 20.06° Rear slope 1.66° Ground Rocky flat plate
  • 28. Computational Fluid Dynamics Applying the fundamental laws of mechanics to 𝜕𝜕 a fluid gives the governing equations for a fluid. The + 𝛻 ∙ 𝜌𝜌 = 0 conservation of mass equation 𝜕𝑡 𝜕𝑉 𝜌 + 𝜌 𝑉 ∙ 𝛻 𝑉 = −𝛻𝛻 + 𝜌𝑔 + 𝛻 ∙ 𝜏 𝑖𝑖 ⃗ and the conservation of momentum equation 𝜕𝑡
  • 29. Computational Fluid Dynamics The term 𝜏 𝑖𝑖 in the equation is the Reynolds 𝜏 𝑖𝑖 = −𝑢′𝑖 𝑢′ stress for Reynolds Averaged Navier-Stokes equations 𝑗 𝜏 𝑖𝑖 = � 𝑖 � 𝑗 − 𝑢′𝑖 𝑢′ 𝑢 𝑢 and the subgrid-scale stress for Large Eddy Simulation 𝑗
  • 30. Turbulence Models dependence • Literature reviews Researcher Article Topics Knowledge Comparison of • k-l model indicated turbulence models for • Use k-l and k-ε Ove Undheim more inaccuracy wind evaluation in model complex terrain Investigation of wind • Use k-ω, k-ε model Pual Carpenter and • k-ω model speeds over multiple • Imported model Nicholas Locke improved k-ε 2D hills from GIS data • Wind Atlas using • Comparison LES Computational extrapolation simulation with Keith W. Ayotte modelling for wind method to predict European Wind energy assessment speed in vertical Atlas and horizontal A new low-Reynolds- • low-Reynolds- • In low-Reynolds- number nonlinear two- D.D. Apsley and number flow number flow, RSM equation turbulence M.A. Leschziner • Use RSM , k-ε is better than k-ε model for complex model flows
  • 31. Turbulence Models ∗ Standard k-ε model ∗ The two-equation k-ε turbulence model and its variants 𝑘2 𝜇𝑡 = 𝐶𝜇 𝜌 are most commonly used in wind energy researches. 𝜀 where k is turbulence kinetic energy ε is dissipation rate
  • 32. Turbulence Models ∗ Standard k-ω model ∗ One of the advantages of the k-ω formulation is the near 𝑘 𝜇𝑡 = 𝜌 wall treatment for low-Reynolds number computations. 𝜔 where k is turbulence kinetic energy ω is specific dissipation rate
  • 33. Turbulence Models ∗ Reynolds Stress Model the individual Reynolds stresses, 𝑢′𝑖 𝑢′ . The individual ∗ Using differential transport equations for calculation of 𝑗 Reynolds stresses are then used to obtain closure of the Reynolds-averaged momentum equation.
  • 34. Grid dependence Properties Coarse Medium Fine Dimension 2,000×1,000 m 2,000×1,000 m 2,000×1,000 m First grid cell size 0.25493 m 0.04181 m 0.00709 m Increasing rate 8% 10% 12% Largest cell size 70.20 m 85.64 m 96.59 m Coarse Medium Fine
  • 35. Grid dependence ∗ Grid resolution sensitivity 1.10 Coarse x/H = 0 x/H = 1 x/H = 3 1.08 Medium Height (Z/H) 1.06 Fine 1.04 Measure 1.02 1.00 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Wind Speed
  • 36. Initial and boundary conditions ∗ Literature reviews Researcher Article Topics Turbulence characteristics of • Increased porous fences T. Takahashi et al., wind over a hill with a rough from 0% to 100%. surface • Simulated problem of wall CFD simulation of the function. Bert Blocken atmospheric boundary layer : wall • Irrespective of the wall function problems functions and near wall grid resolution. On the use of the k–ε model in D.M. Hargreaves and commercial CFD software to • Shear stress applied to the N.G. Wright model the neutral atmospheric top boundary of the domain. boundary layer • The influence of a roughness change spreads upwards in 2D simulations of terrain effects O. Undheim the boundary layer on atmospheric flow downstream from the roughness change.
  • 37. Initial and boundary conditions Parameters Type Solver Segregated Formulation Implicit Space 3D Time Unsteady Velocity Formulation Absolute Unsteady Formulation 1st Order Implicit Turbulent Model - standard k-ε model - standard k-ω model - Reynolds Stress Model Near Wall Treatment Enhance Wall Treatment Model Constant Cμ , Cε1 , Cε2 , σk , σε Air Density 1.225 kg/m3 Time Step 0.1 second Max Iteration / Time Step 20,000 Inflow boundary Velocity inlet Outflow boundary Pressure outlet Top boundary Zero-gradient Ground boundary Wall
  • 38. Results ∗ Wind velocity profile at reference station k-epsilon k-omega Reynolds stress measure 0.2 0.15 Height (Z/H) 0.1 0.05 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Wind speed (m/s)
  • 39. Results ∗ Comparison of increasing speed at hill top k-epsilon k-omega Reynolds stress measure 0.20 0.15 Height (Z/H) 0.10 0.05 0.00 -20% -10% 0% 10% 20% Wind speed increase (%)
  • 40. Results ∗ Comparison of velocity in longitudinal direction 500 x/H = -1.0 x/H = 0 x/H = 1.0 x/H = 2.0 400 Height (Z/H) 300 200 100 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
  • 41. Results ∗ Comparison of turbulence kinetic energy in longitudinal direction 500 x/H = -1.0 x/H = 0 x/H = 1.0 x/H = 2.0 400 300 Height (m) 200 100 0 0.00 0.05 0.10 2 2 0.15 0.20 0 0.05 0.1 2 2 0.15 0.2 0.00 0.05 0.10 2 2 0.15 0.20 0.00 0.05 0.10 2 2 0.15 0.20 TKE (m /s ) TKE (m /s ) TKE (m /s ) TKE (m /s )
  • 42. Comparison of Pha Taem geography and geometry shape 0.5 Geometry Geography hill Height 0 0 1 Distance 2 3 y = 0.3653x - 0.0352 y = -0.029x + 0.3994 R² = 0.9549 R² = 0.9543 0.4 0.4 Height 0.2 0.2 0.0 0 0.0 0.5 1.0 1.0 2.0 3.0 4.0 Distance Distance
  • 43. Results ∗ Comparison of increasing speed 1.2 1.2 1.2 Vertical height (Z/H) 1.1 1.1 1.1 1.0 1.0 1.0 -20%-10% 0% 10% 20% -20%-10% 0% 10% 20% -20%-10% 0% 10% 20% k-epsilon model k-omega model Reynolds Stress model
  • 44. Results ∗ Comparison of increasing turbulence kinetic energy 1.2 1.2 1.2 Vertical height (Z/H) 1.1 1.1 1.1 1.0 1.0 1.0 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% k-epsilon model k-omega model Reynolds Stress model
  • 45. Wind turbine suitable site chart Typical Roughness Length Land Cover Types (m) Farmland and grassy plains 0.002-0.30 Many trees and hedges, a few buildings 0.30 Scattered trees and hedges 0.15 Many hedges 0.085 Few trees (summer) 0.055 Crops and tall grass 0.050 Isolated trees 0.025 Few trees (winter) 0.010 Snow-covered cultivated farmland 0.002 Large expanses of water 0.0001-0.001 Flat desert 0.0001-0.001 Snow-covered flat ground 0.0001 Mud flats and ice 0.00001-0.00003 Parameters Details Hill angle 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45° Wind speed 2, 4, 6, 8, 10 m/s Roughness height 0.0001, 0.001, 0.01, 0.1 m
  • 46. Wind turbine suitable site chart 0.20 Suitable site chart for trapezoid terrain (Roughness 0.0001) 0.15 40° height ( Time of hill height) 30° 20° 0.10 10° 40 30 0.05 20 10 0.00 0.0 0.1 0.2 0.3 0.4 0.5 length ( Time of hill height)
  • 47. Wind turbine suitable site chart 0.20 Suitable site chart for trapezoid terrain (Roughness 0.001) 0.15 40° 30° 20° height 0.10 10° 40 30 0.05 20 10 0.00 0.0 0.1 0.2 0.3 0.4 0.5 length
  • 48. Wind turbine suitable site chart 0.20 Suitable site chart for trapezoid terrain (Roughness 0.01) 40° 0.15 30° height ( Time of hill height) 20° 0.10 10° 40 30 20 10 0.05 0.00 0.0 0.1 0.2 0.3 0.4 0.5 length ( Time of hill height)
  • 49. Wind turbine suitable site chart 0.20 Suitable site chart for trapezoid terrain (Roughness 0.1) 40° 0.15 30° 20° 40 height 0.10 10° 30 20 10 0.05 0.00 0.0 0.1 0.2 0.3 0.4 0.5 length
  • 50. Concluding Remarks ∗ Wind energy potential of UBN regions is about 1,102 – 1,229 W/m2 ∗ The simulation results of Pha Taem hill indicated that RSM method is most similar with measurements. ∗ Comparison of hill and geometry are 95.46% matching terrain with 9.72% of difference results. ∗ Extrapolation technique have been used to generated wind turbine suitable site charts.
  • 51. Suggestion ∗ More measure station with more frequency and more sensitive instruments should be provided to collect most accurate wind data. ∗ The measurement data from the station in single row do not indicated that same particle of the air. ∗ The 1:50,000 scales of data include much error into the simulations because GIS data non-included any obstacles.