Poverty impacts of maize export
bans in Zambia
Jawoo Koo, Abdullah Mamun & Will Martin
IFPRI
22 September 2021
Policy Context
▪ Many countries worry about supply shocks to food staples
oBut policy makers often continue to focus on availability
▪ Often use trade barriers to ensure availability
oThough Amartya Sen pointed out this may exacerbate access problems
▪ We now have household & geospatial data to assess impacts
oCan we use this to better guide policies?
▪ Supply shocks often major source of income shocks
▪ Modeling supply shocks using DSSAT
▪ Price changes may compound or offset income effects of supply shocks
▪ Policy needs to focus on dealing with income losses & food insecurity
Issues
Supply shocks and income shocks
Supply shocks often large for staples
▪ Standard deviation of maize yield changes in Zambia 22%
ovs 7% for global maize yields
oAnd 29% in Malawi
oShocks larger at farm level
▪ Income effects determined by output
oRather than net sales for price changes
oBut how diversified are households?
▪ Climate change likely exacerbating these shocks
Focus on availability
▪ Policy makers frequently focus on food availability
▪ A tempting response is to restrict exports
oMake sure the food doesn’t “get away”
▪ Or, especially in countries that are net importers, make state purchases
oTo ensure availability
oAccompanied with export restrictions
▪ Often, availability data go down to localities
What matters is income effects of shocks
▪ If producers are large corporations, probably no need for policy intervention
▪ But if small, poor, specialized producers hit, the resulting income shocks
may be drastic
▪ Farm households often diversified
o Need to know who produces what
o And impacts on household incomes
Zambia an interesting case study
Household type % of popn Pov rate %
Overall 100.0 64.4
Urban 41.9 39.8
Rural 58.1 82.1
Mostly farm Inc 43.1 86.3
10% Maize Yield Fall
Hhold type
Del poverty rate
% pts
Overall 1.0
Urban 0.5
Rural 1.3
Mostly farm income 1.8
Zambia supply shock recap
▪ Extremely high poverty rate, especially among farmers
▪ Poverty rises when maize yields fall
▪ Large maize yield declines increase poverty among farmers sharply
Modeling Supply Shocks using DSSAT
Delayed rainfall onset
July – December 2015 July 2015 – February 2016
Model-estimated maize yield pattern
Filling the data gap
The DSSAT maize model was calibrated to simulate
three previous non-El Niño seasons and used to
estimate yield under 2015/16 El Niño.
oGrid-based weather data from NASA-POWER
oMaize geography based on MapSPAM
oSubnational production statistics data
oAdjusted planting dates to capture the delayed
onset of rainfall during the 2015/2016 season.
DSSAT
Decision Support System
for Agrotechnology Transfer
▪ Research tool for
crop production analyses
▪ Incorporates
o Crop-Soil-Weather-Management
models
o Utilities to help users integrate
data with models
o Data: Weather, Soil,
Experiments
o Analysis: Evaluation,
Risk/Uncertainty, Economics
o Support: Graphics, Weather
Generator, Parameter
Estimator
MANAGEMENT
• Planting window
• Planting density
• Irrigation
• Inorganic fertilizer
• Organic manure
• Tillage
• Residue
CULTIVAR
• Phenology
• Max # of kernels
• Kernel filling rate
*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33
*RUN 1 : RAINFED LOW NITROGEN
MODEL : MZCER040 - MAIZE
EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I
TREATMENT 1 : RAINFED LOW NITROGEN
CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002
STARTING DATE : FEB 25 1982
PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm
WEATHER : UFGA 1982
SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand
SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha
WATER BALANCE : IRRIGATE ON REPORTED DATE(S)
IRRIGATION : 13 mm IN 1 APPLICATIONS
NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION
N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS
RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS
ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00
RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00
SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N
PHOTO :C ET :R INFIL:S HYDROL :R SOM :G
MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M
*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS
SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG
DEPTH LIMIT LIMIT SW SW SW DIST DENS C
cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %
-------------------------------------------------------------------------------
0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00
5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00
15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00
30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10
90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10
120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04
150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24
TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080
SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00
RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80
MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002
P1 : 265.00 P2 : 0.3000 P5 : 920.00
G2 : 990.00 G3 : 8.500 PHINT : 39.000
*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES
RUN NO. 1 RAINFED LOW NITROGEN
CROP GROWTH BIOMASS CROP N STRESS
DATE AGE STAGE kg/ha LAI kg/ha % H2O N
------ --- ---------- ----- ----- --- --- ---- ----
25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00
26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00
27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00
9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00
27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09
1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50
*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33
*RUN 1 : RAINFED LOW NITROGEN
MODEL : MZCER040 - MAIZE
EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I
TREATMENT 1 : RAINFED LOW NITROGEN
CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002
STARTING DATE : FEB 25 1982
PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm
WEATHER : UFGA 1982
SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand
SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha
WATER BALANCE : IRRIGATE ON REPORTED DATE(S)
IRRIGATION : 13 mm IN 1 APPLICATIONS
NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION
N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS
RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS
ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00
RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00
SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N
PHOTO :C ET :R INFIL:S HYDROL :R SOM :G
MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M
*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS
SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG
DEPTH LIMIT LIMIT SW SW SW DIST DENS C
cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %
-------------------------------------------------------------------------------
0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00
5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00
15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00
30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10
90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10
120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04
150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24
TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080
SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00
RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80
MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002
P1 : 265.00 P2 : 0.3000 P5 : 920.00
G2 : 990.00 G3 : 8.500 PHINT : 39.000
*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES
RUN NO. 1 RAINFED LOW NITROGEN
CROP GROWTH BIOMASS CROP N STRESS
DATE AGE STAGE kg/ha LAI kg/ha % H2O N
------ --- ---------- ----- ----- --- --- ---- ----
25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00
26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00
27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00
9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00
27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09
1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50
*DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33
*RUN 1 : RAINFED LOW NITROGEN
MODEL : MZCER040 - MAIZE
EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I
TREATMENT 1 : RAINFED LOW NITROGEN
CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002
STARTING DATE : FEB 25 1982
PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm
WEATHER : UFGA 1982
SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand
SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha
WATER BALANCE : IRRIGATE ON REPORTED DATE(S)
IRRIGATION : 13 mm IN 1 APPLICATIONS
NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION
N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS
RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS
ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00
RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00
SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N
PHOTO :C ET :R INFIL:S HYDROL :R SOM :G
MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M
*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS
SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG
DEPTH LIMIT LIMIT SW SW SW DIST DENS C
cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %
-------------------------------------------------------------------------------
0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00
5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00
15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00
30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50
60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10
90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10
120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04
150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24
TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080
SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00
RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80
MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002
P1 : 265.00 P2 : 0.3000 P5 : 920.00
G2 : 990.00 G3 : 8.500 PHINT : 39.000
*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES
RUN NO. 1 RAINFED LOW NITROGEN
CROP GROWTH BIOMASS CROP N STRESS
DATE AGE STAGE kg/ha LAI kg/ha % H2O N
------ --- ---------- ----- ----- --- --- ---- ----
25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00
26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00
27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00
9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00
27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09
1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50
OUTPUT
Phenology
flowering, grain/seed/tuber,
maturity
Yield component
grain/seed/tuber, biomass, LAI
Growth
grain/seed/tuber, biomass, LAI
Soil
nitrogen balance, water
balance,
carbon balance
0
1
2
3
4
5
6
7
8
9
10
0 50 100 150 200
Yield
(t/ha)
Fertilizer (kg[N]/ha)
Impact of El Niño on Yields
Price Shocks and Poverty
Capturing food price impacts on welfare
▪ Consider welfare of a household as a function of prices and wages
▪ 𝐵 = 𝜋 𝒑, 𝑤 − 𝑒 𝒑, 𝑤, 𝑢 = z 𝒑, 𝑤, 𝑢
o𝜋 𝒑, 𝑤 represents profits from household firm(s)
o𝑒 𝒑, 𝑤, 𝑢 a “full” cost function representing the cost of expenditure less
wage earnings
oRepresent the behavior of the household as consumer & factor supplier
dB = (𝜋𝑝 −𝑒𝑝)∆𝑝
+ (𝑒𝑤− 𝜋𝑤)∆𝑤
1st order impacts of change in p
Net sales*
Price change
Net Labor Sales*
Wage change
Focus on direct price impacts
▪ Wage changes tend to be somewhat sticky
▪ Hired farm labor relatively minor in rural Zambia
▪ Deaton net sales criterion
Maize price decline of 10%
Del Poverty
Rate
% pts
Overall 0.75
Urban 0.17
Rural 1.16
Male-headed 0.94
Female-headed 0.56
Mostly farm income 1.66
Net sellers dominate
▪ Lower prices raise poverty
oEven in urban areas
▪ Effects stronger for rural areas
▪ And for male-headed households
▪ Strongest for farm households
oWho lose most from yield declines
Policy Responses to 2015-16 El Niño
The 2015-16 El Niño severe
▪ During the growing season, governments became very
concerned by hot, dry weather
▪ Zambian government introduced a precautionary export
ban
oOther countries very adversely affected so large loss of
export opportunities
▪ Late rains raised average yields
oPrimarily in the north
oBut the export ban stayed in place
Impacts weather shock on rural hholds
% pt change in poverty rate
Household type Net change
Into
poverty
Out of
poverty
All rural farm 1.4 3.3 1.9
Male-headed 1.7 3.5 1.8
Female-headed 1.1 3.0 1.9
Most income farm 1.4 3.4 1.9
Price protection in Zambia
▪ Maize trade policy since 2001 characterized as ad hoc and has seen
frequent use of export bans and export permits
▪ Updated nominal rate of protection (NRP) for Maize (1961-2017), we see
negative protection in all years, except 2005 and 2008.
▪ The average rate of protection was -39 percent over full period and -31
percent over 2005 to 2017
Price protection in Zambia
-100
-80
-60
-40
-20
0
20
40
Price protection in Zambia
▪ Trade and storage intervention didn’t stabilize domestic prices relative to
external prices over 2005-2017
▪ With NRP of -31 percent, domestic price is only 69 percent of the export price
▪ As Zambia has been a net exporter in recent years, the depression of domestic
prices has been the result of export restrictions
oCountries like Malawi sometimes need to subsidize imports
▪ This “cheap food” policy creates a serious risk to food availability
Export ban depressed prices by 24%
Household type Change in poverty rate % pts
Net
change
Into
poverty
Out of
poverty
Overall 1.36 1.63 0.26
Urban 0.17 0.67 0.50
Rural 2.23 2.31 0.09
Most income farming 2.42 2.48 0.06
Impacts of shock & response
▪ El Nino had little effect on overall yields
o But sharply reduced yield in the southern belt
o Pushing vulnerable farm households into poverty
o But yields increased in the north
▪ Policy response didn’t solve income problem
o Lowering domestic prices substantially raised poverty
o Some households adversely impacted by both shocks
Need better policy responses
▪ Cheap food policies create food availability challenges in most years
▪ Availability-based policy can exacerbate the income effects of weather shocks
o Export bans hurt net sellers– many poor net sellers in Zambia
▪ “No regrets” policies such as adaptive social safety nets & risk insurance
needed to deal with the income effects of supply shocks
o DSSAT modeling can help identify those who lose & target beneficiaries
Based on
Koo, J., Mamun, A. and Martin, W. (2021), ‘From Bad to Worse: Poverty
Impacts of Food Availability Responses to Weather Shocks’ Agricultural
Economics, https://doi.org/10.1111/agec.12657
Abdullah Al Mamun, Antony Chapoto, Brian Chisanga, Stephen
D’Alessandro, Jawoo Koo, Will Martin and Paul Samboko (2018),
‘Assessment of the Impacts of El Niño and Grain Trade Policy
Responses in East and Southern Africa to the 2015–16 Event’ IFPRI,
IAPRI and World Bank
oIncludes an analysis of Malawi

Poverty impacts maize export bans Zambia Malawi 2021

  • 1.
    Poverty impacts ofmaize export bans in Zambia Jawoo Koo, Abdullah Mamun & Will Martin IFPRI 22 September 2021
  • 2.
    Policy Context ▪ Manycountries worry about supply shocks to food staples oBut policy makers often continue to focus on availability ▪ Often use trade barriers to ensure availability oThough Amartya Sen pointed out this may exacerbate access problems ▪ We now have household & geospatial data to assess impacts oCan we use this to better guide policies?
  • 3.
    ▪ Supply shocksoften major source of income shocks ▪ Modeling supply shocks using DSSAT ▪ Price changes may compound or offset income effects of supply shocks ▪ Policy needs to focus on dealing with income losses & food insecurity Issues
  • 4.
    Supply shocks andincome shocks
  • 5.
    Supply shocks oftenlarge for staples ▪ Standard deviation of maize yield changes in Zambia 22% ovs 7% for global maize yields oAnd 29% in Malawi oShocks larger at farm level ▪ Income effects determined by output oRather than net sales for price changes oBut how diversified are households? ▪ Climate change likely exacerbating these shocks
  • 6.
    Focus on availability ▪Policy makers frequently focus on food availability ▪ A tempting response is to restrict exports oMake sure the food doesn’t “get away” ▪ Or, especially in countries that are net importers, make state purchases oTo ensure availability oAccompanied with export restrictions ▪ Often, availability data go down to localities
  • 7.
    What matters isincome effects of shocks ▪ If producers are large corporations, probably no need for policy intervention ▪ But if small, poor, specialized producers hit, the resulting income shocks may be drastic ▪ Farm households often diversified o Need to know who produces what o And impacts on household incomes
  • 8.
    Zambia an interestingcase study Household type % of popn Pov rate % Overall 100.0 64.4 Urban 41.9 39.8 Rural 58.1 82.1 Mostly farm Inc 43.1 86.3
  • 9.
    10% Maize YieldFall Hhold type Del poverty rate % pts Overall 1.0 Urban 0.5 Rural 1.3 Mostly farm income 1.8
  • 10.
    Zambia supply shockrecap ▪ Extremely high poverty rate, especially among farmers ▪ Poverty rises when maize yields fall ▪ Large maize yield declines increase poverty among farmers sharply
  • 11.
  • 12.
    Delayed rainfall onset July– December 2015 July 2015 – February 2016
  • 13.
    Model-estimated maize yieldpattern Filling the data gap The DSSAT maize model was calibrated to simulate three previous non-El Niño seasons and used to estimate yield under 2015/16 El Niño. oGrid-based weather data from NASA-POWER oMaize geography based on MapSPAM oSubnational production statistics data oAdjusted planting dates to capture the delayed onset of rainfall during the 2015/2016 season.
  • 14.
    DSSAT Decision Support System forAgrotechnology Transfer ▪ Research tool for crop production analyses ▪ Incorporates o Crop-Soil-Weather-Management models o Utilities to help users integrate data with models o Data: Weather, Soil, Experiments o Analysis: Evaluation, Risk/Uncertainty, Economics o Support: Graphics, Weather Generator, Parameter Estimator
  • 15.
    MANAGEMENT • Planting window •Planting density • Irrigation • Inorganic fertilizer • Organic manure • Tillage • Residue CULTIVAR • Phenology • Max # of kernels • Kernel filling rate *DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33 *RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % ------------------------------------------------------------------------------- 0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24 TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES RUN NO. 1 RAINFED LOW NITROGEN CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N ------ --- ---------- ----- ----- --- --- ---- ---- 25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00 9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00 27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09 1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50 *DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33 *RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % ------------------------------------------------------------------------------- 0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24 TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES RUN NO. 1 RAINFED LOW NITROGEN CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N ------ --- ---------- ----- ----- --- --- ---- ---- 25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00 9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00 27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09 1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50 *DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33 *RUN 1 : RAINFED LOW NITROGEN MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I TREATMENT 1 : RAINFED LOW NITROGEN CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 STARTING DATE : FEB 25 1982 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm WEATHER : UFGA 1982 SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 13 mm IN 1 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % ------------------------------------------------------------------------------- 0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24 TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 P1 : 265.00 P2 : 0.3000 P5 : 920.00 G2 : 990.00 G3 : 8.500 PHINT : 39.000 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES RUN NO. 1 RAINFED LOW NITROGEN CROP GROWTH BIOMASS CROP N STRESS DATE AGE STAGE kg/ha LAI kg/ha % H2O N ------ --- ---------- ----- ----- --- --- ---- ---- 25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00 9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00 27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09 1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50 OUTPUT Phenology flowering, grain/seed/tuber, maturity Yield component grain/seed/tuber, biomass, LAI Growth grain/seed/tuber, biomass, LAI Soil nitrogen balance, water balance, carbon balance 0 1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 Yield (t/ha) Fertilizer (kg[N]/ha)
  • 16.
    Impact of ElNiño on Yields
  • 17.
  • 18.
    Capturing food priceimpacts on welfare ▪ Consider welfare of a household as a function of prices and wages ▪ 𝐵 = 𝜋 𝒑, 𝑤 − 𝑒 𝒑, 𝑤, 𝑢 = z 𝒑, 𝑤, 𝑢 o𝜋 𝒑, 𝑤 represents profits from household firm(s) o𝑒 𝒑, 𝑤, 𝑢 a “full” cost function representing the cost of expenditure less wage earnings oRepresent the behavior of the household as consumer & factor supplier
  • 19.
    dB = (𝜋𝑝−𝑒𝑝)∆𝑝 + (𝑒𝑤− 𝜋𝑤)∆𝑤 1st order impacts of change in p Net sales* Price change Net Labor Sales* Wage change
  • 20.
    Focus on directprice impacts ▪ Wage changes tend to be somewhat sticky ▪ Hired farm labor relatively minor in rural Zambia ▪ Deaton net sales criterion
  • 21.
    Maize price declineof 10% Del Poverty Rate % pts Overall 0.75 Urban 0.17 Rural 1.16 Male-headed 0.94 Female-headed 0.56 Mostly farm income 1.66
  • 22.
    Net sellers dominate ▪Lower prices raise poverty oEven in urban areas ▪ Effects stronger for rural areas ▪ And for male-headed households ▪ Strongest for farm households oWho lose most from yield declines
  • 23.
    Policy Responses to2015-16 El Niño
  • 24.
    The 2015-16 ElNiño severe ▪ During the growing season, governments became very concerned by hot, dry weather ▪ Zambian government introduced a precautionary export ban oOther countries very adversely affected so large loss of export opportunities ▪ Late rains raised average yields oPrimarily in the north oBut the export ban stayed in place
  • 25.
    Impacts weather shockon rural hholds % pt change in poverty rate Household type Net change Into poverty Out of poverty All rural farm 1.4 3.3 1.9 Male-headed 1.7 3.5 1.8 Female-headed 1.1 3.0 1.9 Most income farm 1.4 3.4 1.9
  • 26.
    Price protection inZambia ▪ Maize trade policy since 2001 characterized as ad hoc and has seen frequent use of export bans and export permits ▪ Updated nominal rate of protection (NRP) for Maize (1961-2017), we see negative protection in all years, except 2005 and 2008. ▪ The average rate of protection was -39 percent over full period and -31 percent over 2005 to 2017
  • 27.
    Price protection inZambia -100 -80 -60 -40 -20 0 20 40
  • 28.
    Price protection inZambia ▪ Trade and storage intervention didn’t stabilize domestic prices relative to external prices over 2005-2017 ▪ With NRP of -31 percent, domestic price is only 69 percent of the export price ▪ As Zambia has been a net exporter in recent years, the depression of domestic prices has been the result of export restrictions oCountries like Malawi sometimes need to subsidize imports ▪ This “cheap food” policy creates a serious risk to food availability
  • 29.
    Export ban depressedprices by 24% Household type Change in poverty rate % pts Net change Into poverty Out of poverty Overall 1.36 1.63 0.26 Urban 0.17 0.67 0.50 Rural 2.23 2.31 0.09 Most income farming 2.42 2.48 0.06
  • 30.
    Impacts of shock& response ▪ El Nino had little effect on overall yields o But sharply reduced yield in the southern belt o Pushing vulnerable farm households into poverty o But yields increased in the north ▪ Policy response didn’t solve income problem o Lowering domestic prices substantially raised poverty o Some households adversely impacted by both shocks
  • 31.
    Need better policyresponses ▪ Cheap food policies create food availability challenges in most years ▪ Availability-based policy can exacerbate the income effects of weather shocks o Export bans hurt net sellers– many poor net sellers in Zambia ▪ “No regrets” policies such as adaptive social safety nets & risk insurance needed to deal with the income effects of supply shocks o DSSAT modeling can help identify those who lose & target beneficiaries
  • 32.
    Based on Koo, J.,Mamun, A. and Martin, W. (2021), ‘From Bad to Worse: Poverty Impacts of Food Availability Responses to Weather Shocks’ Agricultural Economics, https://doi.org/10.1111/agec.12657 Abdullah Al Mamun, Antony Chapoto, Brian Chisanga, Stephen D’Alessandro, Jawoo Koo, Will Martin and Paul Samboko (2018), ‘Assessment of the Impacts of El Niño and Grain Trade Policy Responses in East and Southern Africa to the 2015–16 Event’ IFPRI, IAPRI and World Bank oIncludes an analysis of Malawi