SlideShare a Scribd company logo
1 of 7
Download to read offline
 
THE POTENTIAL WITHIN OUR OCEANS           1
  
Abstract 
In this report I will discuss the advantages of underwater desalination over conventional 
desalination as well as the potential applications of these advantages.  Desalination, the process 
of removing salt and other contaminants from seawater, has been seriously considered in 
California due to prolonged drought.  For first world countries like Israel and Australia the 
reverse osmosis process has been successful due to the large quantities of water that can be 
desalinated, using high pressure to push seawater through a salt removing membrane.  However, 
cost and environmental issues have held back this type of desalination and will continue to do so. 
Under water desalination, on the other hand, uses natural ocean pressure to filter seawater at a 
reduced energy cost and has the potential to be used for much more than fresh water production. 
I propose that California expands many of its resources to an underwater environment.  From 
scientific experimentation to a complete freshwater ecosystem, clean water at no recurring 
energy costs could allow for many freshwater functions to occur deep under the ocean. 
The Potential Within Our Oceans 
As fish supplies are being depleted and underwater ecosystems are dying out, the ocean is 
beginning to become more of an international responsibility than a resource.  As stated in “The 
Struggle to Govern the Commons” it is quite possible that “the ‘tragedy of the commons’ [is] 
inevitable anywhere not owned privately” due to the tight restrictions on still decreasing 
resources that are required for effective governance (Dietz, 2003).  In order to stop the 
impending destruction of the commons we must begin generating a new resource from our 
oceans that will make commons preservation worthwhile. Using underwater desalination to 
 
THE POTENTIAL WITHIN OUR OCEANS           2
  
expand food and water sources, we can restore the ocean to its former grandiose as well as 
benefit California economically. 
Faults in Conventional Desalination 
Many drought ridden countries have implemented desalination to fill their water needs, 
but for California, which has the simple options of reducing usage and importing water from 
nearby more humid climates, desalination remains too expensive.   According to the San Diego 
County Water Authority, controlling the distribution of water within its boundaries, desalinated 
water from the recently built Carlsbad desalination plant costs from ​$2,131 to $2,367 per 
acre­foot, over twice as much as imported water (​Seawater desalination, ​2016).  Even the newest 
and most advanced methods for desalination remain much more expensive than importing water. 
A major reason for this high cost is the energy required to for the reverse osmosis process. 
Pressurizing water to extreme levels, the cost of energy accounts for forty­one percent of a 
typical desalination plant’s expenses says Lenntech, a water treatment company with experience 
in desalination (Desalination cost analysis, 2016).  With high recurring costs desalination can 
remain impractical even once initial costs have been covered, a main reason that the 1992 Santa 
Barbara plant shut down after less than a year of water production, according to the City of Santa 
Barbara (Desalination, 2016).  The conventional reverse osmosis method requires too much 
energy to ever become an economically sound alternative to imported water.  Head of UCLA 
Water Technology Research Center Yoram Cohen explains that while small improvements will 
be made to the reverse osmosis process the idea that there will be “a magic membrane that will 
reduce the cost of desalination to next to none is misleading” (Talbot 2016).  The cost of 
conventional desalination will continue to be much higher than other methods of acquiring water 
 
THE POTENTIAL WITHIN OUR OCEANS           3
  
and unless neighbouring states also reach California’s drought condition importation of water 
will remain the cheaper alternative.   
On top of the economic reasons that rebut the argument for conventional desalination the 
reverse osmosis process results in various environmental deficits.  In a 2013 report on the 
environmental disadvantages of desalination the Pacific Institute, a nonprofit intended to 
preserve natural waters through independent research, explains that reverse osmosis desalination, 
usually designed to produce about half as much fresh water as seawater pumped, is left with 
large amounts of byproduct (Cooley et. al., 2013).  This byproduct, called brine, can be up to 
twice the salinity of seawater and contains low levels of corroded metals and chemical additives 
used for membrane cleaning (Cooley et. al., 2013).  Distinctly different than seawater, brine is 
not suited for sea life until sufficiently dispersed.  Consequent of increased salinity and therefore 
a higher density brine does not disperse easily, creating plumage that “sea grasses [and other 
plant communities] are the most sensitive” to, says a California proposal for the management of 
brine discharges (Jenkins et. al., 2012).  Increased salinity and toxicity in brine is not diluted 
until doing notable damage to nearby plant communities.  Another environmental deficit of 
reverse osmosis desalination is the direct entrainment and impingement of marine organisms. 
Information gathered by the California Water Boards concludes that all microorganisms within 
seawater sent through the desalination process are killed and suction from seawater intakes can 
kill or injure organisms as large as sea turtles that are trapped against intake screens (Marcus et. 
al., 2015). Conventional desalination damages marine life on both ends and is more costly than 
importation of water, showing that the process of conventional reverse osmosis is not effective. 
In order to apply desalination to California’s drought and use the ocean to its maximum potential 
 
THE POTENTIAL WITHIN OUR OCEANS           4
  
a different process with reduced recurring energy costs and less environmental deficits must be 
used. 
Underwater Desalination 
Moving the reverse osmosis process deep into the ocean, proposed underwater 
desalination meets the criteria, having significantly reduced recurring costs when compared to 
conventional desalination, as well as all but eliminating impingement, entrainment, and brine 
production.  In a 2010 Econopure white paper, written by vice president of engineering Kurt 
Roth, the company, which focuses on finding energy efficient new methods for water filtration, 
introduces three key concepts that work in unison in order to reach these goals from natural 
functions within the ocean.  Proposing that “lower energy consumption is possible by using the 
natural hydrostatic pressure in the sea,” underwater desalination uses the ocean to its advantage 
(Roth, 2010).  Although fresh water must still be pumped to the surface, the primary concept 
behind underwater desalination cuts energy costs in half, conventional desalination requiring the 
pressurization of all feedwater, fifty percent of which will become brine. 
Using the unending water source supplied by natural water movement, underwater 
desalination is able to significantly reduce pressure requirements.  While conventional reverse 
osmosis attempts to produce as much water as possible from limited amounts of feedwater, 
underwater desalination can ignore higher pressure requirements and shorter membrane life 
required for higher yield percentages.  As gravity and ocean currents disperse brine before 
salinity is increased by more than a few percent, new water is brought in and the process can 
occur near the 22.4 atmosphere pressure requirement rather than the over double pressures used 
in conventional desalination (Roth, 2010).  Placing the underwater desalination system far 
 
THE POTENTIAL WITHIN OUR OCEANS           5
  
shallower and with less pressure, pumping up fresh water produced can cost approximately one 
half as much as pressurizing the same amount of feedwater for desalination.  By using the ocean 
as a direct salt water source underwater desalination can cut recurring energy costs and eliminate 
brine as a byproduct of desalination.   
   The third principle of underwater desalination, low fresh water production rate, 
coincides with the reduced pressure requirements previously stated.  Although reverse osmosis 
of salt water can occur a decreased pressures, the rate at which it does so decreases alongside it. 
Reduced flow rates and therefore reduced pressures, result in less fresh water produced, a 
seemingly even trade.  When reduced environmental impacts are considered reduced pressure 
requirements are the obvious choice over faster production.  Only removing product from the 
waterstream, and at a reduced rate, suction drawing in water and potential organisms is 
significantly reduced.  Larger organisms being capable of escaping the draw of underwater 
desalination and only microorganisms within product water being killed, all practically 
removable environmental deficits has been eliminated.  With recurring energy costs reduced by 
up to seventy five percent and environmental impacts all but erased, underwater desalination 
seems to be the perfect option for a long­term desalination investment.   
Limiting Factors 
Recognizing that all stated principles of underwater desalination came from the same, 
potentially biased source the facts presented in the Econopure report cannot be considered 
credible.  The reasoning behind underwater desalination, however, is unrelated to the credibility 
of the facts, and in the untested and new technology the three key principles, backed by well 
known facts, are as good as anything.   
 
THE POTENTIAL WITHIN OUR OCEANS           6
  
Installation costs are a major concern for underwater desalination.  With no predicted 
costs we can only assume that production and installation of an underwater desalination system 
would be extremely expensive.  Extended membrane lives, reduced energy costs for seawater, 
and potential environmental grants could hope to pay off initial investment, however, without 
any numbers, there is no way to be sure.   
Underwater maintenance, at an extreme depth could be just as costly as installation. 
Although theoretically ocean currents could clean out membranes with no maintenance costs, 
having no need for a self maintaining system for conventional desalination no studies have been 
conducted to determine whether such a feat is possible.  There are clearly many uncertainties 
within underwater desalination, but if applied correctly there are infinite possibilities brought 
about by natural occurrences within the ocean.   
More Than Just Water 
As the only recurring cost of underwater desalination is from pumping water to the 
surface, a system using desalinated water at the source could reduce the cost of underwater 
desalination to practically nothing.  While most light does not penetrate to the required depth for 
reverse osmosis to occur, there are a variety of ways that this technology could be used in this 
manner.  From an energy efficient way to provide fresh water for submarines, to a gateway 
towards theoretical underwater civilizations, I believe that the commons hold infinite 
possibilities in our visible future.  (1630).   
   
 
THE POTENTIAL WITHIN OUR OCEANS           7
  
References 
Cooley, H., Ajami, N., & Heberger, M. (2013, December). Key issues in seawater desalination in 
California: Marine impacts. Retrieved April 17, 2016.  
Desalination. (n.d.). Retrieved April 18, 2016, from http://www.santabarbaraca.gov. 
Dietz, T., Ostrom, E., & Stern, P. C. (2003, December 12). The struggle to govern the commons. 
Science​, ​Vol. 302​(No 5652), 1907­1912.  
Jenkins, S., Paduan, J., Roberts, P., Schlenk, D., & Weis, J. (2012, March). Management of brine 
discharges to coastal waters recommendations of a science advisory panel. Retrieved 
April 17, 2016.  
Marcus, F., Spivy­Weber, F., Doduc, T. M., Moore, S., & D'Adamo, D. (2015, May 6). 
Amendment to the water quality control plan for ocean waters of California. Retrieved 
April 17, 2016. 
Reverse osmosis desalination costs analysis. (n.d.). Retrieved April 17, 2016, from 
http://www.lenntech.com. 
 Roth, K. (2010, May 14). Depth exposed membrane for water extraction for seawater 
desalination. Retrieved April 18, 2016.  
Seawater desalination. (n.d.). Retrieved April 17, 2016, from www.sdcwa.com. 
Talbot, D. (2014, December 16). Desalination out of desperation. Retrieved April 17, 2016. 

More Related Content

What's hot

Environment and seawater desalination
Environment and seawater desalinationEnvironment and seawater desalination
Environment and seawater desalinationAmpac USA
 
IEEE SusTech Global Future of Water Presentation 11/14/17
IEEE SusTech Global Future of Water Presentation 11/14/17IEEE SusTech Global Future of Water Presentation 11/14/17
IEEE SusTech Global Future of Water Presentation 11/14/17Mark Goldstein
 
Save water
Save waterSave water
Save waterhks310
 
Availability of water resources
Availability of water resourcesAvailability of water resources
Availability of water resourcesChaitanya Kumar
 
Water management and
Water management andWater management and
Water management andJaxy Peilun
 
Water resource
Water resource Water resource
Water resource pemzam14
 
Article_RMN_Offshore Aquifers_2015
Article_RMN_Offshore Aquifers_2015Article_RMN_Offshore Aquifers_2015
Article_RMN_Offshore Aquifers_2015Renee Martin-Nagle
 
Water distribution
Water distributionWater distribution
Water distributionRileyAntler
 
Water, source of conflict ?
Water, source of conflict ?Water, source of conflict ?
Water, source of conflict ?salmanmaslam
 
Water resources
Water resourcesWater resources
Water resourcesaloksir
 
Water resources presentation part 1 sebastian ospina-5c
Water resources presentation part 1 sebastian ospina-5cWater resources presentation part 1 sebastian ospina-5c
Water resources presentation part 1 sebastian ospina-5csebas3112
 

What's hot (20)

Environment and seawater desalination
Environment and seawater desalinationEnvironment and seawater desalination
Environment and seawater desalination
 
Natural resources
Natural resourcesNatural resources
Natural resources
 
IEEE SusTech Global Future of Water Presentation 11/14/17
IEEE SusTech Global Future of Water Presentation 11/14/17IEEE SusTech Global Future of Water Presentation 11/14/17
IEEE SusTech Global Future of Water Presentation 11/14/17
 
Save water
Save waterSave water
Save water
 
Availability of water resources
Availability of water resourcesAvailability of water resources
Availability of water resources
 
Water management and
Water management andWater management and
Water management and
 
Water resource
Water resource Water resource
Water resource
 
Global water resources and use
Global water resources and useGlobal water resources and use
Global water resources and use
 
Desalination
DesalinationDesalination
Desalination
 
Article_RMN_Offshore Aquifers_2015
Article_RMN_Offshore Aquifers_2015Article_RMN_Offshore Aquifers_2015
Article_RMN_Offshore Aquifers_2015
 
Water distribution
Water distributionWater distribution
Water distribution
 
Water, source of conflict ?
Water, source of conflict ?Water, source of conflict ?
Water, source of conflict ?
 
Diversiti edited
Diversiti editedDiversiti edited
Diversiti edited
 
Water resources
Water resourcesWater resources
Water resources
 
Fresh water
Fresh waterFresh water
Fresh water
 
IISC 1
IISC 1IISC 1
IISC 1
 
Water resources presentation part 1 sebastian ospina-5c
Water resources presentation part 1 sebastian ospina-5cWater resources presentation part 1 sebastian ospina-5c
Water resources presentation part 1 sebastian ospina-5c
 
Water resources
Water resourcesWater resources
Water resources
 
Water sources for environmental studies
Water sources for environmental studiesWater sources for environmental studies
Water sources for environmental studies
 
River ecology
River ecologyRiver ecology
River ecology
 

Similar to PotentialWithinOurOceans

The Psychology of Happiness.pdf
The Psychology of Happiness.pdfThe Psychology of Happiness.pdf
The Psychology of Happiness.pdfdigikeysonline
 
Diversifying California's Water Supply By Vardan Kajberuni
Diversifying California's Water Supply By Vardan KajberuniDiversifying California's Water Supply By Vardan Kajberuni
Diversifying California's Water Supply By Vardan KajberuniVardan Kajberuni
 
155TermProject
155TermProject155TermProject
155TermProjectKevin Qi
 
Water resource use and consiousness
Water resource use and consiousnessWater resource use and consiousness
Water resource use and consiousnessAkil Shaikh
 
Sea changesCarbon dioxide is making the oceans more acidic.docx
Sea changesCarbon dioxide is making the oceans more acidic.docxSea changesCarbon dioxide is making the oceans more acidic.docx
Sea changesCarbon dioxide is making the oceans more acidic.docxbagotjesusa
 
ocean role in climate change
ocean role in climate changeocean role in climate change
ocean role in climate changehome
 
Kathy glass ocean climate change
Kathy glass ocean climate changeKathy glass ocean climate change
Kathy glass ocean climate changeC Spinks
 
Coastal Water Factory
Coastal Water FactoryCoastal Water Factory
Coastal Water FactoryAlys Spillman
 
Detailed research on design of aquarium and case studies
Detailed research on design of aquarium and case studiesDetailed research on design of aquarium and case studies
Detailed research on design of aquarium and case studiesSOUNDARYACHOTHE
 

Similar to PotentialWithinOurOceans (12)

Project WAPS4
Project WAPS4Project WAPS4
Project WAPS4
 
The Psychology of Happiness.pdf
The Psychology of Happiness.pdfThe Psychology of Happiness.pdf
The Psychology of Happiness.pdf
 
Diversifying California's Water Supply By Vardan Kajberuni
Diversifying California's Water Supply By Vardan KajberuniDiversifying California's Water Supply By Vardan Kajberuni
Diversifying California's Water Supply By Vardan Kajberuni
 
155TermProject
155TermProject155TermProject
155TermProject
 
Water resource use and consiousness
Water resource use and consiousnessWater resource use and consiousness
Water resource use and consiousness
 
Sea changesCarbon dioxide is making the oceans more acidic.docx
Sea changesCarbon dioxide is making the oceans more acidic.docxSea changesCarbon dioxide is making the oceans more acidic.docx
Sea changesCarbon dioxide is making the oceans more acidic.docx
 
Success Stories for a Changing Ocean
Success Stories for a Changing OceanSuccess Stories for a Changing Ocean
Success Stories for a Changing Ocean
 
Oceanic Blue Carbon
Oceanic Blue CarbonOceanic Blue Carbon
Oceanic Blue Carbon
 
ocean role in climate change
ocean role in climate changeocean role in climate change
ocean role in climate change
 
Kathy glass ocean climate change
Kathy glass ocean climate changeKathy glass ocean climate change
Kathy glass ocean climate change
 
Coastal Water Factory
Coastal Water FactoryCoastal Water Factory
Coastal Water Factory
 
Detailed research on design of aquarium and case studies
Detailed research on design of aquarium and case studiesDetailed research on design of aquarium and case studies
Detailed research on design of aquarium and case studies
 

PotentialWithinOurOceans