Submitted by:
Litty Cherian
class:1BEd
Option: Mathematics
Roll No:22
Mangalam College of Education
Submitted to:
Mrs.Sijji Jose
Dept. Educational technology
DEFINITIONS
Term
A number or a product of a number and variables raised to a power.
eg : 3, 5𝑥2, -2𝑥, 9𝑥2y.
Coefficient
The numerical factor of each term.
eg :5𝑥2
, -2𝑥 ,9𝑥2
𝑦.
Constant
The term without a variable.
eg : 3, -6, 5, 32.
Polynomial
A finite sum of terms of the form axn
, where a is a real number and n is a whole number.
eg : -15x2
+ 2x2
.
Monomial
A polynomial with exactly one term.
eg: 𝑎𝑥2
, 2𝑥4
, -9m, 9𝑥2
y.
Binomial
A polynomial with exactly two term.
eg: 𝑥-8, -2𝑥 + 9𝑥2
y.
Trinomial
A polynomial with exactly three term.
eg: 𝑥2 + 𝑥 − 8, 5𝑥2 + 2𝑥 − 7.
The Degree of a Term with one variable is the exponent on the variable.
The Degree of a Term with more than one variable is the sum of the exponents
on the variables.
The Degree of a Polynomial is the greatest degree of the terms of the polynomial
variables.
2
5x  2,
9m  1
2
7x y  3,
5 4
9mn z 10
3
2 3 7x x  3,
4 2 2 3
2 5 6x y x y x   6
Multiplication
Multiplying Monomials by Monomials
Examples:
10 9x x  2
90x
 3 7
8 11x x  10
88x
Multiplying Monomials by Polynomials
 2
4 4 3x x x   3
4x 2
16x 12x
  3 2
5 3 2x x x   
5
15x 4
5x 3
10x
Examples:
Multiplying Two Polynomials
Examples:
1.
2.
  2
5 10 3x x x    3
x 2
10x 3x 2
5x 50x 15
3
x=
2
15x 47x
  2
4 5 3 4x x x    3
12x 2
16x 2
3x 4x 15x 20
= 3
12x 2
13x 11x 20
Multiplying Polynomials
Special Products
Multiplying Two Binomials using FOIL
First terms Outer terms Inner terms Last terms
  3 4x x   2
x 4x 3x 12
2
x 7x 12
  7 4x x   4x 28
3x
=
2
x 7x
=
2
x 28
Squaring Binomials
 
 
2 2 2
2 2 2
2
2
a b a ab b
a b a ab b
   
   
 
2
4 5x   2
16x  2 20x  25  2
16 40 25x x 
Example
1.
Multiplying the Sum and Difference of Two Binomials
   2 2
a b a b a b   
Examples
1.
2.
  9 9x x   9x2
x 9x 81  2
81x 
   88 xx 642
x
Dividing by a Monomial
where 0
a b a b
c
c c c

  
8 6 4
3
21 9 12
3
x x x
x
 

8
3
21
3
x
x
6
3
9
3
x
x

4
3
12
3
x
x
 
5
7x 3
3x 4x
Examples:
1.
polynomials

polynomials

  • 1.
    Submitted by: Litty Cherian class:1BEd Option:Mathematics Roll No:22 Mangalam College of Education Submitted to: Mrs.Sijji Jose Dept. Educational technology
  • 2.
    DEFINITIONS Term A number ora product of a number and variables raised to a power. eg : 3, 5𝑥2, -2𝑥, 9𝑥2y. Coefficient The numerical factor of each term. eg :5𝑥2 , -2𝑥 ,9𝑥2 𝑦. Constant The term without a variable. eg : 3, -6, 5, 32. Polynomial A finite sum of terms of the form axn , where a is a real number and n is a whole number. eg : -15x2 + 2x2 .
  • 3.
    Monomial A polynomial withexactly one term. eg: 𝑎𝑥2 , 2𝑥4 , -9m, 9𝑥2 y. Binomial A polynomial with exactly two term. eg: 𝑥-8, -2𝑥 + 9𝑥2 y. Trinomial A polynomial with exactly three term. eg: 𝑥2 + 𝑥 − 8, 5𝑥2 + 2𝑥 − 7.
  • 4.
    The Degree ofa Term with one variable is the exponent on the variable. The Degree of a Term with more than one variable is the sum of the exponents on the variables. The Degree of a Polynomial is the greatest degree of the terms of the polynomial variables. 2 5x  2, 9m  1 2 7x y  3, 5 4 9mn z 10 3 2 3 7x x  3, 4 2 2 3 2 5 6x y x y x   6
  • 5.
  • 6.
    Multiplying Monomials byMonomials Examples: 10 9x x  2 90x  3 7 8 11x x  10 88x Multiplying Monomials by Polynomials  2 4 4 3x x x   3 4x 2 16x 12x   3 2 5 3 2x x x    5 15x 4 5x 3 10x Examples:
  • 7.
    Multiplying Two Polynomials Examples: 1. 2.  2 5 10 3x x x    3 x 2 10x 3x 2 5x 50x 15 3 x= 2 15x 47x   2 4 5 3 4x x x    3 12x 2 16x 2 3x 4x 15x 20 = 3 12x 2 13x 11x 20
  • 8.
  • 9.
    Multiplying Two Binomialsusing FOIL First terms Outer terms Inner terms Last terms   3 4x x   2 x 4x 3x 12 2 x 7x 12   7 4x x   4x 28 3x = 2 x 7x = 2 x 28
  • 10.
    Squaring Binomials    2 2 2 2 2 2 2 2 a b a ab b a b a ab b           2 4 5x   2 16x  2 20x  25  2 16 40 25x x  Example 1.
  • 11.
    Multiplying the Sumand Difference of Two Binomials    2 2 a b a b a b    Examples 1. 2.   9 9x x   9x2 x 9x 81  2 81x     88 xx 642 x
  • 12.
    Dividing by aMonomial where 0 a b a b c c c c     8 6 4 3 21 9 12 3 x x x x    8 3 21 3 x x 6 3 9 3 x x  4 3 12 3 x x   5 7x 3 3x 4x Examples: 1.