SlideShare a Scribd company logo
1 of 115
 
[object Object],[object Object],[object Object],[object Object]
Open Shortest Path First (OSPF) Section 1 — OSPF Overview
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Feature Updates Update type Transport Authentication Metric Metric type Topology size Convergence RIPv2 Periodic Broadcast/Multicast UDP Simple and MD5 Hops Distance vector IS-IS Incremental L2 Multicast Layer 2 Simple and MD5 Cost Link-state OSPF Incremental L3 Multicast IP Simple and MD5 Cost Link-state Small/Medium Slow Fast Large Fast Large
OSPF — Path Determination ,[object Object],[object Object],RTR-A RTR-C RTR-B Cost 0 Cost 10 Cost 125 Cost 125 Cost 135 RTR-A 10.0.0.0 – Cost 260 via RTR C *10.0.0.0 – Cost 135 via RTR B * = Best path 10.0.0.0
Calculating Link Cost ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Configuration Basics ,[object Object],[object Object],[object Object]
Open Shortest Path First (OSPF) Section 2 — OSPF Packet Types
Section Objectives ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF — Multicast Addressing ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF — Generic Packet ,[object Object],[object Object],Alcatel-Lucent Interior Routing Protocols and High Availability IP header protocol ID 89 = OSPF Link header IP header OSPF packet types Link trailer
OSPF — Packet Header ,[object Object],[object Object],Version  number Type Packet  length Router ID Area ID Check- sum Authen-tication  type Authen-tication Data
OPSF — Packet Types ,[object Object],[object Object],[object Object],[object Object],[object Object],Alcatel-Lucent Interior Routing Protocols and High Availability
OSPF — Authentication ,[object Object],[object Object],[object Object],[object Object]
OSPF — Hello Packet Overview Hello * These aspects of the hello packet must match for all neighbor routers on the segment. ,[object Object],Hello packet information Router ID  Area ID* Authentication and Password* Hello and dead intervals * Stub area flag* Priority value DR IP address BDR IP address Neighbors
OSPF — Hello Packet Format Checksum Router ID Area ID AuType Version# 1 Packet length Authentication Authentication Network mask Hello interval Options Rtr Pri Router dead interval Designated router Backup designated router Neighbor 0 31
OSPF — Adjacencies ,[object Object],1.1.1.1 1.1.1.2 (1) (2) (3) ,[object Object],[object Object],(2)  Hello, RID= 1.1.1.2 I see neighbor 1.1.1.1 2-Way Hello (4)  Hello, RID=1.1.1.1 I see neighbor 1.1.1.2
OSPF — Database Descriptor Packet Format Checksum Router ID Area ID AuType Version# 2 Packet length Authentication Authentication Interface MTU Options DD sequence number LSA header 0 0 0 0 0 M MS 0 31
OSPF — Adjacencies (continued) ,[object Object],1.1.1.1 1.1.1.2 1/1 1/1 (1) (2) (3) (4) (1)  DBD: RID = 1.1.1.1  (2)  DBD: RID = 1.1.1.2 Exchange Exstart (3)  DBD: Summary of all networks known (4)  DBD: Summary of all networks known (Higher RID begins)
OSPF — Link-State Request Packet Format Checksum Router ID Area ID AuType Version# 3 Packet length Authentication Authentication LS type Advertising router Link-state ID 0 31
OSPF — Link-State Update Packet Format Checksum Router ID Area ID AuType Version# 4 Packet length Authentication Authentication No. of Advertisements List of LSAs 0 31
OSPF — LSR and LSU Exchange ,[object Object],1.1.1.1 1.1.1.2 E0 E0 (1) (2) (3) (4) (1)  LSR: Send information for the Following networks… (2)  LSR: Send information for the  following networks…  (3)  LSU: Here is what you requested (4)  LSU: Here is what you requested
OSPF — Completing the Exchange of Information ,[object Object],1.1.1.1 1.1.1.2 E0 E0 (1) (2) (3) (4) (1)  ACK: Thanks for the information (2)  ACK: Thanks for the information (3)  Hello (4)  Hello Full adjacency
[object Object],[object Object],[object Object],[object Object],OSPF — Point-to-Point Segments RTR - A RTR - C RTR - B Network 2.2.2.0/24
OSPF — LAN Communication ,[object Object],C 1.1.1.1 D 1.1.1.2 E 1.1.1.3 A 1.1.1.5 B 1.1.1.4 ,[object Object],[object Object],[object Object],RTR-A Has the highest RID, so it will be the DR RTR-B Has the second highest RID, so it will be the BDR
OSPF — Exchanging Updates in a LAN ,[object Object],RTR-C 1.1.1.1 D 1.1.1.2 E 1.1.1.3 RTR-A (DR) 1.1.1.5 RTR-B (BDR) 1.1.1.4 ,[object Object],[object Object],[object Object],RTR-C sends update to All DRs using IP address 224.0.0.6 RTR-A sends update to All OSPF routers using  IP address 224.0.0.5
OSPF — Adding a Router to a LAN DR BDR New router *  The new router uses IP address 224.0.0.5 to send a hello. All routers will see the hello. Hello, RID = 1.1.1.3 I see no others RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
OSPF – Learning Which Is the DR/BDR in a LAN DR BDR New router *  The new router waits to see if any other router speaks OSPF. If so, it checks to see if a DR and BDR are present. Hello, RID = 1.1.1.2 I see 1.1.1.1 and 1.1.1.3 RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
OSPF — Advertising a New Network DR BDR New router *  The new router sends LSAs about networks to the DR and BDR via the 224.0.0.6 (all DRs) multicast address. LSA 224.0.0.6 RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
OSPF — Updating Peers about a Network Change DR BDR LSA 224.0.0.5 *  The DR sends an update to all routers about the new network learned. It waits for an ACK from all routers. RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2 New router
OSPF — Network Change Flow DR BDR *  The DR sends an update to all routers about the network change. It waits for an ACK from all routers. LSA 1 2 3 LSA 224.0.0.6 LSA 224.0.0.5
Open Shortest Path First (OSPF) Section 3 — Adjacency Case Study
Adjacency between rtr4 and rtr5 rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5
rtr5 Neighbor Discovery OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : f198  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : HELLO  Packet Length  : 44  Network Mask  : 255.255.255.252  Hello Interval  : 10  Options  : 02  Rtr Priority  : 1  Dead Interval  : 40  Designated Router : 0.0.0.0  Backup Router  : 0.0.0.0  " rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 1 1
Adjacency — 2-Way State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : e98c  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : HELLO  Packet Length  : 48  Network Mask  : 255.255.255.252  Hello Interval  : 10  Options  : 02  Rtr Priority  : 1  Dead Interval  : 40  Designated Router : 0.0.0.0  Backup Router  : 0.0.0.0  Neighbor-1  : 4.4.4.4  " 3 OSPF Version  : 2  Router Id  : 4.4.4.4  Area Id  : 0.0.0.0  Checksum  : e98c  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : HELLO  Packet Length  : 48  Network Mask  : 255.255.255.252  Hello Interval  : 10  Options  : 02  Rtr Priority  : 1  Dead Interval  : 40  Designated Router : 0.0.0.0  Backup Router  : 0.0.0.0  Neighbor-1  : 5.5.5.5  " 2 2 3
DR Election rtr5 5.5.5.5 4.4.4.4 10.10.0.0/30 .1 .2 10.10.1.4/30 .5 1 2 OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : d575  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : HELLO  Packet Length  : 48  Network Mask  : 255.255.255.252  Hello Interval  : 10  Options  : 02  Rtr Priority  : 1  Dead Interval  : 40  Designated Router : 10.10.0.1  Backup Router  : 10.10.0.2  Neighbor-1  : 4.4.4.4  " OSPF Version  : 2  Router Id  : 4.4.4.4  Area Id  : 0.0.0.0  Checksum  : d576  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : HELLO  Packet Length  : 48  Network Mask  : 255.255.255.252  Hello Interval  : 10  Options  : 02  Rtr Priority  : 1  Dead Interval  : 40  Designated Router : 10.10.0.1  Backup Router  : 10.10.0.1  Neighbor-1  : 5.5.5.5  " 1 2 rtr4
Adjacency — Exstart State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 1 OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : 7c0e  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : DB_DESC  Packet Length  : 32  Interface MTU  : 1500  Options  : 000042  Flags  : 7  Sequence Num  : 77793  " OSPF Version  : 2  Router Id  : 4.4.4.4  Area Id  : 0.0.0.0  Checksum  : 865e  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : DB_DESC  Packet Length  : 32  Interface MTU  : 1500  Options  : 000042  Flags  : 7  Sequence Num  : 75667  " 1 2 2
Adjacency — Exchange State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version  : 2  Router Id  : 4.4.4.4  Area Id  : 0.0.0.0  Checksum  : bfff  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : DB_DESC  Packet Length  : 192  Interface MTU  : 1500  Options  : 000042  Flags  : 0  Sequence Num  : 77793  Link ID  : 4.4.4.4  LSA Type  : RTR  Area ID  : 0.0.0.0  Router ID : 4.4.4.4  Seq. Num  : 8000003f  Age  : 0  Length  : 72  Checksum  : 4c64  Option Bits Set:  E 02  ...
Adjacency — Exchange State (continued) rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : 93f9  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : DB_DESC  Packet Length  : 52  Interface MTU  : 1500  Options  : 000042  Flags  : 1  Sequence Num  : 77794  Link ID  : 5.5.5.5  LSA Type  : RTR  Area ID  : 0.0.0.0  Router ID : 5.5.5.5  Seq. Num  : 80000003  Age  : 8  Length  : 48  Checksum  : 51b5  Option Bits Set:  E 02   ...
Adjacency — Exchange State (continued) OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : 7af8  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : LS_REQ  Packet Length  : 120  LS Type  : 1  Link State Id  : 4.4.4.4  Advt Router  : 4.4.4.4  ... rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5
Adjacency — Exchange State (continued) rtr5 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version  : 2  Router Id  : 4.4.4.4  Area Id  : 0.0.0.0  Checksum  : 1e65  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : LS_UPD  Packet Length  : 100  Num of LSAs  : 1  Link ID  : 4.4.4.4  LSA Type  : RTR  Area ID  : 0.0.0.0  Router ID : 4.4.4.4  Seq. Num  : 80000040  Age  : 1  Length  : 72  Checksum  : f99c  Option Bits Set:  E 02  # Links  : 4  Flags:  1  Link Type  : P2P Link  Nbr Rtr ID : 2.2.2.2  I/F Addr  : 10.10.1.1  Metric-0  : 1000  2  Link Type  : Stub Net  Network  : 10.10.1.0  Mask  : 255.255.255.252  Metric-0  : 1000  3  Link Type  : Stub Net  Network  : 4.4.4.4  Mask  : 255.255.255.255  Metric-0  : 0  4  Link Type  : Transit  DR IP Addr : 10.10.0.1  I/F Addr  : 10.10.0.2  Metric-0  : 1000
Adjacency — Full Adjacency State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version  : 2  Router Id  : 5.5.5.5  Area Id  : 0.0.0.0  Checksum  : 678d  Authentication  : Null  Authentication Key: 00 00 00 00 00 00 00 00  Packet Type  : LS_ACK  Packet Length  : 44  Link ID  : 4.4.4.4  LSA Type  : RTR  Area ID  : 0.0.0.0  Router ID : 4.4.4.4  Seq. Num  : 80000040  Age  : 1  Length  : 72  Checksum  : f99c  Option Bits Set:  E 02  ...
Open Shortest Path First (OSPF) Section 4 — OSPF Areas, Networks, and LSAs
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF — Area Overview Area 0 Area 1 Area 2 Autonomous System ,[object Object],[object Object],[object Object],RTR-A RTR-B RTR-C RTR-D RTR-E
OSPF — Types of Routers Area 0 Area 1 Area 2 Autonomous System ,[object Object],[object Object],[object Object],RTR-A RTR-B RTR-C RTR-D RTR-E
OSPF — Link-State Advertisement Types Link-state type 1 2 3 4 5 7 8 9, 10, 11 OSPF function Router link states Network link states Summary link states ASBR link state External link advertisement NSSA external link state External attributes for BGP Opaque LSA
OSPF — Type 1 (Router) LSA ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF – Type 2 (Network) LSA ,[object Object],[object Object],[object Object],[object Object],DR
[object Object],[object Object],[object Object],[object Object],OSPF – Type 3 (Summary) LSA Area 1 Area 0
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF – Stub and Stub, No Summary   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Area 0 Area 2 Stub No type 3, 4, or 5 LSA; default route instead No type 5 LSA5; default route instead Area 1 Stub, no summaries
OSPF — LSA Sequence Numbers ,[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF — Packet Processing ,[object Object],Is entry in  LSDB? Sequence No. same? End No No No Yes Yes Yes LSU/LSA Ignore Add to LSDB Send ACK Flood LSA Run SPF Is sequence  number higher than in LSDB? Send LSU back  with newer  information
[object Object],[object Object],[object Object],[object Object],OSPF — Defining Virtual Links Area 1 Area 0 Area 4 RID 1.1.1.1 RID 2.2.2.2 Virtual link
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Open Shortest Path First (OSPF) Section 5 — OSPF Implementation
We can findout what is wrong from trace level 6 3 output : ers8600 :5/trace# level 6 3 ers8600 :5/trace# clear ers8600 :5/trace# info
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
verify_ospf_packet:  area mismatch other_areaid =0.0.0.1 my_areaid=0.0.0.0 ospf_recv: verify_ospf_packet  returned error src=47.163.245.1 pkt type=1 ospfProcHello: received on ipa=47.163.245.11 src_ipa=47.163.245.1 ospfProcHello:  hello-interval mismatch  ipa=47.163.245.11 other_int=5,  my_int=10 ospfProcHello: received on ipa=47.163.245.11 src_ipa=47.163.245.1 ospfProcHello:  dead-router mismatch  ipa=47.163.245.11 , other_int=30, my_int=40 verify_ospf_packet:  authType mismatch   ipa= 47.163.245.11 ospf_recv: verify_ospf_packet returned error src=47.163.245.1 pkt type=1 Configuration problems detected in the Log
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Passport-8610:5# show ip ospf nei  ================================================================================ Ospf Neighbors ================================================================================ INTERFACE  NBRROUTERID  NBRIPADDR  PRIO_STATE  RTXQLEN PERMANENCE -------------------------------------------------------------------------------- 47.163.245.11  139.177.189.1  47.163.245.1  1  Full  0  Dynamic  47.163.245.11  47.163.245.97  47.163.245.6  1  Full  0  Dynamic  Done Passport-8610:5# show ip ospf area ================================================================================ Ospf Area ================================================================================ AREA_ID  STUB_AREA  NSSA  IMPORT_SUM ACTIVE_IFCNT  -------------------------------------------------------------------------------- 0.0.0.0  false  false  true  2  0.0.0.1  true  false  true  0  STUB_COST SPF_RUNS  BDR_RTR_CNT ASBDR_RTR_CNT LSA_CNT  LSACK_SUM  -------------------------------------------------------------------------------- 0  12  2  2  5  118184  1  8  0  0  0  0
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Passport-8610:5# show ip ospf lsdb lsatype 1 detail Router Link LSA : Area  : 0.0.0.0 (0x0) Age  : 1011 Opt  : true (External Routing Capability) Type  : 1 LsId  : 45.175.216.0 (0x2dafd800) Rtr  : 45.175.216.0 Seq  : -2147483640 (0x80000008) Csum  : 47803 (0xbabb) Len  : 48 ABR  : true ASBR  : true Vlnk  : false (endpoint of active Vlink) #Lnks  :  1 [1] Id  : 139.177.100.0 (0x8bb16400) Data  : 255.255.255.0 (0xffffff00) Type  : (conn-to-stub-net)(Id=Subnet-Prefix, Data=Prefix-Len) #Tos  : 0  Met  : 10
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Diagnosing OSPF neighbor state problems ,[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Important Points at OSPF ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
Before the summarization ip routes for 192.168.4.0, 192.168.5.0, 192.168.6.0 are seen as separately as below: 5510-24T#show ip route =============================================================================== Ip Route =============================================================================== DST MASK NEXT COST VLAN PORT PROT TYPE PRF ------------------------------------------------------------------------------- 0.0.0.0 0.0.0.0 47.168.65.1 10 1 T#1 S IB 5 10.10.10.0 255.255.255.0 10.10.10.53 1 10 ---- C DB 0 47.168.65.0 255.255.255.0 47.168.65.53 1 1 ---- C DB 0 192.168.4.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 192.168.5.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 192.168.6.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 Total Routes: 6 ------------------------------------------------------------------------------- TYPE Legend: I=Indirect Route, D=Direct Route, A=Alternative Route, B=Best Route, E=Ecmp Rou te, U=Unresolved Route, N=Not in HW  
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
OSPF MTU Size Problem Network AB Down Two way received Init Down Init Hello received Two way received Hello received ExStart ExStart Negotioation done Negotioation done Exchange Exchange Router A Router B Neighbor State Neighbor State (Packet too large, dropped) Sequence number  mismatch ExStart ExStart Sequence number mismatch (Timeout expired) Hello (DR = B, seen = 0) Hello(DR = 0, seen = 0) Hello (DR = B, seen = A) Hello(DR = B, seen = B) Database Descr. (Seq = Y , Init, Master) Database Descr. (Seq = X , Init, Master) DD (Seq = Y , More, Slave) DD (Seq = Y+1 , Master) Retransmitted DD (Seq = Y , More, Slave) Database Descr. (Seq = Z ,  Init , Master)
Global OSPF Parameters
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Open Shortest Path First (OSPF) Section 6 — OSPF Implementation Lab workout
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 nssa Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 Nssa impl. Summurized and injected to ospf
OSPF Implementation Nssa impl.
OSPF Implementation Nssa impl.
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 İmport no external Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 İmport no external impl. Summurized and injected to ospf
OSPF Implementations Import noexternal impl.
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 İmport no external Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 No area summary Import noexternal && no area summary impl. (Totally stubby area) Summurized and injected to ospf
OSPF Implementations Import noexternal && no area summary impl. (Totally stubby area)
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 -------------------Direct routes--------------------- 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Not so stubby area 2. Impl. Summurized and injected to ospf
 
 
QUESTIONS & COMMENTS
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations 192.168.4.x/24 192.168.5.x/24 192.168.6.x/24 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Area aggregation
 
ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations 192.168.4.x/24 192.168.5.x/24 192.168.6.x/24 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Area aggregation 10.10.19.x/24
 
[object Object]
Sources ,[object Object],[object Object],[object Object]

More Related Content

What's hot

What's hot (20)

Routing protocols
Routing protocolsRouting protocols
Routing protocols
 
OSPF Overview
OSPF OverviewOSPF Overview
OSPF Overview
 
IS-IS Protocol Introduction
IS-IS Protocol IntroductionIS-IS Protocol Introduction
IS-IS Protocol Introduction
 
Spanning tree protocol
Spanning tree protocolSpanning tree protocol
Spanning tree protocol
 
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
 
HSRP ccna
HSRP ccna HSRP ccna
HSRP ccna
 
MPLS - Multiprotocol Label Switching
MPLS - Multiprotocol Label SwitchingMPLS - Multiprotocol Label Switching
MPLS - Multiprotocol Label Switching
 
Routing protocols
Routing protocolsRouting protocols
Routing protocols
 
EIGRP Overview
EIGRP OverviewEIGRP Overview
EIGRP Overview
 
Open shortest path first (ospf)
Open shortest path first (ospf)Open shortest path first (ospf)
Open shortest path first (ospf)
 
Border Gateway Protocol (BGP)
Border Gateway Protocol (BGP)Border Gateway Protocol (BGP)
Border Gateway Protocol (BGP)
 
Border Gatway Protocol
Border Gatway ProtocolBorder Gatway Protocol
Border Gatway Protocol
 
Hot standby router protocol (hsrp) using
Hot standby router protocol (hsrp) usingHot standby router protocol (hsrp) using
Hot standby router protocol (hsrp) using
 
MPLS L3 VPN Tutorial, by Nurul Islam Roman [APNIC 38]
MPLS L3 VPN Tutorial, by Nurul Islam Roman [APNIC 38]MPLS L3 VPN Tutorial, by Nurul Islam Roman [APNIC 38]
MPLS L3 VPN Tutorial, by Nurul Islam Roman [APNIC 38]
 
OSPF
OSPF OSPF
OSPF
 
Bgp
BgpBgp
Bgp
 
03 ospf
03 ospf 03 ospf
03 ospf
 
MPLS Presentation
MPLS PresentationMPLS Presentation
MPLS Presentation
 
MPLS + BGP Presentation
MPLS + BGP PresentationMPLS + BGP Presentation
MPLS + BGP Presentation
 
VTP
VTPVTP
VTP
 

Viewers also liked

Anurag Arpan (PPT on AutoCAD )
Anurag Arpan (PPT on AutoCAD )Anurag Arpan (PPT on AutoCAD )
Anurag Arpan (PPT on AutoCAD )Anurag Arpan
 
AutoCAD 2014 Introduction
AutoCAD 2014 IntroductionAutoCAD 2014 Introduction
AutoCAD 2014 IntroductionTUOS-Sam
 
TCP/IP Network ppt
TCP/IP Network pptTCP/IP Network ppt
TCP/IP Network pptextraganesh
 
Chapter 08 - Single-Area OSPF
Chapter 08 - Single-Area OSPFChapter 08 - Single-Area OSPF
Chapter 08 - Single-Area OSPFYaser Rahmati
 
Case study: 3D modelling for 3D printing for designer makers and artists
Case study: 3D modelling for 3D printing for designer makers and artistsCase study: 3D modelling for 3D printing for designer makers and artists
Case study: 3D modelling for 3D printing for designer makers and artistsAnn Marie Shillito, FRSA
 
IETF remote participation via Meetecho @ WebRTC Meetup Stockholm
IETF remote participation via Meetecho @ WebRTC Meetup StockholmIETF remote participation via Meetecho @ WebRTC Meetup Stockholm
IETF remote participation via Meetecho @ WebRTC Meetup StockholmLorenzo Miniero
 
History of the internet.pptx done!
History of the internet.pptx done!History of the internet.pptx done!
History of the internet.pptx done!arivas2595
 
CCNAv5 - S2: Chapter 8 single area ospf
CCNAv5 - S2: Chapter 8 single area ospfCCNAv5 - S2: Chapter 8 single area ospf
CCNAv5 - S2: Chapter 8 single area ospfVuz Dở Hơi
 
Basics of computer & internet .pptx
Basics of computer & internet  .pptxBasics of computer & internet  .pptx
Basics of computer & internet .pptxSatish k
 
Carrier Ethernet - What and Why
Carrier Ethernet - What and Why  Carrier Ethernet - What and Why
Carrier Ethernet - What and Why Anuradha Udunuwara
 

Viewers also liked (20)

ARPANET
ARPANETARPANET
ARPANET
 
Protocole OSPF
Protocole OSPFProtocole OSPF
Protocole OSPF
 
Anurag Arpan (PPT on AutoCAD )
Anurag Arpan (PPT on AutoCAD )Anurag Arpan (PPT on AutoCAD )
Anurag Arpan (PPT on AutoCAD )
 
Arpanet/Internet
Arpanet/InternetArpanet/Internet
Arpanet/Internet
 
AutoCAD 2014 Introduction
AutoCAD 2014 IntroductionAutoCAD 2014 Introduction
AutoCAD 2014 Introduction
 
TCP/IP Network ppt
TCP/IP Network pptTCP/IP Network ppt
TCP/IP Network ppt
 
Chapter 08 - Single-Area OSPF
Chapter 08 - Single-Area OSPFChapter 08 - Single-Area OSPF
Chapter 08 - Single-Area OSPF
 
Ospf
OspfOspf
Ospf
 
Case study: 3D modelling for 3D printing for designer makers and artists
Case study: 3D modelling for 3D printing for designer makers and artistsCase study: 3D modelling for 3D printing for designer makers and artists
Case study: 3D modelling for 3D printing for designer makers and artists
 
Ospf
OspfOspf
Ospf
 
Bart
BartBart
Bart
 
IETF remote participation via Meetecho @ WebRTC Meetup Stockholm
IETF remote participation via Meetecho @ WebRTC Meetup StockholmIETF remote participation via Meetecho @ WebRTC Meetup Stockholm
IETF remote participation via Meetecho @ WebRTC Meetup Stockholm
 
History of the internet.pptx done!
History of the internet.pptx done!History of the internet.pptx done!
History of the internet.pptx done!
 
Arpanet
ArpanetArpanet
Arpanet
 
MWC 2017 synopsis
MWC 2017 synopsisMWC 2017 synopsis
MWC 2017 synopsis
 
Arpanet
ArpanetArpanet
Arpanet
 
CCNAv5 - S2: Chapter 8 single area ospf
CCNAv5 - S2: Chapter 8 single area ospfCCNAv5 - S2: Chapter 8 single area ospf
CCNAv5 - S2: Chapter 8 single area ospf
 
Autocad project ppt
Autocad project pptAutocad project ppt
Autocad project ppt
 
Basics of computer & internet .pptx
Basics of computer & internet  .pptxBasics of computer & internet  .pptx
Basics of computer & internet .pptx
 
Carrier Ethernet - What and Why
Carrier Ethernet - What and Why  Carrier Ethernet - What and Why
Carrier Ethernet - What and Why
 

Similar to Ospf

Dynamic Routing Protocol OSPF
Dynamic Routing Protocol OSPFDynamic Routing Protocol OSPF
Dynamic Routing Protocol OSPFAtakan ATAK
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPFarpit
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccnarobertoxe
 
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.ppt
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.pptMenggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.ppt
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.pptRochmadGSaputra
 
An intoroduction to the IS-IS IGP routing protocol
An intoroduction to the IS-IS IGP routing protocolAn intoroduction to the IS-IS IGP routing protocol
An intoroduction to the IS-IS IGP routing protocolIftach Ian Amit
 
Лекц 15
Лекц 15Лекц 15
Лекц 15Muuluu
 
CCNA pptCCNA ppt Day 6
CCNA pptCCNA ppt Day 6CCNA pptCCNA ppt Day 6
CCNA pptCCNA ppt Day 6VISHNU N
 
Ospf Last Modified Eng
Ospf  Last Modified EngOspf  Last Modified Eng
Ospf Last Modified EngAlp isik
 
Cisco discovery drs ent module 6 - v.4 in english.
Cisco discovery   drs ent module 6 - v.4 in english.Cisco discovery   drs ent module 6 - v.4 in english.
Cisco discovery drs ent module 6 - v.4 in english.igede tirtanata
 

Similar to Ospf (20)

Dynamic Routing Protocol OSPF
Dynamic Routing Protocol OSPFDynamic Routing Protocol OSPF
Dynamic Routing Protocol OSPF
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPF
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.ppt
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.pptMenggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.ppt
Menggali Lebih Dalam tentang OSPF: Protokol Routing Dinamis yang Efisien.ppt
 
ospf.ppt
ospf.pptospf.ppt
ospf.ppt
 
Cisco ospf
Cisco ospf Cisco ospf
Cisco ospf
 
Ospf
OspfOspf
Ospf
 
OSPF by Abdullah Mukhtar
OSPF by Abdullah MukhtarOSPF by Abdullah Mukhtar
OSPF by Abdullah Mukhtar
 
OSPF v3
OSPF v3OSPF v3
OSPF v3
 
Ospf
OspfOspf
Ospf
 
An intoroduction to the IS-IS IGP routing protocol
An intoroduction to the IS-IS IGP routing protocolAn intoroduction to the IS-IS IGP routing protocol
An intoroduction to the IS-IS IGP routing protocol
 
Лекц 15
Лекц 15Лекц 15
Лекц 15
 
Ospf
OspfOspf
Ospf
 
CCNA pptCCNA ppt Day 6
CCNA pptCCNA ppt Day 6CCNA pptCCNA ppt Day 6
CCNA pptCCNA ppt Day 6
 
Allwyn ospf ppt
Allwyn ospf pptAllwyn ospf ppt
Allwyn ospf ppt
 
Ospf Last Modified Eng
Ospf  Last Modified EngOspf  Last Modified Eng
Ospf Last Modified Eng
 
Icnd210 s04l01
Icnd210 s04l01Icnd210 s04l01
Icnd210 s04l01
 
CSC427_Week_11.pdf
CSC427_Week_11.pdfCSC427_Week_11.pdf
CSC427_Week_11.pdf
 
Cisco discovery drs ent module 6 - v.4 in english.
Cisco discovery   drs ent module 6 - v.4 in english.Cisco discovery   drs ent module 6 - v.4 in english.
Cisco discovery drs ent module 6 - v.4 in english.
 

More from Alp isik

Ine Multicast
Ine MulticastIne Multicast
Ine MulticastAlp isik
 
Mpls Presentation Ine
Mpls Presentation IneMpls Presentation Ine
Mpls Presentation IneAlp isik
 
Bgp For Presentation
Bgp For PresentationBgp For Presentation
Bgp For PresentationAlp isik
 
Ospf Cisco
Ospf CiscoOspf Cisco
Ospf CiscoAlp isik
 
Eigrp Basics
Eigrp BasicsEigrp Basics
Eigrp BasicsAlp isik
 

More from Alp isik (11)

Mpls TE
Mpls TEMpls TE
Mpls TE
 
Ipv6
Ipv6Ipv6
Ipv6
 
Ine Multicast
Ine MulticastIne Multicast
Ine Multicast
 
Mpls Presentation Ine
Mpls Presentation IneMpls Presentation Ine
Mpls Presentation Ine
 
Bgp For Presentation
Bgp For PresentationBgp For Presentation
Bgp For Presentation
 
Ospf Cisco
Ospf CiscoOspf Cisco
Ospf Cisco
 
Eigrp Basics
Eigrp BasicsEigrp Basics
Eigrp Basics
 
Alp Stp
Alp StpAlp Stp
Alp Stp
 
Ipv6 Alp
Ipv6 AlpIpv6 Alp
Ipv6 Alp
 
Vrrp Alp
Vrrp AlpVrrp Alp
Vrrp Alp
 
802.1x
802.1x802.1x
802.1x
 

Ospf

  • 1.  
  • 2.
  • 3. Open Shortest Path First (OSPF) Section 1 — OSPF Overview
  • 4.
  • 5.
  • 6. Feature Updates Update type Transport Authentication Metric Metric type Topology size Convergence RIPv2 Periodic Broadcast/Multicast UDP Simple and MD5 Hops Distance vector IS-IS Incremental L2 Multicast Layer 2 Simple and MD5 Cost Link-state OSPF Incremental L3 Multicast IP Simple and MD5 Cost Link-state Small/Medium Slow Fast Large Fast Large
  • 7.
  • 8.
  • 9.
  • 10. Open Shortest Path First (OSPF) Section 2 — OSPF Packet Types
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18. OSPF — Hello Packet Format Checksum Router ID Area ID AuType Version# 1 Packet length Authentication Authentication Network mask Hello interval Options Rtr Pri Router dead interval Designated router Backup designated router Neighbor 0 31
  • 19.
  • 20. OSPF — Database Descriptor Packet Format Checksum Router ID Area ID AuType Version# 2 Packet length Authentication Authentication Interface MTU Options DD sequence number LSA header 0 0 0 0 0 M MS 0 31
  • 21.
  • 22. OSPF — Link-State Request Packet Format Checksum Router ID Area ID AuType Version# 3 Packet length Authentication Authentication LS type Advertising router Link-state ID 0 31
  • 23. OSPF — Link-State Update Packet Format Checksum Router ID Area ID AuType Version# 4 Packet length Authentication Authentication No. of Advertisements List of LSAs 0 31
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29. OSPF — Adding a Router to a LAN DR BDR New router * The new router uses IP address 224.0.0.5 to send a hello. All routers will see the hello. Hello, RID = 1.1.1.3 I see no others RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
  • 30. OSPF – Learning Which Is the DR/BDR in a LAN DR BDR New router * The new router waits to see if any other router speaks OSPF. If so, it checks to see if a DR and BDR are present. Hello, RID = 1.1.1.2 I see 1.1.1.1 and 1.1.1.3 RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
  • 31. OSPF — Advertising a New Network DR BDR New router * The new router sends LSAs about networks to the DR and BDR via the 224.0.0.6 (all DRs) multicast address. LSA 224.0.0.6 RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2
  • 32. OSPF — Updating Peers about a Network Change DR BDR LSA 224.0.0.5 * The DR sends an update to all routers about the new network learned. It waits for an ACK from all routers. RID – 1.1.1.3 RID – 1.1.1.1 RID – 1.1.1.2 New router
  • 33. OSPF — Network Change Flow DR BDR * The DR sends an update to all routers about the network change. It waits for an ACK from all routers. LSA 1 2 3 LSA 224.0.0.6 LSA 224.0.0.5
  • 34. Open Shortest Path First (OSPF) Section 3 — Adjacency Case Study
  • 35. Adjacency between rtr4 and rtr5 rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5
  • 36. rtr5 Neighbor Discovery OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : f198 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : HELLO Packet Length : 44 Network Mask : 255.255.255.252 Hello Interval : 10 Options : 02 Rtr Priority : 1 Dead Interval : 40 Designated Router : 0.0.0.0 Backup Router : 0.0.0.0 " rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 1 1
  • 37. Adjacency — 2-Way State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : e98c Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : HELLO Packet Length : 48 Network Mask : 255.255.255.252 Hello Interval : 10 Options : 02 Rtr Priority : 1 Dead Interval : 40 Designated Router : 0.0.0.0 Backup Router : 0.0.0.0 Neighbor-1 : 4.4.4.4 " 3 OSPF Version : 2 Router Id : 4.4.4.4 Area Id : 0.0.0.0 Checksum : e98c Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : HELLO Packet Length : 48 Network Mask : 255.255.255.252 Hello Interval : 10 Options : 02 Rtr Priority : 1 Dead Interval : 40 Designated Router : 0.0.0.0 Backup Router : 0.0.0.0 Neighbor-1 : 5.5.5.5 " 2 2 3
  • 38. DR Election rtr5 5.5.5.5 4.4.4.4 10.10.0.0/30 .1 .2 10.10.1.4/30 .5 1 2 OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : d575 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : HELLO Packet Length : 48 Network Mask : 255.255.255.252 Hello Interval : 10 Options : 02 Rtr Priority : 1 Dead Interval : 40 Designated Router : 10.10.0.1 Backup Router : 10.10.0.2 Neighbor-1 : 4.4.4.4 " OSPF Version : 2 Router Id : 4.4.4.4 Area Id : 0.0.0.0 Checksum : d576 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : HELLO Packet Length : 48 Network Mask : 255.255.255.252 Hello Interval : 10 Options : 02 Rtr Priority : 1 Dead Interval : 40 Designated Router : 10.10.0.1 Backup Router : 10.10.0.1 Neighbor-1 : 5.5.5.5 " 1 2 rtr4
  • 39. Adjacency — Exstart State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 1 OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : 7c0e Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : DB_DESC Packet Length : 32 Interface MTU : 1500 Options : 000042 Flags : 7 Sequence Num : 77793 " OSPF Version : 2 Router Id : 4.4.4.4 Area Id : 0.0.0.0 Checksum : 865e Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : DB_DESC Packet Length : 32 Interface MTU : 1500 Options : 000042 Flags : 7 Sequence Num : 75667 " 1 2 2
  • 40. Adjacency — Exchange State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version : 2 Router Id : 4.4.4.4 Area Id : 0.0.0.0 Checksum : bfff Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : DB_DESC Packet Length : 192 Interface MTU : 1500 Options : 000042 Flags : 0 Sequence Num : 77793 Link ID : 4.4.4.4 LSA Type : RTR Area ID : 0.0.0.0 Router ID : 4.4.4.4 Seq. Num : 8000003f Age : 0 Length : 72 Checksum : 4c64 Option Bits Set: E 02 ...
  • 41. Adjacency — Exchange State (continued) rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : 93f9 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : DB_DESC Packet Length : 52 Interface MTU : 1500 Options : 000042 Flags : 1 Sequence Num : 77794 Link ID : 5.5.5.5 LSA Type : RTR Area ID : 0.0.0.0 Router ID : 5.5.5.5 Seq. Num : 80000003 Age : 8 Length : 48 Checksum : 51b5 Option Bits Set: E 02 ...
  • 42. Adjacency — Exchange State (continued) OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : 7af8 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : LS_REQ Packet Length : 120 LS Type : 1 Link State Id : 4.4.4.4 Advt Router : 4.4.4.4 ... rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5
  • 43. Adjacency — Exchange State (continued) rtr5 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version : 2 Router Id : 4.4.4.4 Area Id : 0.0.0.0 Checksum : 1e65 Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : LS_UPD Packet Length : 100 Num of LSAs : 1 Link ID : 4.4.4.4 LSA Type : RTR Area ID : 0.0.0.0 Router ID : 4.4.4.4 Seq. Num : 80000040 Age : 1 Length : 72 Checksum : f99c Option Bits Set: E 02 # Links : 4 Flags: 1 Link Type : P2P Link Nbr Rtr ID : 2.2.2.2 I/F Addr : 10.10.1.1 Metric-0 : 1000 2 Link Type : Stub Net Network : 10.10.1.0 Mask : 255.255.255.252 Metric-0 : 1000 3 Link Type : Stub Net Network : 4.4.4.4 Mask : 255.255.255.255 Metric-0 : 0 4 Link Type : Transit DR IP Addr : 10.10.0.1 I/F Addr : 10.10.0.2 Metric-0 : 1000
  • 44. Adjacency — Full Adjacency State rtr5 rtr4 5.5.5.5 4.4.4.4 10.10.1.0/30 .1 .2 10.10.1.4/30 .5 OSPF Version : 2 Router Id : 5.5.5.5 Area Id : 0.0.0.0 Checksum : 678d Authentication : Null Authentication Key: 00 00 00 00 00 00 00 00 Packet Type : LS_ACK Packet Length : 44 Link ID : 4.4.4.4 LSA Type : RTR Area ID : 0.0.0.0 Router ID : 4.4.4.4 Seq. Num : 80000040 Age : 1 Length : 72 Checksum : f99c Option Bits Set: E 02 ...
  • 45. Open Shortest Path First (OSPF) Section 4 — OSPF Areas, Networks, and LSAs
  • 46.
  • 47.
  • 48.
  • 49. OSPF — Link-State Advertisement Types Link-state type 1 2 3 4 5 7 8 9, 10, 11 OSPF function Router link states Network link states Summary link states ASBR link state External link advertisement NSSA external link state External attributes for BGP Opaque LSA
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59. Open Shortest Path First (OSPF) Section 5 — OSPF Implementation
  • 60. We can findout what is wrong from trace level 6 3 output : ers8600 :5/trace# level 6 3 ers8600 :5/trace# clear ers8600 :5/trace# info
  • 61.
  • 62.
  • 63. verify_ospf_packet: area mismatch other_areaid =0.0.0.1 my_areaid=0.0.0.0 ospf_recv: verify_ospf_packet returned error src=47.163.245.1 pkt type=1 ospfProcHello: received on ipa=47.163.245.11 src_ipa=47.163.245.1 ospfProcHello: hello-interval mismatch ipa=47.163.245.11 other_int=5, my_int=10 ospfProcHello: received on ipa=47.163.245.11 src_ipa=47.163.245.1 ospfProcHello: dead-router mismatch ipa=47.163.245.11 , other_int=30, my_int=40 verify_ospf_packet: authType mismatch ipa= 47.163.245.11 ospf_recv: verify_ospf_packet returned error src=47.163.245.1 pkt type=1 Configuration problems detected in the Log
  • 64.
  • 65.
  • 66.
  • 67.  
  • 68.
  • 69.  
  • 70. Passport-8610:5# show ip ospf nei ================================================================================ Ospf Neighbors ================================================================================ INTERFACE NBRROUTERID NBRIPADDR PRIO_STATE RTXQLEN PERMANENCE -------------------------------------------------------------------------------- 47.163.245.11 139.177.189.1 47.163.245.1 1 Full 0 Dynamic 47.163.245.11 47.163.245.97 47.163.245.6 1 Full 0 Dynamic Done Passport-8610:5# show ip ospf area ================================================================================ Ospf Area ================================================================================ AREA_ID STUB_AREA NSSA IMPORT_SUM ACTIVE_IFCNT -------------------------------------------------------------------------------- 0.0.0.0 false false true 2 0.0.0.1 true false true 0 STUB_COST SPF_RUNS BDR_RTR_CNT ASBDR_RTR_CNT LSA_CNT LSACK_SUM -------------------------------------------------------------------------------- 0 12 2 2 5 118184 1 8 0 0 0 0
  • 71.  
  • 72.
  • 73. Passport-8610:5# show ip ospf lsdb lsatype 1 detail Router Link LSA : Area : 0.0.0.0 (0x0) Age : 1011 Opt : true (External Routing Capability) Type : 1 LsId : 45.175.216.0 (0x2dafd800) Rtr : 45.175.216.0 Seq : -2147483640 (0x80000008) Csum : 47803 (0xbabb) Len : 48 ABR : true ASBR : true Vlnk : false (endpoint of active Vlink) #Lnks : 1 [1] Id : 139.177.100.0 (0x8bb16400) Data : 255.255.255.0 (0xffffff00) Type : (conn-to-stub-net)(Id=Subnet-Prefix, Data=Prefix-Len) #Tos : 0 Met : 10
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88. Before the summarization ip routes for 192.168.4.0, 192.168.5.0, 192.168.6.0 are seen as separately as below: 5510-24T#show ip route =============================================================================== Ip Route =============================================================================== DST MASK NEXT COST VLAN PORT PROT TYPE PRF ------------------------------------------------------------------------------- 0.0.0.0 0.0.0.0 47.168.65.1 10 1 T#1 S IB 5 10.10.10.0 255.255.255.0 10.10.10.53 1 10 ---- C DB 0 47.168.65.0 255.255.255.0 47.168.65.53 1 1 ---- C DB 0 192.168.4.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 192.168.5.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 192.168.6.0 255.255.255.0 10.10.10.173 20 10 10 O IB 20 Total Routes: 6 ------------------------------------------------------------------------------- TYPE Legend: I=Indirect Route, D=Direct Route, A=Alternative Route, B=Best Route, E=Ecmp Rou te, U=Unresolved Route, N=Not in HW  
  • 89.
  • 90.
  • 91.
  • 92.
  • 93. OSPF MTU Size Problem Network AB Down Two way received Init Down Init Hello received Two way received Hello received ExStart ExStart Negotioation done Negotioation done Exchange Exchange Router A Router B Neighbor State Neighbor State (Packet too large, dropped) Sequence number mismatch ExStart ExStart Sequence number mismatch (Timeout expired) Hello (DR = B, seen = 0) Hello(DR = 0, seen = 0) Hello (DR = B, seen = A) Hello(DR = B, seen = B) Database Descr. (Seq = Y , Init, Master) Database Descr. (Seq = X , Init, Master) DD (Seq = Y , More, Slave) DD (Seq = Y+1 , Master) Retransmitted DD (Seq = Y , More, Slave) Database Descr. (Seq = Z , Init , Master)
  • 95.
  • 96.
  • 97.
  • 98. Open Shortest Path First (OSPF) Section 6 — OSPF Implementation Lab workout
  • 99. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 nssa Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 Nssa impl. Summurized and injected to ospf
  • 102. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 İmport no external Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 İmport no external impl. Summurized and injected to ospf
  • 103. OSPF Implementations Import noexternal impl.
  • 104. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ospf domain Ers 5510 Mgmt 47.168.90.168 İmport no external Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 ---------------------------Direct routes------------------------------ 10.10.10.x/24 10.11.13.x/24 10.12.19.x/24 No area summary Import noexternal && no area summary impl. (Totally stubby area) Summurized and injected to ospf
  • 105. OSPF Implementations Import noexternal && no area summary impl. (Totally stubby area)
  • 106. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations Vlan 192.168.4.x/24 Vlan 192.168.5.x/24 Vlan 192.168.6.x/24 -------------------Direct routes--------------------- 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Not so stubby area 2. Impl. Summurized and injected to ospf
  • 107.  
  • 108.  
  • 110. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations 192.168.4.x/24 192.168.5.x/24 192.168.6.x/24 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Area aggregation
  • 111.  
  • 112. ERS8600 Mgmt 47.168.90.157 area0 area1 Ers5510 Mgmt 47.168.65.53 area2 Ers 5510 Mgmt 47.168.90.168 Ers5510 Mgmt 47.168.90.167 Ers5510 Mgmt 47.168.90.142 Ers5510 Mgmt 47.168.90.143 Ers5510 Mgmt 47.168.90.145 OSPF Implementations 192.168.4.x/24 192.168.5.x/24 192.168.6.x/24 10.100.10.x/24 10.11.13.x/24 10.12.19.x/24 nssa Area aggregation 10.10.19.x/24
  • 113.  
  • 114.
  • 115.

Editor's Notes

  1. 3
  2. Link state routing protokollerinin en onemlı farkı topology table a sahıp olmasıdır. Bu sayede dusen bır lınk ıcın, yedek linklerde bu tabloda tutuldugundan cok hızlı bır sekılde convergence saglanır.
  3. 10 Metrics In OSPF, all interfaces have a cost value or routing metric used in the OSPF link-state calculation. A metric value is configured based on bandwidth to compare different paths through an AS. OSPF uses cost values to determine the best path to a particular destination: the lower the cost value, the more likely the interface will be used to forward data traffic. To calculate the cost of a link a reference bandwidth is set. The reference bandwidth is referenced in kilobits per second and provides a reference for the default costing of interfaces based on their underlying link speed. The default interface cost is calculated as follows: The default reference-bandwidth is 100 000 000 kb/s or 100 Gb/s, so the default auto-cost metrics for various link speeds are as as follows: 10-Mb/s link default cost of 10 000 100-Mb/s link default cost of 1000 1-Gb/s link default cost of 100 10-Gb/s link default cost of 10 The reference-bandwidth command assigns a default cost to the interface based on the interface speed. To override this default cost on a particular interface,
  4. 11
  5. 12
  6. 16
  7. 17
  8. 18 OSPF uses IP multicast addressing to communicate with routing peers. This reduces the overhead of other devices on the same segment that are not running OSPF. OSPF has two reserved multicast IP addresses. The first is 224.0.0.5 and is used to communicate with all OSPF speakers. The second is 224.0.0.6 and is used in multi-access broadcast topologies in which a DR/BDR is required for proper OSPF operations. When an OSPF update is sent on an Ethernet topology, the destination MAC address is modified to use the reserved multicast range. The range has the first 24 bits of the MAC address, normally reserved for the manufacturer code, set to 01-00-5E. The remaining 24 bits of the MAC address are the lower 24 bits of the IP multicast address. With OSPF, the relationship between the IP multicast address and the MAC address is as follows: 224.0.0.5 and 01-00-5E-00-00-05: Any OSPF speaker 224.0.0.6 and 01-00-5E-00-00-06: Any DR/BDR
  9. 19 OSPF updates are sent using the IP header at the network layer. However, unlike RIP, OSPF does not use a transport-layer protocol. Instead, all OSPF updates are sent directly from the IP layer to the OSPF process. To accomplish this, reserved protocol number 89 in the IP header is allocated to identify OSPF traffic.
  10. 20 The OSPF header breaks down into the following fields: Version number — Identifies the version of OSPF that this packet pertains to. Type — The type of packet that is being received. There are five different types of packet, described on the next page. Packet length — The overall size of the packet. This does not include the IP header but does include all bytes in the OSPF update. Router ID — The Router ID of the sending router. Area ID — The area the router is sending the packet. All routers connected to a network must agree on which area the network resides in. Checksum — The CRC (similar to FCS) for the OSPF header. Authentication type — All OSPF protocol exchanges can be authenticated. This means that only trusted routers can participate in autonomous system routing. Authentication — When packets are sent with authentication invoked, this field is used to convey the authentication information. MD5 allows one authentication key to be configured per network. Routers in the same routing domain must be configured with the same key. When the MD5 hashing algorithm is used for authentication, MD5 is used to verify data integrity by creating a 128-bit message digest from the data input. The message digest is unique to that data. Data — This field varies depending on the type of OSPF packet being sent.
  11. 21 OSPF uses 5 different types of packets to establish and maintain router connectivity and network convergence. Hello packet — This packet is used to establish adjacencies with other routers that speak OSPF. It is also used to maintain neighbor connectivity by being propagated periodically, typically every 10 seconds. However, this value can be modified from 0 to 65 535 seconds. Database description — This packet conveys a summary of all networks in the router’s database. Typically this is the classless network, the router’s cost to access, and the sequence number associated with the network entry. Link-state request — When a neighbor router receives a database description packet, it compares the entry in its current link-state database with the information received. If a received network is not in the database or if the sequence number for a network is higher, the router generates a link-state request for more information about the network. Link-state update — When it receives a link-state request, the router responds with the complete link-state database entry. To accomplish this, the router generates a type 4 (link-state update) packet and forwards it back to the requesting router. Link-state ACK — Each newly received LSA must be acknowledged. This is usually done by sending link-state ACK packets. Many ACKs may be grouped together in a single link-state ACK packet.
  12. 24 There are three types of authentication supported by OSPF. They are: No authentication — The default and least secure Simple authentication — The first level of secure communications between OSPF speakers, yet not very secure MD5 authentication — The most secure communications between OSPF speakers and highly recommended Information about how to configure security is provided in the OSPF configuration section.
  13. 25 A router uses the OSPF hello protocol to discover neighbors. A neighbor is a router that is configured with an interface to a common network. The router sends hello packets to a multicast address and receives hello packets in return. In broadcast networks, a DR and a BDR are elected. The DR is responsible for sending LSAs that describe the network, which reduces the amount of network traffic. The routers attempt to form adjacencies. An adjacency is a relationship formed between a router and the DR or BDR. For point-to-point networks, no DR or BDR is elected. An adjacency must be formed with the neighbor. To significantly improve adjacency formation and network convergence, a network should be configured as point-to-point if only two routers are connected, even if the network is a broadcast media such as Ethernet. When the link-state databases of two neighbors are synchronized, the routers are considered to be fully adjacent. When adjacencies are established, pairs of adjacent routers synchronize their topological databases. Not every neighboring router forms an adjacency. Routing-protocol updates are only sent to and received from adjacencies. Routers that do not become fully adjacent remain in the 2-way neighbor state.
  14. 26 The hello packet consists of the following fields: Header — The standard OSPF header is identical for all five types of packets. The only modification is that the type field has the value of “1” to signify that this is a hello packet. Network mask — The network mask field contains the network mask for the interface that the packet is being sent on. Hello interval — The hello interval must match for all neighbors on the segment. By default, 10-second hello interval. This can be modified to a value between 0 and 65 535. Options — The options field is usually left blank. RTR Pri — The router priority field denotes the priority value seeded on the router for use in electing a DR and BDR. A priority of 0 means that the router can never be a DR or BDR in the network connected to this interface. Router dead interval — The default value is 40 seconds, or four times the update interval. If a neighbor does not send a hello packet within this interval, the router assumes that the neighbor is not active and purges all information that the neighbor has conveyed. Designated router — This field denotes the elected DR. Backup designated router — This field denotes the elected BDR. Neighbor — This field varies depending on the number of neighbors the router has learned of on the interface. The neighbor’s RID is conveyed in this field. Routers on this interface look for their RID, to ensure that the router that is sending the hello sees them.
  15. 27 In the figure above, the two routers have not formed an adjacency. The following steps describe how the adjacency is created and the actions that are required. Both routers are in a down state: neither router has sent any OSPF-related packets. The router on the left sends a hello packet with the standard header. In the hello information, the router inserts its RID and leaves the neighbor field blank because it does not know of any other router on the Ethernet segment. The right-side router responds with its own hello. However, this router’s hello contains not only its RID, but also the RID of the left router. When each router sees that the other router acknowledges its existence, the state changes from down to 2-way.
  16. 28 The DBD packet advertises a summary of all networks that the advertising router knows about. Along with the networks, the router advertises the associated subnet mask and sequence number. The receiving router compares the network, subnet mask, and sequence number with its existing topology database entries. If the advertised network is unknown or if the network is known but the advertised sequence is higher, the receiving router requests more information about the network so that it can add the network to its database. If the network is already known and the sequence number is lower, the receiving router sends back an LSU with more up-to-date information. If the network is already in the database and the sequence numbers are identical, then the receiving router discards the information.
  17. 29 In the figure above, the two routers have not formed an adjacency. The following steps describe how the adjacency is created and the actions that are required. The neighboring routers establish a master/slave relationship. During this step, the initial DBD sequence number is determined for the exchange state. The router with the highest RID becomes the master, and its initial sequence number is used. This is part of step 1. The right-side router sends its DBD packet, describing its link-state database. The sequence number negotiated in step 1 is used. The left-side router increments the sequence number and sends the DBD packet, describing its link-state database.
  18. 30 When it receives a DBD (type 2) packet, the router determines which networks it needs to add to its database. The receiving router then generates an LSR for these networks. The LSR identifies the networks for which the router wants full information.
  19. 31 When it receives an LSR (type 3) packet, the receiving router sends back the full topology database entry for the requested networks. The size of this packet varies depending on the interface MTU and administrator settings. The size of the packet is limited by the interface MTU.
  20. 32 The adjacency continues to be created with the following steps: Each router is responsible for maintaining a bit of reliability. Each responds to the DBD with an ACK packet. This ensures that each knows the other has received the information without error. In the example, the right side router asks for explicit information with the use of an LSR. Both routers would actually be sending LSRs. When the LSR is sent, the exchange state changes to the loading state. Each router responds to the LSR with one or more LSU packets. These packets contain explicit details about the requested networks.
  21. 33 The final steps for creating the adjacency are described below: The LSUs are sent and acknowledged by each router. After all LSUs have been received and ACKs sent, each router now has an identical link-state database. The state changes from loading to full. This means that each router is fully converged with the other’s database. To maintain the adjacency, the routers send periodic hellos to each other. The default interval is 10 seconds. If something changes, then only that change in the database is sent to the neighbor.
  22. 36 When the connection between two OSPF routers is a point-to-point link, there is no need for a DR or BDR. All packets are sent using the 224.0.0.5 IP multicast address. This implementation is typically used on serial interfaces; however, it can also be configured on point-to-point Ethernet segments, in which only two routers are connected.
  23. 37 A router uses the OSPF hello protocol to discover neighbors. A neighbor is a router that is configured with an interface to a common network. The router sends hello packets to a multicast address and receives hello packets in return. In broadcast networks, a DR and a BDR are elected. The DR is responsible for sending LSAs that describe the network, which reduces the amount of network traffic. The routers attempt to form adjacencies. An adjacency is a relationship that is formed between a router and the DR or BDR. For point-to-point networks, no DR or BDR is elected. An adjacency must be formed with the neighbor. To significantly improve adjacency formation and network convergence, a network should be configured as point-to-point if only two routers are connected, even if the network is a broadcast media such as Ethernet. In the example above, RTR-A is the DR and RTR-B is the BDR. Routers C, D, and E will only form adjacencies with RTR-A and RTR-B, not with each other. Not every neighboring router forms an adjacency. Routing protocol updates are only sent to and received from adjacencies. Routers that do not become fully adjacent remain in the 2-way neighbor state.
  24. 38 In the example above, RTR-C has a topology change that needs to be conveyed. The following steps occur: RTR-C sends its update to the DRs using IP multicast address 224.0.0.6. Both DRs receive the update. The BDR monitors to see if the DR sends out updates to all other routers, including the BDR. The DR takes the update from RTR-C and floods the change to all other routers on the segment, using IP multicast address 224.0.0.5. Note: DR and BDR election is not required in point-to-point networks.
  25. 39 When a new router becomes active in a multi-access broadcast topology, it generates a hello (type 1) packet. The multicast address used is 224.0.0.5, which is the “all OSPF devices” address. The new router’s hello does not contain any neighbor RIDs because it has not yet seen any neighbors on the link.
  26. 40 One of the already active routers generates a periodic hello. This hello also uses the IP multicast address 224.0.0.5. The new router not only sees its RID in the hello, but it also learns of the other devices on the segment based on their RIDs. In addition, the hello packet identifies the active DR and BDR for the link.
  27. 41 Because a DR and BDR already exist, the new router now advertises its networks to the DRs by using the IP multicast address 224.0.0.6 (all DRs). The routers, that are not DRs, ignore this update because they are only listening for the 224.0.0.5 IP multicast address.
  28. 42 When the DR receives the update and determines that the advertised network is a new entry in its topological database, it generates a message about the change to all devices on the segment. To send this update, the DR uses the IP multicast address 224.0.0.5 (all OSPF devices). The BDR does not send an update because the DR has performed its job by sending the update already. All routers, except the DR, send a type 5 (ACK) packet back to the DR to acknowledge receipt of the topology change; this includes the BDR and the new router that generated the update to start with.
  29. 43 A step-by-step example of a failing network is shown above. As soon as the router detects the failure of a link (a link-state change), it immediately sends an update to the DRs using the IP multicast address of 224.0.0.6. The DR compares the update received with its topology database and sees that there is a change. It generates an LSU and sends it to all OSPF speakers on the segment, using the IP multicast address of 224.0.0.5. All devices, including the BDR and the originating router, acknowledge the LSU. Any router that is connected to other networks forward the LSU packet to its downstream neighbors on those networks.
  30. 46
  31. 48
  32. 49 In the example above, rtr5 is reset. When it comes up, it sends an OSPF hello packet. The RID is set to 5.5.5.5. There are no neighbors in this hello packet because it does not yet know of any neighbors on the segment.
  33. 50 The next packet is an OSPF hello packet sent by rtr4. The RID is set to 4.4.4.4, and because rtr4 has seen a hello packet from rtr5, it populates the neighbor with RID 5.5.5.5. rtr5 does the same when it receives the hello from rtr4. When both routers have sent a hello packet with the neighbor address populated, the adjacency state is changed to 2-way.
  34. 51 Both router priorities are the same. In this case, the router with the highest RID will be the DR. In the example above, rtr4 sends a hello packet with both the DR and BDR set to 10.10.0.1. The hello packet sent from rtr5 has the DR set to 10.10.0.1 and the BDR set to 10.10.0.2.
  35. 52 The router with the higher RID becomes the master, and its sequence number (i.e., 77793 in this example) will be used.
  36. 53 rtr4 sends its DBD with the sequence number set by rtr5, including the DB summary.
  37. 54 rtr5 sends its DBD; the sequence number is incremented and the DB summary is included.
  38. 55 rtr5 sends an LSR to rtr4 for any LSA that it does not have. rtr4 does the same.
  39. 56 rtr4 responds with an LSU for the requested LSAs. At the same time, rtr5 responds to rtr4’s request.
  40. 57 rtr5 responds with an LS ACK. rtr4 acknowledges the LSU received from rtr5. The adjacency state is now full. rtr4 and rtr5 continue to exchange hellos to maintain the adjacency.
  41. 60
  42. 62 The OSPF environment is organized using two primary elements: Area — A grouping of contiguous OSPF networks and hosts. OSPF areas are logical subdivisions of OSPF autonomous systems. The topology of each area is invisible to entities in other areas, and each area maintains its own topological database. Autonomous System — A group of networks and network equipment under a common administration. Backbone area The OSPF backbone area, area 0.0.0.0, must be contiguous and all other areas must be connected to it. The backbone distributes routing information among areas. If it is not practical to connect an area to the backbone, the ABRs must be connected via a virtual link. Stub area A stub area is a designated area that does not allow external route advertisements. Routers in a stub area do not maintain external routes. A single default route to an ABR replaces all external routes. This OSPF implementation supports the optional summary route (type 3) advertisement suppression from other areas into a stub area. This feature further reduces topological database sizes as well as OSPF protocol traffic, memory usage, and CPU route-calculation time. NSSA Another OSPF area type is called an NSSA. NSSAs are similar to stub areas in that no external routes are imported into the area from other OSPF areas . External routes learned by OSPF routers in the NSSA are advertised as type 7 LSAs within the NSSA area and are translated by ABRs into type 5 external route advertisements for distribution into other areas of the OSPF domain. An NSSA cannot be designated as the transit area of a virtual link.
  43. 63 There are several terms used to define the function of the routers in an OSPF topology. The following functions are based on where the router is placed and not on the size or model of the router: Backbone router — A router that resides in Area 0 (backbone area) and only communicates with routers in the backbone area. This can include other backbone routers and ABRs. Area border router — Any router that has interfaces configured to support more than one area. Typically, this is between the backbone area and one more area; however, it is not uncommon that an ABR supports access between the backbone area and several other areas. When this type of configuration exists, care must be taken to ensure that the memory and CPU are not over-taxed. Intra-area router — A router that resides in an area other than the backbone area and only communicates with other routers in that area. This can include other intra-area routers or ABRs. Autonomous system boundary router — A router that connects the OSPF routing domain with other network protocols, static routes, or interfaces that are not participating in the OSPF process.
  44. 64 LSAs describe the state of a router or network, including router interfaces and adjacency states. Each LSA is flooded throughout an area. The collection of LSAs from all routers and networks form the protocol's topological database. The distribution of topology database updates takes place along adjacencies. A router sends LSAs when its state changes and according to the configured interval. The packets include information about the router's adjacencies, which allows the routers to construct their topological databases. When a router discovers a routing table change or detects a change in the network link state, information is advertised to other routers to maintain identical routing tables. Router adjacencies are reflected in the contents of LSAs. The relationship between adjacencies and the link states allows the protocol to detect non-operating routers. LSAs flood the area. The flooding mechanism ensures that all routers in an area have the same topological database. The database consists of the collection of LSAs received from each router that belongs to the area. OSPF sends LSAs for only the links that have changed and only when a change has taken place. From the topological database, each router constructs a tree of shortest paths, with itself as root. From this tree, OSPF can determine the best route to every destination in the network. The SPF tree is used to construct the routing table.
  45. 65 Type 1 (router) LSAs are generated by each router, no matter what area they reside in. Type 1 updates are not forwarded between areas by ABRs. The link-state ID is the advertising router’s RID.
  46. 77 Type 2 (network) LSAs are generated by DRs in multi-access networks, such as Ethernet or NBMA topologies. Type 2 LSAs are not forwarded by ABRs. The DR for the network originates the LSA. The DR originates the LSA only if it is fully adjacent to at least one other router in the network. The network LSA is flooded throughout the area that contains the transit network, and no further. The network LSA lists those routers that are fully adjacent to the DR; each fully adjacent router is identified by its OSPF RID. The DR includes itself in this list. The link-state ID for a network LSA is the IP interface address of the DR. This value, masked by the network's address mask (which is also contained in the network LSA) yields the network's IP address.
  47. 80 Type 3 (summary) LSAs are generated by ABRs to advertise networks in one area to another area. By design, the summary LSA should be a true summary network advertisement not just for the individual networks that it knows about. This requires manual summarization configuration on the router by the network administrator.
  48. 87 Stub areas must conform to the following attributes: The area must be a dead end. In the example above, the only reason to enter Area 2 is to access networks within Area 2. Traffic would not pass through Area 2 to get to any other location. Virtual links are not supported. Type 5 LSAs are blocked by the ABR, and a default route is advertised instead into the area. However, type 3 and 4 LSAs are still advertised. Stub area, no summary must conform to the following attributes: All attributes of a stub area are the same. By adding “no summary”, the ABR blocks type 3, 4 and 5 LSAs; instead it advertises a default route. The ABR originates a type 3 LSA into the stub area. The link-state ID is 0.0.0.0, and the network mask is set to 0.0.0.0. The industry term is “totally stubby”.
  49. 96 The sequence number field is a 32-bit integer referenced hex notation. It is used to detect old and duplicate LSAs. The larger the sequence number, the more recent the LSA. The sequence number starts at 0x80000000; however, this value is reserved and unused. This leaves 0x80000001 as the smallest value possible. This sequence number is referred to as the constant InitialSequenceNumber. A router uses InitialSequenceNumber the first time it originates an LSA. Afterward, the LSA's sequence number is incremented each time the router originates a new instance of the LSA. When an attempt is made to increment the sequence number past the maximum value of 0x7fffffff (also referred to as MaxSequenceNumber), the current instance of the LSA must first be flushed from the routing domain. This is done by prematurely aging the LSA and re-flooding it. As soon as this flood has been acknowledged by all adjacent neighbors, a new instance can be originated with the sequence number InitialSequenceNumber. Sequence numbers increment any time that an LSA is sent around about a specific network. This can be due to a change in the state of the network or because the 30-minute timer has expired and a refresh is necessary.
  50. 97 It is common for a router to receive self originated LSAs via the flooding procedure. A self-originated LSA is detected when either: The LSA's advertising router is equal to the router's own RID The LSA is a network LSA and its link-state ID is equal to one of the router's own IP interface addresses If the received self-originated LSA is newer than the last instance that the router actually originated, the router must take special action. The reception of such an LSA indicates that there are LSAs in the routing domain that were originated by the router before the last time it was restarted. In most cases, the router must then advance the LSA's LS sequence number one past the received LS sequence number and originate a new instance of the LSA.
  51. 98 The backbone area in an OSPF AS must be contiguous, and all other areas must be connected to the backbone area. Sometimes this is not practical or is unreasonably expensive to implement. Virtual links can be used to connect to the backbone through a non-backbone area. The figure above shows routers A and B as the start and endpoints of the virtual link and Area 0.0.0.1 as the transit area. To configure virtual links, the router must be an ABR. Virtual links are identified by the RID of the other endpoint, another ABR. These two endpoint routers must be attached to a common area, called the transit area. The area through which the virtual link is configured must have full routing information. Transit areas pass traffic from an area adjacent to the backbone or to another area. The traffic does not originate in, nor is it destined for, the transit area. The transit area cannot be a stub area or an NSSA. Virtual links are part of the backbone and behave as if they were unnumbered point-to-point networks between the two routers. A virtual link uses the intra-area routing of its transit area to forward packets.
  52. 101
  53. IGMP Snoopıng ile birlikte 'Unknown Multicast Filter' enabled ozelligi bilinmeyen gereksiz multicast trafigini router uzerinden gecisini engellemek icin kullanılır. Ludovico Solution for Belgian Police Customer problem .
  54. 101