SlideShare a Scribd company logo
1 of 16
by
SHIPRA CHOUDHARY
14/MAP/007
M.Sc. (Applied Physics)
Under the guidance of
Dr. Manmohan Singh Shishodia
Gautam Buddha University, Greater Noida
Otical propertIes of dimer of plasmonIc nanosphere
 Why Nanomaterials?
 Advantages of Dimer over Single Nanosphere
 Introduction
 Multipole Spectral Expansion method (MSE)
 MSE method for single nanoshere
 MSE method for dimer of nanaosphere
 Dimer Matrix Elements
 Translated Eigenstates
 Future plan
outlines
Why nanomaterials?
• Material that has unique or novel properties, due to the
nanoscale ( nano metre- scale) structuring.
• The properties of the nanomaterials can be different from
bulk material:
 Larger surface area
 Quantum effect begins to dominate
Solar cells
Nanoantenna’s
(Metal Nanoparticles)
Nanoantenna’s
(Silicon Nanoparticles)
Advantages of dimer over single nanoparticles
 Dimer provides a stronger electric field
in than gap region than a single metallic
nanoparticle does in its proximity.
 Dimer plays the role of a nanolens to focus
the incident wave into a small hotspot re-
gion around the gap.
 Dimer plays the role of an antenna.
 Lesser the gap, greater is the electric field enhancement factor.
dm m
b
LR RR
**[ref: Jiunn-Woei Liaw, Jeng-Hong chen, chi-San, and Mao-Kuen kuo, Opt.Express 16,
13532-13540 (2009).]
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
0
1000
2000
3000
4000
5000
6000
7000
Fieldenhancement()
Frequency (eV)
a/r = 0.6
a/r = 0.7
a/r = 0.8
a/r = 0.9
a/r = 1.0
 Introduced by Fuchs and further developed by Bergman,
Milton and stockman.
 Analytical approach for calculating potential at any point.
 Separates the geometrical and dielectric properties and can
be extended to arbitrary combination of nanoparticles.
 Extendible to dimers and multimers.
 Dimer nanostructures may induce a relatively intense local
EMF within the dimer gap region and in the proximity of MNS.
**[ref: D. J. Bergman, Phys. Rep. 43, 377 (1978).]
MULTIPOLE SPECTRAL EXPANSION METHOD
The overall potential expression in this approach
External potential
MSE METHOD FOR Single nanosphere
**[fig ref:Manmohan S. Shihodia, Boris D. Fainberg, and Abraham Nitzen, “Theory of energy
transfer interactions near sphere and nanoshell based plasmonic nanostructures”, SPIE 0277-
786X (2011).]
)()(φ|)()(
s)(s
s
)(φ)φ( extext rrrrrr mlml
ml l
l




 
surface)on theR(rθcosREθcosrEΦ 00ext 
R
P
zO
r
E0 zˆ
ε(ω)
hε
θ









 h
h
ε2ε(ω)
εε(ω)
s)(ωs
s
The dielectric part
The total potential outside the sphere
  )1for(3/112s  lll
 hεε(ω)1
1
)(ωs


,
  1
12
(1/2)12
m,
m,
r
R
R
φ),(θY
)r(ψ 


 l
l
l
l
l
l
θcos
r
R
π
3
2
1
)r(ψ 2
2/3
,01 

The potential eigenfunctions
The induced potential
Using Green’s first identity in the overlap integral
3/2RE
3
4π
I 0m, l
θcos
r
R
E
ε2ε(ω)
εε(ω)
)r(Φ 2
3
0
h
h
induced










θcos
r
R
E
ε2ε(ω)
εε(ω)
cosθrE)r(Φ 2
3
0
h
h
0out 









Nanosphere dimer
)r(ψ|ψ))((
)(
)r()r( '0'
,
,
,
',
'
b,la,lablal
RLa
la
RLb
lb
bl
ext BB
ss
s



 

 


   

The potential for two sphere geometry
Eigenvalue equation
)(ψ)(ψs rr  
Eigenvalues and eigenvectors of gamma









'',,,,,'',,,,,
'',,,,,'',,,,,
mlRightmlRightmlLeftmlRight
mlRightmlLeftmlLeftmlLeft
 
m d
'rr
LR
LO
RR
RO
b
L R
P
Z
zE ˆ0
 )b-r(ψψrθd
1'2
'
m'l',L
3
'',;,



 
*
l,m
V
mlml
l
l
Using Green’s identity
dimer matrix elementS
)(
)(
12
''
L
''
,
*
,
Rr
2
'
'
,,,
br
r
r
dR
l
l
ml
ml
Lmlml







 


)]()([
)(
)()]([d
V
*
,
2
,
3
*
,
,
Rr
2
,
*
,
V
3
''''
L
'' rbrrd
r
r
brdRbrr mlmlL
ml
mlLmlmlL


 







),(
1
)( ,12,  ml
l
l
L
ml Yr
lR
r



),(
1
)( *
,12
*
,  ml
l
l
L
ml Yr
lR
r



),(
1)( *
,
1
12
*
,


ml
l
l
L
ml
Yr
lRr
r 





Eigenstates of left sphere
dimer matrix elementS
Eigenstates of right sphere
)(
1
)( '''
'
''
,1'
12
, brmll
l
R
ml
Y
brl
R
br 



 


),(),(
!)!12(!)!12(
!]!1)(2[
000
)12](1)(2)[12(4)1()(
1
),,1'
'
''
''''
''
,)1(
'''
''
''' bbmll
lm
brmll
YY
b
r
l
l
mm
llll
llY
br





 




















 



),(),(
!)!12(!)!12(
!]!1)(2[
000
)12](1)(2)[12(4)1()( '''
''
'
'
,,1'
'
''
''''
''
'
12
, bbmll
lm
l
R
ml
YY
b
r
l
l
mm
llll
ll
l
R
br 




 




















 
 

),(),(
!)!12(!)!12(
!]!1)(2[
000
)12](1)(2)[12(4)1(),(
12
'''
''
'
''
,,1'
'
''
''''
''
'
12
*
,
1
12
2
'
'
,,, bbmll
lm
l
R
Rr
ml
l
l
L
Lmlml
YY
b
r
l
l
mm
llll
ll
l
R
Yr
lR
l
dR
l
l
L





 







 














 


 
),(
!)!12(!)!12(
!]!1)(2[
000
)12](1)(2)[12(4
12
)1( ''
'
''
''
,'
'
''
''''
''
)2/1()2/1(
'
'
,,, bbmmll
l
R
l
Llm
mlml
Y
l
l
mmmm
llllllll
ll
b
R
b
R
l
ll



 

















 














dimer matrix elementS
!!
)!(
]!1)(2[
)!2()!2(
)1(
000
'
'
'
'''
'
ll
ll
ll
llllll ll 






  
)!()!()!()!(]!1)(2[
)!()!()!2()!2(
)1(
)(
''''
'''''
''
''
''
mlmlmlmlll
mmllmmllll
mmmm
llll mmll









 
bmmimm
llbbmmll
eP
mmll
mmllll 


 )(
''
'''
,
''
''' )(cos
)!(
)!(
4
]1)(2[
),(Y 




Using properties of Wigner 3j symbols
Relation b/w Spherical harmonics & Legendre functions
bmmimm
ll
l
R
l
Llm
mlml
eP
ll
ll
l
l
l
l
ll
ll
mlmlmlml
mmll
b
R
b
R
ll
l
llll
)(
'
'
'
'
'
'
''''
'')2/1()2/1(
'
'
''
,,,
''
'
'
'
''
!!
)(
!)!12(
)!2(
!)!12(
)!2(
]!1)(2[
!]!1)(2[
)!()!()!()!(
)!(
)12)(12(
12
]1)(2[
)1(


























bmmimm
ll
l
R
l
Llm
mlml
eP
mlmlmlml
mmll
ll
ll
b
R
b
R )'('
'''''
''
'
')2/1(')2/1(
)!()!()!()!(
)!(
)12)(12(
)1(
'
''




















TRANSLATED EIGENStates
Outside sphere eigenstates
1
,
12
b-r
),(
)b-r( 


 l
ml
l
R
lm
Y
l
R



1
,
12
),(
)b-r( 


 l
ml
l
R
lm
R
Y
l
R













b,renwh1
b,rwhen1
cos
br
br









b,rnwhe0
b,rwhen
 
m d
'rr
LR
LO
RR
RO
b
L R
P
Z
zE ˆ0
1
0
12
4
1
)1()b-r(















 

l
R
R
l
l
br
R
l
l
R


1
12
1
0,
12
0
1
4
12
)1(
)0,(
)b-r( 









 


 l
l
Rl
l
l
l
R
l
brl
Rl
br
Y
l
R




Inside sphere eigenstates
l
l
R
ml
lmlmR
lR
Y
b-r
),(
)b-r(
12
,
,




l
l
R
l
lR br
lR
l





 

12,
1
4
12
)1()r(


l
RR
l
lR
R
br
l
l
R 




 





 

12
4
1
)1()r(,


Future plan
 To Calculate the external potential and overlap integral for a pair
of metallic nanoparticles (dimer) to obtain the overall potential in
the gap region.
 To study the effect of Electric Field Enhancement, polarizability
and plexcitonic interactions in the vicinity and the gap region of a
pair of metallic nanoparticles (dimer).
 To explore different plasmonic materials other than metals(Au or
Ag).
 To extend Multipole Spectral Expansion Method to treat
Nanoshells.
references
 Manmohan S. Shishodia, Boris D. Fainberg, and Abraham Nitzen, “Theory of energy
transfer interactions near sphere and nanoshell based plasmonic nanostructures”,
SPIE 0277-786X (2011).
 J.D. Jackson, “Classical Electrodynamics”, John Wiley & Sons, (1998).
 D.J. Bergman, “Dielectric constant of a two-component granular composite: A
practical scheme for calculating the pole spectrum”, phys. Rev. B, 19, 2359 (1979).
 M. Danos, and L.C. Maximon, “Multipole matrix elements of the translation
operator”, J. Mathematical Phys. 6, pp. 766-778 (1965).
 http://functions.wolfram.com/Polynomials/SphericalHarmonicY/20/01/02
 http://mathworld.wolfram.com/Polynomials/Wigner3j-Symbol.html
 Jiunn-Woei Liaw, Jeng-Hong chen, chi-San, and Mao-Kuen kuo, “Purecell effect of
nanoshell dimer on single molecule’s fluoresecnce”, Opt.Express 16, 13532-13540
(2009).
THANKYOU

More Related Content

What's hot

Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-FinalPoster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
Özden Demircioğlu
 
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
IKHIOYA IMOSOBOMEH LUCKY
 
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Sérgio Sacani
 

What's hot (11)

Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-FinalPoster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
Poster-Ellipsometry-5thEuropeanKesteriteWorkshop-Final
 
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin FilmStudy of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
 
EC-1586
EC-1586EC-1586
EC-1586
 
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
 
Radiation pattern of patch
Radiation pattern of patchRadiation pattern of patch
Radiation pattern of patch
 
DFG Advanced Microscopy Workshop Wuerzburg 2011
DFG Advanced Microscopy Workshop Wuerzburg 2011DFG Advanced Microscopy Workshop Wuerzburg 2011
DFG Advanced Microscopy Workshop Wuerzburg 2011
 
3 d molding and casting4
3 d molding and casting43 d molding and casting4
3 d molding and casting4
 
battelle_diffracted_mesh_paper
battelle_diffracted_mesh_paperbattelle_diffracted_mesh_paper
battelle_diffracted_mesh_paper
 
HIGH GAIN COMPACT MICROSTRIP PATCH ANTENNA FOR X-BAND APPLICATIONS
HIGH GAIN COMPACT MICROSTRIP PATCH ANTENNA FOR X-BAND APPLICATIONSHIGH GAIN COMPACT MICROSTRIP PATCH ANTENNA FOR X-BAND APPLICATIONS
HIGH GAIN COMPACT MICROSTRIP PATCH ANTENNA FOR X-BAND APPLICATIONS
 
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
Global collapse of_molecular_clouds_as_a_formation_mechanism_for_the_most_mas...
 
Time lens
Time lensTime lens
Time lens
 

Similar to optical properties of dimer of plasmonic nanosphere

2 design and_analysis_of_circular_ring_microstrip_antenna
2 design and_analysis_of_circular_ring_microstrip_antenna2 design and_analysis_of_circular_ring_microstrip_antenna
2 design and_analysis_of_circular_ring_microstrip_antenna
Prilla Wendaria
 
Radiation patterns account of a circular microstrip antenna loaded two annular
Radiation patterns account of a circular microstrip antenna  loaded two annularRadiation patterns account of a circular microstrip antenna  loaded two annular
Radiation patterns account of a circular microstrip antenna loaded two annular
wailGodaymi1
 
Design of Square Shaped Miniaturized Split Ring Resonators
Design of Square Shaped Miniaturized Split Ring ResonatorsDesign of Square Shaped Miniaturized Split Ring Resonators
Design of Square Shaped Miniaturized Split Ring Resonators
IJERA Editor
 

Similar to optical properties of dimer of plasmonic nanosphere (20)

Metamaterial
MetamaterialMetamaterial
Metamaterial
 
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
 
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
 
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
Recent Developments and Analysis of Electromagnetic Metamaterial with all of ...
 
IRJET- Multi-Band Polarization Insensitive Metamaterial Absorber for EMI/EMC ...
IRJET- Multi-Band Polarization Insensitive Metamaterial Absorber for EMI/EMC ...IRJET- Multi-Band Polarization Insensitive Metamaterial Absorber for EMI/EMC ...
IRJET- Multi-Band Polarization Insensitive Metamaterial Absorber for EMI/EMC ...
 
1202 mccormack[2]
1202 mccormack[2]1202 mccormack[2]
1202 mccormack[2]
 
2 design and_analysis_of_circular_ring_microstrip_antenna
2 design and_analysis_of_circular_ring_microstrip_antenna2 design and_analysis_of_circular_ring_microstrip_antenna
2 design and_analysis_of_circular_ring_microstrip_antenna
 
Radiation patterns account of a circular microstrip antenna loaded two annular
Radiation patterns account of a circular microstrip antenna  loaded two annularRadiation patterns account of a circular microstrip antenna  loaded two annular
Radiation patterns account of a circular microstrip antenna loaded two annular
 
Design of Square Shaped Miniaturized Split Ring Resonators
Design of Square Shaped Miniaturized Split Ring ResonatorsDesign of Square Shaped Miniaturized Split Ring Resonators
Design of Square Shaped Miniaturized Split Ring Resonators
 
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERSMODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
 
Bandwidth and gain enhancement of a circular microstrip antenna using a DNG s...
Bandwidth and gain enhancement of a circular microstrip antenna using a DNG s...Bandwidth and gain enhancement of a circular microstrip antenna using a DNG s...
Bandwidth and gain enhancement of a circular microstrip antenna using a DNG s...
 
Angular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezersAngular and position stability of a nanorod trapped in an optical tweezers
Angular and position stability of a nanorod trapped in an optical tweezers
 
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
Site-specific measurement of the giant magnetoresistance (GMR) of individual ...
 
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERSMODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
MODELING STUDY OF LASER BEAM SCATTERING BY DEFECTS ON SEMICONDUCTOR WAFERS
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
ARRAY FACTOR IN CURVED MICROSTRIPLINE ARRAY ANTENNA FOR RADAR COMMUNICATION S...
 

More from Anuj012 (6)

SUPERCONDUCTORS AND ITS APPLICATONS
SUPERCONDUCTORS AND ITS APPLICATONSSUPERCONDUCTORS AND ITS APPLICATONS
SUPERCONDUCTORS AND ITS APPLICATONS
 
Dulong and Petit Law of Specific Heat
Dulong and Petit Law of Specific HeatDulong and Petit Law of Specific Heat
Dulong and Petit Law of Specific Heat
 
dimer optical properties
dimer optical propertiesdimer optical properties
dimer optical properties
 
dimer optical properties
dimer optical propertiesdimer optical properties
dimer optical properties
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

optical properties of dimer of plasmonic nanosphere

  • 1. by SHIPRA CHOUDHARY 14/MAP/007 M.Sc. (Applied Physics) Under the guidance of Dr. Manmohan Singh Shishodia Gautam Buddha University, Greater Noida Otical propertIes of dimer of plasmonIc nanosphere
  • 2.  Why Nanomaterials?  Advantages of Dimer over Single Nanosphere  Introduction  Multipole Spectral Expansion method (MSE)  MSE method for single nanoshere  MSE method for dimer of nanaosphere  Dimer Matrix Elements  Translated Eigenstates  Future plan outlines
  • 3. Why nanomaterials? • Material that has unique or novel properties, due to the nanoscale ( nano metre- scale) structuring. • The properties of the nanomaterials can be different from bulk material:  Larger surface area  Quantum effect begins to dominate Solar cells Nanoantenna’s (Metal Nanoparticles) Nanoantenna’s (Silicon Nanoparticles)
  • 4. Advantages of dimer over single nanoparticles  Dimer provides a stronger electric field in than gap region than a single metallic nanoparticle does in its proximity.  Dimer plays the role of a nanolens to focus the incident wave into a small hotspot re- gion around the gap.  Dimer plays the role of an antenna.  Lesser the gap, greater is the electric field enhancement factor. dm m b LR RR **[ref: Jiunn-Woei Liaw, Jeng-Hong chen, chi-San, and Mao-Kuen kuo, Opt.Express 16, 13532-13540 (2009).] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 0 1000 2000 3000 4000 5000 6000 7000 Fieldenhancement() Frequency (eV) a/r = 0.6 a/r = 0.7 a/r = 0.8 a/r = 0.9 a/r = 1.0
  • 5.  Introduced by Fuchs and further developed by Bergman, Milton and stockman.  Analytical approach for calculating potential at any point.  Separates the geometrical and dielectric properties and can be extended to arbitrary combination of nanoparticles.  Extendible to dimers and multimers.  Dimer nanostructures may induce a relatively intense local EMF within the dimer gap region and in the proximity of MNS. **[ref: D. J. Bergman, Phys. Rep. 43, 377 (1978).] MULTIPOLE SPECTRAL EXPANSION METHOD
  • 6. The overall potential expression in this approach External potential MSE METHOD FOR Single nanosphere **[fig ref:Manmohan S. Shihodia, Boris D. Fainberg, and Abraham Nitzen, “Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures”, SPIE 0277- 786X (2011).] )()(φ|)()( s)(s s )(φ)φ( extext rrrrrr mlml ml l l       surface)on theR(rθcosREθcosrEΦ 00ext  R P zO r E0 zˆ ε(ω) hε θ
  • 7.           h h ε2ε(ω) εε(ω) s)(ωs s The dielectric part The total potential outside the sphere   )1for(3/112s  lll  hεε(ω)1 1 )(ωs   ,   1 12 (1/2)12 m, m, r R R φ),(θY )r(ψ     l l l l l l θcos r R π 3 2 1 )r(ψ 2 2/3 ,01   The potential eigenfunctions The induced potential Using Green’s first identity in the overlap integral 3/2RE 3 4π I 0m, l θcos r R E ε2ε(ω) εε(ω) )r(Φ 2 3 0 h h induced           θcos r R E ε2ε(ω) εε(ω) cosθrE)r(Φ 2 3 0 h h 0out          
  • 8. Nanosphere dimer )r(ψ|ψ))(( )( )r()r( '0' , , , ', ' b,la,lablal RLa la RLb lb bl ext BB ss s                The potential for two sphere geometry Eigenvalue equation )(ψ)(ψs rr   Eigenvalues and eigenvectors of gamma          '',,,,,'',,,,, '',,,,,'',,,,, mlRightmlRightmlLeftmlRight mlRightmlLeftmlLeftmlLeft   m d 'rr LR LO RR RO b L R P Z zE ˆ0
  • 9.  )b-r(ψψrθd 1'2 ' m'l',L 3 '',;,      * l,m V mlml l l Using Green’s identity dimer matrix elementS )( )( 12 '' L '' , * , Rr 2 ' ' ,,, br r r dR l l ml ml Lmlml            )]()([ )( )()]([d V * , 2 , 3 * , , Rr 2 , * , V 3 '''' L '' rbrrd r r brdRbrr mlmlL ml mlLmlmlL            ),( 1 )( ,12,  ml l l L ml Yr lR r    ),( 1 )( * ,12 * ,  ml l l L ml Yr lR r    ),( 1)( * , 1 12 * ,   ml l l L ml Yr lRr r       Eigenstates of left sphere
  • 10. dimer matrix elementS Eigenstates of right sphere )( 1 )( ''' ' '' ,1' 12 , brmll l R ml Y brl R br         ),(),( !)!12(!)!12( !]!1)(2[ 000 )12](1)(2)[12(4)1()( 1 ),,1' ' '' '''' '' ,)1( ''' '' ''' bbmll lm brmll YY b r l l mm llll llY br                                 ),(),( !)!12(!)!12( !]!1)(2[ 000 )12](1)(2)[12(4)1()( ''' '' ' ' ,,1' ' '' '''' '' ' 12 , bbmll lm l R ml YY b r l l mm llll ll l R br                                 ),(),( !)!12(!)!12( !]!1)(2[ 000 )12](1)(2)[12(4)1(),( 12 ''' '' ' '' ,,1' ' '' '''' '' ' 12 * , 1 12 2 ' ' ,,, bbmll lm l R Rr ml l l L Lmlml YY b r l l mm llll ll l R Yr lR l dR l l L                                     ),( !)!12(!)!12( !]!1)(2[ 000 )12](1)(2)[12(4 12 )1( '' ' '' '' ,' ' '' '''' '' )2/1()2/1( ' ' ,,, bbmmll l R l Llm mlml Y l l mmmm llllllll ll b R b R l ll                                      
  • 11. dimer matrix elementS !! )!( ]!1)(2[ )!2()!2( )1( 000 ' ' ' ''' ' ll ll ll llllll ll           )!()!()!()!(]!1)(2[ )!()!()!2()!2( )1( )( '''' ''''' '' '' '' mlmlmlmlll mmllmmllll mmmm llll mmll            bmmimm llbbmmll eP mmll mmllll     )( '' ''' , '' ''' )(cos )!( )!( 4 ]1)(2[ ),(Y      Using properties of Wigner 3j symbols Relation b/w Spherical harmonics & Legendre functions bmmimm ll l R l Llm mlml eP ll ll l l l l ll ll mlmlmlml mmll b R b R ll l llll )( ' ' ' ' ' ' '''' '')2/1()2/1( ' ' '' ,,, '' ' ' ' '' !! )( !)!12( )!2( !)!12( )!2( ]!1)(2[ !]!1)(2[ )!()!()!()!( )!( )12)(12( 12 ]1)(2[ )1(                           bmmimm ll l R l Llm mlml eP mlmlmlml mmll ll ll b R b R )'(' ''''' '' ' ')2/1(')2/1( )!()!()!()!( )!( )12)(12( )1( ' ''                    
  • 12. TRANSLATED EIGENStates Outside sphere eigenstates 1 , 12 b-r ),( )b-r(     l ml l R lm Y l R    1 , 12 ),( )b-r(     l ml l R lm R Y l R              b,renwh1 b,rwhen1 cos br br          b,rnwhe0 b,rwhen   m d 'rr LR LO RR RO b L R P Z zE ˆ0
  • 13. 1 0 12 4 1 )1()b-r(                   l R R l l br R l l R   1 12 1 0, 12 0 1 4 12 )1( )0,( )b-r(                l l Rl l l l R l brl Rl br Y l R     Inside sphere eigenstates l l R ml lmlmR lR Y b-r ),( )b-r( 12 , ,     l l R l lR br lR l         12, 1 4 12 )1()r(   l RR l lR R br l l R                12 4 1 )1()r(,  
  • 14. Future plan  To Calculate the external potential and overlap integral for a pair of metallic nanoparticles (dimer) to obtain the overall potential in the gap region.  To study the effect of Electric Field Enhancement, polarizability and plexcitonic interactions in the vicinity and the gap region of a pair of metallic nanoparticles (dimer).  To explore different plasmonic materials other than metals(Au or Ag).  To extend Multipole Spectral Expansion Method to treat Nanoshells.
  • 15. references  Manmohan S. Shishodia, Boris D. Fainberg, and Abraham Nitzen, “Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures”, SPIE 0277-786X (2011).  J.D. Jackson, “Classical Electrodynamics”, John Wiley & Sons, (1998).  D.J. Bergman, “Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum”, phys. Rev. B, 19, 2359 (1979).  M. Danos, and L.C. Maximon, “Multipole matrix elements of the translation operator”, J. Mathematical Phys. 6, pp. 766-778 (1965).  http://functions.wolfram.com/Polynomials/SphericalHarmonicY/20/01/02  http://mathworld.wolfram.com/Polynomials/Wigner3j-Symbol.html  Jiunn-Woei Liaw, Jeng-Hong chen, chi-San, and Mao-Kuen kuo, “Purecell effect of nanoshell dimer on single molecule’s fluoresecnce”, Opt.Express 16, 13532-13540 (2009).