SlideShare a Scribd company logo
1 of 25
CS 473 : Software Engineering -2
Chapter 1 : Course Overview
Chapter 2 : Architectural Design
Chapter 3 : Design and Implementation
Chapter 4 : Distributed Software Engineering
Chapter 5 : Software Reuse
Chapter 5 – Software Reuse
Lecture 1
1
Chapter 5 Software Reuse
Topics covered
 The reuse landscape
 Application frameworks
 Software product lines
 COTS product reuse
Chapter 16 Software reuse 2
Software reuse
 In most engineering disciplines, systems are designed
by composing existing components that have been used
in other systems.
 Software engineering has been more focused on original
development but it is now recognised that to achieve
better software, more quickly and at lower cost, we need
a design process that is based on systematic software
reuse.
 There has been a major switch to reuse-based
development over the past 10 years.
Reuse-based software engineering
 Application system reuse
 The whole of an application system may be reused either by
incorporating it without change into other systems (COTS reuse)
or by developing application families.
 Component reuse
 Components of an application from sub-systems to single objects
may be reused. Covered in Chapter 17.
 Object and function reuse
 Software components that implement a single well-defined object
or function may be reused.
Benefits of software reuse
Benefit Explanation
Increased dependability Reused software, which has been tried and tested in
working systems, should be more dependable than
new software. Its design and implementation faults
should have been found and fixed.
Reduced process risk The cost of existing software is already known,
whereas the costs of development are always a matter
of judgment. This is an important factor for project
management because it reduces the margin of error in
project cost estimation. This is particularly true when
relatively large software components such as
subsystems are reused.
Effective use of specialists Instead of doing the same work over and over again,
application specialists can develop reusable software
that encapsulates their knowledge.
5
Chapter 16 Software reuse
Benefits of software reuse
Benefit Explanation
Standards compliance Some standards, such as user interface standards, can
be implemented as a set of reusable components. For
example, if menus in a user interface are implemented
using reusable components, all applications present the
same menu formats to users. The use of standard user
interfaces improves dependability because users make
fewer mistakes when presented with a familiar interface.
Accelerated development Bringing a system to market as early as possible is often
more important than overall development costs. Reusing
software can speed up system production because both
development and validation time may be reduced.
6
Chapter 16 Software reuse
Problems with reuse
Problem Explanation
Increased maintenance
costs
If the source code of a reused software system or
component is not available then maintenance costs may be
higher because the reused elements of the system may
become increasingly incompatible with system changes.
Lack of tool support Some software tools do not support development with
reuse. It may be difficult or impossible to integrate these
tools with a component library system. The software
process assumed by these tools may not take reuse into
account. This is particularly true for tools that support
embedded systems engineering, less so for object-oriented
development tools.
Not-invented-here
syndrome
Some software engineers prefer to rewrite components
because they believe they can improve on them. This is
partly to do with trust and partly to do with the fact that
writing original software is seen as more challenging than
reusing other people’s software.
7
Chapter 16 Software reuse
Problems with reuse
Problem Explanation
Creating, maintaining,
and using a component
library
Populating a reusable component library and ensuring the
software developers can use this library can be expensive.
Development processes have to be adapted to ensure that
the library is used.
Finding, understanding,
and adapting reusable
components
Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of
finding a component in the library before they include a
component search as part of their normal development
process.
8
Chapter 16 Software reuse
Approaches that support software reuse
Approach Description
Architectural patterns Standard software architectures that support common types
of application systems are used as the basis of applications.
Described in Chapters 6, 13, and 20.
Design patterns Generic abstractions that occur across applications are
represented as design patterns showing abstract and
concrete objects and interactions. Described in Chapter 7.
Component-based
development
Systems are developed by integrating components
(collections of objects) that conform to component-model
standards. Described in Chapter 17.
Application frameworks Collections of abstract and concrete classes are adapted and
extended to create application systems.
Legacy system wrapping Legacy systems (see Chapter 9) are ‘wrapped’ by defining a
set of interfaces and providing access to these legacy
systems through these interfaces.
9
Chapter 16 Software reuse
Key points
 Most new business software systems are now developed by reusing
knowledge and code from previously implemented systems.
 There are many different ways to reuse software. These range from
the reuse of classes and methods in libraries to the reuse of
complete application systems.
 The advantages of software reuse are lower costs, faster software
development and lower risks. System dependability is increased.
Specialists can be used more effectively by concentrating their
expertise on the design of reusable components.
 Application frameworks are collections of concrete and abstract
objects that are designed for reuse through specialization and the
addition of new objects. They usually incorporate good design
practice through design patterns.
Chapter 16 Software reuse 10
Chapter 16 – Software Reuse
Lecture 2
11
Chapter 16 Software reuse
Software product lines
 Software product lines or application families are
applications with generic functionality that can be
adapted and configured for use in a specific context.
 A software product line is a set of applications with a
common architecture and shared components, with each
application specialized to reflect different requirements.
 Adaptation may involve:
 Component and system configuration;
 Adding new components to the system;
 Selecting from a library of existing components;
 Modifying components to meet new requirements.
Application frameworks and product lines
 Application frameworks rely on object-oriented features
such as polymorphism to implement extensions. Product
lines need not be object-oriented (e.g. embedded
software for a mobile phone)
 Application frameworks focus on providing technical
rather than domain-specific support. Product lines
embed domain and platform information.
 Product lines often control applications for equipment.
 Software product lines are made up of a family of
applications, usually owned by the same organization.
Chapter 16 Software reuse 13
Product line specialisation
 Platform specialization
 Different versions of the application are developed for
different platforms.
 Environment specialization
 Different versions of the application are created to handle
different operating environments e.g. different types of
communication equipment.
 Functional specialization
 Different versions of the application are created for customers
with different requirements.
 Process specialization
 Different versions of the application are created to support
different business processes.
Product line architectures
 Architectures must be structured in such a way to
separate different sub-systems and to allow them to be
modified.
 The architecture should also separate entities and their
descriptions and the higher levels in the system access
entities through descriptions rather than directly.
Product line configuration
 Design time configuration
 The product line is adapted and changed according to the
requirements of particular customers.
 Deployment time configuration
 The product line is configured by embedding knowledge of the
customer’s requirements and business processes. The software
source code itself is not changed.
COTS product reuse
 A commercial-off-the-shelf (COTS) product is a software
system that can be adapted for different customers
without changing the source code of the system.
 COTS systems have generic features and so can be
used/reused in different environments.
 COTS products are adapted by using built-in
configuration mechanisms that allow the functionality of
the system to be tailored to specific customer needs.
 For example, in a hospital patient record system, separate input
forms and output reports might be defined for different types of
patient.
Chapter 16 Software reuse 17
Benefits of COTS reuse
 As with other types of reuse, more rapid deployment of a reliable
system may be possible.
 It is possible to see what functionality is provided by the applications
and so it is easier to judge whether or not they are likely to be
suitable.
 Some development risks are avoided by using existing software.
However, this approach has its own risks, as I discuss below.
 Businesses can focus on their core activity without having to devote
a lot of resources to IT systems development.
 As operating platforms evolve, technology updates may be
simplified as these are the responsibility of the COTS product
vendor rather than the customer.
Chapter 16 Software reuse 18
Problems of COTS reuse
 Requirements usually have to be adapted to reflect the
functionality and mode of operation of the COTS product.
 The COTS product may be based on assumptions that are
practically impossible to change.
 Choosing the right COTS system for an enterprise can be a
difficult process, especially as many COTS products are not
well documented.
 There may be a lack of local expertise to support systems
development.
 The COTS product vendor controls system support and
evolution.
Chapter 16 Software reuse 19
ERP systems
 An Enterprise Resource Planning (ERP) system is a
generic system that supports common business
processes such as ordering and invoicing,
manufacturing, etc.
 These are very widely used in large companies - they
represent probably the most common form of software
reuse.
 The generic core is adapted by including modules and
by incorporating knowledge of business processes and
rules.
The architecture of an ERP system
21
Chapter 16 Software reuse
ERP architecture
 A number of modules to support different business
functions.
 A defined set of business processes, associated with
each module, which relate to activities in that module.
 A common database that maintains information about all
related business functions.
 A set of business rules that apply to all data in the
database.
Chapter 16 Software reuse 22
ERP configuration
 Selecting the required functionality from the system.
 Establishing a data model that defines how the organization’s
data will be structured in the system database.
 Defining business rules that apply to that data.
 Defining the expected interactions with external systems.
 Designing the input forms and the output reports generated by
the system.
 Designing new business processes that conform to the
underlying process model supported by the system.
 Setting parameters that define how the system is deployed on
its underlying platform.
Chapter 16 Software reuse 23
A COTS-integrated procurement system
24
Chapter 16 Software reuse
Key points
 Software product lines are related applications that are developed from a
common base. This generic system is adapted to meet specific
requirements for functionality, target platform or operational configuration.
 COTS product reuse is concerned with the reuse of large-scale, off-the-
shelf systems. These provide a lot of functionality and their reuse can
radically reduce costs and development time. Systems may be developed
by configuring a single, generic COTS product or by integrating two or more
COTS products.
 Enterprise Resource Planning systems are examples of large-scale COTS
reuse. You create an instance of an ERP system by configuring a generic
system with information about the customer’s business processes and
rules.
 Potential problems with COTS-based reuse include lack of control over
functionality and performance, lack of control over system evolution, the
need for support from external vendors and difficulties in ensuring that
systems can inter-operate.
Chapter 16 Software reuse 25

More Related Content

Similar to Object Oriented Software Engineering and Software Reuse

Software Reuse.ppt
Software Reuse.pptSoftware Reuse.ppt
Software Reuse.pptgdfgdfgdf1
 
Design Issue(Reuse) in Software Engineering SE14
Design Issue(Reuse) in Software Engineering SE14Design Issue(Reuse) in Software Engineering SE14
Design Issue(Reuse) in Software Engineering SE14koolkampus
 
Developing reusable software components for distributed embedded systems
Developing reusable software components for distributed embedded systemsDeveloping reusable software components for distributed embedded systems
Developing reusable software components for distributed embedded systemseSAT Publishing House
 
Software component reuse repository
Software component reuse repositorySoftware component reuse repository
Software component reuse repositorySandeep Singh
 
Software engineering introduction
Software engineering introductionSoftware engineering introduction
Software engineering introductionVishal Singh
 
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITY
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITYA FRAMEWORK STUDIO FOR COMPONENT REUSABILITY
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITYcscpconf
 
Unit V _Software Engineering_21CSCST4050.pptx
Unit V _Software Engineering_21CSCST4050.pptxUnit V _Software Engineering_21CSCST4050.pptx
Unit V _Software Engineering_21CSCST4050.pptxbaranicsea
 
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTS
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTSFRAMEWORKS BETWEEN COMPONENTS AND OBJECTS
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTSacijjournal
 
An Approach to Calculate Reusability in Source Code Using Metrics
An Approach to Calculate Reusability in Source Code Using MetricsAn Approach to Calculate Reusability in Source Code Using Metrics
An Approach to Calculate Reusability in Source Code Using MetricsIJERA Editor
 
A Survey of Software Reusability
A Survey of Software ReusabilityA Survey of Software Reusability
A Survey of Software ReusabilityIJERA Editor
 
An Empirical Study of the Improved SPLD Framework using Expert Opinion Technique
An Empirical Study of the Improved SPLD Framework using Expert Opinion TechniqueAn Empirical Study of the Improved SPLD Framework using Expert Opinion Technique
An Empirical Study of the Improved SPLD Framework using Expert Opinion TechniqueIJEACS
 
Lecture - 7-10.pptx
Lecture - 7-10.pptxLecture - 7-10.pptx
Lecture - 7-10.pptxFarHana74914
 

Similar to Object Oriented Software Engineering and Software Reuse (20)

Reuse landscape
Reuse landscapeReuse landscape
Reuse landscape
 
Software Reuse.ppt
Software Reuse.pptSoftware Reuse.ppt
Software Reuse.ppt
 
Design Issue(Reuse) in Software Engineering SE14
Design Issue(Reuse) in Software Engineering SE14Design Issue(Reuse) in Software Engineering SE14
Design Issue(Reuse) in Software Engineering SE14
 
Ch18
Ch18Ch18
Ch18
 
M 3.1 reuse
M 3.1 reuseM 3.1 reuse
M 3.1 reuse
 
Software resuse
Software  resuseSoftware  resuse
Software resuse
 
Developing reusable software components for distributed embedded systems
Developing reusable software components for distributed embedded systemsDeveloping reusable software components for distributed embedded systems
Developing reusable software components for distributed embedded systems
 
Software component reuse repository
Software component reuse repositorySoftware component reuse repository
Software component reuse repository
 
Software engineering introduction
Software engineering introductionSoftware engineering introduction
Software engineering introduction
 
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITY
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITYA FRAMEWORK STUDIO FOR COMPONENT REUSABILITY
A FRAMEWORK STUDIO FOR COMPONENT REUSABILITY
 
Unit V _Software Engineering_21CSCST4050.pptx
Unit V _Software Engineering_21CSCST4050.pptxUnit V _Software Engineering_21CSCST4050.pptx
Unit V _Software Engineering_21CSCST4050.pptx
 
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTS
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTSFRAMEWORKS BETWEEN COMPONENTS AND OBJECTS
FRAMEWORKS BETWEEN COMPONENTS AND OBJECTS
 
An Approach to Calculate Reusability in Source Code Using Metrics
An Approach to Calculate Reusability in Source Code Using MetricsAn Approach to Calculate Reusability in Source Code Using Metrics
An Approach to Calculate Reusability in Source Code Using Metrics
 
D502023439
D502023439D502023439
D502023439
 
D502023439
D502023439D502023439
D502023439
 
A Survey of Software Reusability
A Survey of Software ReusabilityA Survey of Software Reusability
A Survey of Software Reusability
 
Object oriented analysis and design unit- v
Object oriented analysis and design unit- vObject oriented analysis and design unit- v
Object oriented analysis and design unit- v
 
10.1.1.107.2618
10.1.1.107.261810.1.1.107.2618
10.1.1.107.2618
 
An Empirical Study of the Improved SPLD Framework using Expert Opinion Technique
An Empirical Study of the Improved SPLD Framework using Expert Opinion TechniqueAn Empirical Study of the Improved SPLD Framework using Expert Opinion Technique
An Empirical Study of the Improved SPLD Framework using Expert Opinion Technique
 
Lecture - 7-10.pptx
Lecture - 7-10.pptxLecture - 7-10.pptx
Lecture - 7-10.pptx
 

Recently uploaded

ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfKamal Acharya
 
internship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOTinternship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOTNavyashreeS6
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...Roi Lipman
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfKamal Acharya
 
An improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technologyAn improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technologyBOHRInternationalJou1
 
E-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce siteE-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce sitejatinraor66
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdfKamal Acharya
 
2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edgePaco Orozco
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientistgettygaming1
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectRased Khan
 
Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Krakówbim.edu.pl
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdfKamal Acharya
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationDr. Radhey Shyam
 
Attraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptxAttraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptxkarthikeyanS725446
 
Lect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxLect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxMonirHossain707319
 
ENCODERS & DECODERS - Digital Electronics - diu swe
ENCODERS & DECODERS - Digital Electronics - diu sweENCODERS & DECODERS - Digital Electronics - diu swe
ENCODERS & DECODERS - Digital Electronics - diu sweMohammadAliNayeem
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdfKamal Acharya
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdfKamal Acharya
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2T.D. Shashikala
 
Dairy management system project report..pdf
Dairy management system project report..pdfDairy management system project report..pdf
Dairy management system project report..pdfKamal Acharya
 

Recently uploaded (20)

ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
 
internship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOTinternship exam ppt.pptx on embedded system and IOT
internship exam ppt.pptx on embedded system and IOT
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdfRESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.pdf
 
An improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technologyAn improvement in the safety of big data using blockchain technology
An improvement in the safety of big data using blockchain technology
 
E-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce siteE-Commerce Shopping for developing a shopping ecommerce site
E-Commerce Shopping for developing a shopping ecommerce site
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
 
2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge2024 DevOps Pro Europe - Growing at the edge
2024 DevOps Pro Europe - Growing at the edge
 
Top 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering ScientistTop 13 Famous Civil Engineering Scientist
Top 13 Famous Civil Engineering Scientist
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Kraków
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdf
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
 
Attraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptxAttraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptx
 
Lect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxLect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptx
 
ENCODERS & DECODERS - Digital Electronics - diu swe
ENCODERS & DECODERS - Digital Electronics - diu sweENCODERS & DECODERS - Digital Electronics - diu swe
ENCODERS & DECODERS - Digital Electronics - diu swe
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdf
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdf
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2
 
Dairy management system project report..pdf
Dairy management system project report..pdfDairy management system project report..pdf
Dairy management system project report..pdf
 

Object Oriented Software Engineering and Software Reuse

  • 1. CS 473 : Software Engineering -2 Chapter 1 : Course Overview Chapter 2 : Architectural Design Chapter 3 : Design and Implementation Chapter 4 : Distributed Software Engineering Chapter 5 : Software Reuse Chapter 5 – Software Reuse Lecture 1 1 Chapter 5 Software Reuse
  • 2. Topics covered  The reuse landscape  Application frameworks  Software product lines  COTS product reuse Chapter 16 Software reuse 2
  • 3. Software reuse  In most engineering disciplines, systems are designed by composing existing components that have been used in other systems.  Software engineering has been more focused on original development but it is now recognised that to achieve better software, more quickly and at lower cost, we need a design process that is based on systematic software reuse.  There has been a major switch to reuse-based development over the past 10 years.
  • 4. Reuse-based software engineering  Application system reuse  The whole of an application system may be reused either by incorporating it without change into other systems (COTS reuse) or by developing application families.  Component reuse  Components of an application from sub-systems to single objects may be reused. Covered in Chapter 17.  Object and function reuse  Software components that implement a single well-defined object or function may be reused.
  • 5. Benefits of software reuse Benefit Explanation Increased dependability Reused software, which has been tried and tested in working systems, should be more dependable than new software. Its design and implementation faults should have been found and fixed. Reduced process risk The cost of existing software is already known, whereas the costs of development are always a matter of judgment. This is an important factor for project management because it reduces the margin of error in project cost estimation. This is particularly true when relatively large software components such as subsystems are reused. Effective use of specialists Instead of doing the same work over and over again, application specialists can develop reusable software that encapsulates their knowledge. 5 Chapter 16 Software reuse
  • 6. Benefits of software reuse Benefit Explanation Standards compliance Some standards, such as user interface standards, can be implemented as a set of reusable components. For example, if menus in a user interface are implemented using reusable components, all applications present the same menu formats to users. The use of standard user interfaces improves dependability because users make fewer mistakes when presented with a familiar interface. Accelerated development Bringing a system to market as early as possible is often more important than overall development costs. Reusing software can speed up system production because both development and validation time may be reduced. 6 Chapter 16 Software reuse
  • 7. Problems with reuse Problem Explanation Increased maintenance costs If the source code of a reused software system or component is not available then maintenance costs may be higher because the reused elements of the system may become increasingly incompatible with system changes. Lack of tool support Some software tools do not support development with reuse. It may be difficult or impossible to integrate these tools with a component library system. The software process assumed by these tools may not take reuse into account. This is particularly true for tools that support embedded systems engineering, less so for object-oriented development tools. Not-invented-here syndrome Some software engineers prefer to rewrite components because they believe they can improve on them. This is partly to do with trust and partly to do with the fact that writing original software is seen as more challenging than reusing other people’s software. 7 Chapter 16 Software reuse
  • 8. Problems with reuse Problem Explanation Creating, maintaining, and using a component library Populating a reusable component library and ensuring the software developers can use this library can be expensive. Development processes have to be adapted to ensure that the library is used. Finding, understanding, and adapting reusable components Software components have to be discovered in a library, understood and, sometimes, adapted to work in a new environment. Engineers must be reasonably confident of finding a component in the library before they include a component search as part of their normal development process. 8 Chapter 16 Software reuse
  • 9. Approaches that support software reuse Approach Description Architectural patterns Standard software architectures that support common types of application systems are used as the basis of applications. Described in Chapters 6, 13, and 20. Design patterns Generic abstractions that occur across applications are represented as design patterns showing abstract and concrete objects and interactions. Described in Chapter 7. Component-based development Systems are developed by integrating components (collections of objects) that conform to component-model standards. Described in Chapter 17. Application frameworks Collections of abstract and concrete classes are adapted and extended to create application systems. Legacy system wrapping Legacy systems (see Chapter 9) are ‘wrapped’ by defining a set of interfaces and providing access to these legacy systems through these interfaces. 9 Chapter 16 Software reuse
  • 10. Key points  Most new business software systems are now developed by reusing knowledge and code from previously implemented systems.  There are many different ways to reuse software. These range from the reuse of classes and methods in libraries to the reuse of complete application systems.  The advantages of software reuse are lower costs, faster software development and lower risks. System dependability is increased. Specialists can be used more effectively by concentrating their expertise on the design of reusable components.  Application frameworks are collections of concrete and abstract objects that are designed for reuse through specialization and the addition of new objects. They usually incorporate good design practice through design patterns. Chapter 16 Software reuse 10
  • 11. Chapter 16 – Software Reuse Lecture 2 11 Chapter 16 Software reuse
  • 12. Software product lines  Software product lines or application families are applications with generic functionality that can be adapted and configured for use in a specific context.  A software product line is a set of applications with a common architecture and shared components, with each application specialized to reflect different requirements.  Adaptation may involve:  Component and system configuration;  Adding new components to the system;  Selecting from a library of existing components;  Modifying components to meet new requirements.
  • 13. Application frameworks and product lines  Application frameworks rely on object-oriented features such as polymorphism to implement extensions. Product lines need not be object-oriented (e.g. embedded software for a mobile phone)  Application frameworks focus on providing technical rather than domain-specific support. Product lines embed domain and platform information.  Product lines often control applications for equipment.  Software product lines are made up of a family of applications, usually owned by the same organization. Chapter 16 Software reuse 13
  • 14. Product line specialisation  Platform specialization  Different versions of the application are developed for different platforms.  Environment specialization  Different versions of the application are created to handle different operating environments e.g. different types of communication equipment.  Functional specialization  Different versions of the application are created for customers with different requirements.  Process specialization  Different versions of the application are created to support different business processes.
  • 15. Product line architectures  Architectures must be structured in such a way to separate different sub-systems and to allow them to be modified.  The architecture should also separate entities and their descriptions and the higher levels in the system access entities through descriptions rather than directly.
  • 16. Product line configuration  Design time configuration  The product line is adapted and changed according to the requirements of particular customers.  Deployment time configuration  The product line is configured by embedding knowledge of the customer’s requirements and business processes. The software source code itself is not changed.
  • 17. COTS product reuse  A commercial-off-the-shelf (COTS) product is a software system that can be adapted for different customers without changing the source code of the system.  COTS systems have generic features and so can be used/reused in different environments.  COTS products are adapted by using built-in configuration mechanisms that allow the functionality of the system to be tailored to specific customer needs.  For example, in a hospital patient record system, separate input forms and output reports might be defined for different types of patient. Chapter 16 Software reuse 17
  • 18. Benefits of COTS reuse  As with other types of reuse, more rapid deployment of a reliable system may be possible.  It is possible to see what functionality is provided by the applications and so it is easier to judge whether or not they are likely to be suitable.  Some development risks are avoided by using existing software. However, this approach has its own risks, as I discuss below.  Businesses can focus on their core activity without having to devote a lot of resources to IT systems development.  As operating platforms evolve, technology updates may be simplified as these are the responsibility of the COTS product vendor rather than the customer. Chapter 16 Software reuse 18
  • 19. Problems of COTS reuse  Requirements usually have to be adapted to reflect the functionality and mode of operation of the COTS product.  The COTS product may be based on assumptions that are practically impossible to change.  Choosing the right COTS system for an enterprise can be a difficult process, especially as many COTS products are not well documented.  There may be a lack of local expertise to support systems development.  The COTS product vendor controls system support and evolution. Chapter 16 Software reuse 19
  • 20. ERP systems  An Enterprise Resource Planning (ERP) system is a generic system that supports common business processes such as ordering and invoicing, manufacturing, etc.  These are very widely used in large companies - they represent probably the most common form of software reuse.  The generic core is adapted by including modules and by incorporating knowledge of business processes and rules.
  • 21. The architecture of an ERP system 21 Chapter 16 Software reuse
  • 22. ERP architecture  A number of modules to support different business functions.  A defined set of business processes, associated with each module, which relate to activities in that module.  A common database that maintains information about all related business functions.  A set of business rules that apply to all data in the database. Chapter 16 Software reuse 22
  • 23. ERP configuration  Selecting the required functionality from the system.  Establishing a data model that defines how the organization’s data will be structured in the system database.  Defining business rules that apply to that data.  Defining the expected interactions with external systems.  Designing the input forms and the output reports generated by the system.  Designing new business processes that conform to the underlying process model supported by the system.  Setting parameters that define how the system is deployed on its underlying platform. Chapter 16 Software reuse 23
  • 24. A COTS-integrated procurement system 24 Chapter 16 Software reuse
  • 25. Key points  Software product lines are related applications that are developed from a common base. This generic system is adapted to meet specific requirements for functionality, target platform or operational configuration.  COTS product reuse is concerned with the reuse of large-scale, off-the- shelf systems. These provide a lot of functionality and their reuse can radically reduce costs and development time. Systems may be developed by configuring a single, generic COTS product or by integrating two or more COTS products.  Enterprise Resource Planning systems are examples of large-scale COTS reuse. You create an instance of an ERP system by configuring a generic system with information about the customer’s business processes and rules.  Potential problems with COTS-based reuse include lack of control over functionality and performance, lack of control over system evolution, the need for support from external vendors and difficulties in ensuring that systems can inter-operate. Chapter 16 Software reuse 25