Starter
• Think about it
Objectives
• Describe Number Bases
• Convert from base 2 to base 10
• Convert from base 10 to other
bases
• If DOVE = 415225,
What is: BROWN =
Hint: Decode the pattern
ANSWER
BROWN = 218152314
We make use of:
A B C D E F G H I J
1 2 3 4 5 6 7 8 9 10
K L M N O P Q R S T
11 12 13 14 15 16 17 18 19 20
U V W X Y Z
21 22 23 24 25 26
BRAIN STORM
• If DOVE = 46,
What is: BROWN =
Answer
• BROWN = 72
What are number bases?
They are simply a
system or way of
writing numbers
The same number written in
different form
Base 10 Base 2 Base 3 Base 4
45 101101 1200 231
Types of number bases
Number bases digit
Base 2 0,1
Base 3 0,1,2
Base 4 0,1,2,3
Base 5 0,1,2,3,4
Base 6 0,1,2,,3,4,5
Base 7 0,1,2,3,4,5,6
Base 8 0,1,2,3,4,5,6,7
Base 9 0,1,2,3,4,5,6,7,8
Base 10 0,1,2,3,4,5,6,7,8,9
Comparing number in base 10
and base 2
Base 10 Base 2
1 1
2 10
3 11
4 100
5 101
If you are to write 72 in
binary, will you have to start
from one to 72?
•No, you simply learn
the conversion from
base 10 to base 2
Try this
•What is 17 in base 2?
•Answer 10001
Converting from binary to denary
• Q.1: Convert the binary number 1001
to a decimal number.
• Solution: Given, binary number = 10012
• Hence, using the binary to decimal
conversion formula, we have:
• 10012 = (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1
× 2⁰)
• = 8 + 0 + 0 + 1
• = (9)₁₀
Try this
•Convert 11010012 into
an equivalent decimal
number.
Solution
• (1101001)₂ = (1 × 2⁶) + (1 × 2⁵) + (0 × 2⁴)
+ (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰)
= 64 + 32 + 0 + 8 + 0 + 0 + 1
= (105)₁₀

number bases.pptx

  • 2.
  • 3.
    Objectives • Describe NumberBases • Convert from base 2 to base 10 • Convert from base 10 to other bases
  • 4.
    • If DOVE= 415225, What is: BROWN = Hint: Decode the pattern
  • 5.
    ANSWER BROWN = 218152314 Wemake use of: A B C D E F G H I J 1 2 3 4 5 6 7 8 9 10 K L M N O P Q R S T 11 12 13 14 15 16 17 18 19 20 U V W X Y Z 21 22 23 24 25 26
  • 6.
    BRAIN STORM • IfDOVE = 46, What is: BROWN =
  • 7.
  • 8.
    What are numberbases? They are simply a system or way of writing numbers
  • 9.
    The same numberwritten in different form Base 10 Base 2 Base 3 Base 4 45 101101 1200 231
  • 10.
    Types of numberbases Number bases digit Base 2 0,1 Base 3 0,1,2 Base 4 0,1,2,3 Base 5 0,1,2,3,4 Base 6 0,1,2,,3,4,5 Base 7 0,1,2,3,4,5,6 Base 8 0,1,2,3,4,5,6,7 Base 9 0,1,2,3,4,5,6,7,8 Base 10 0,1,2,3,4,5,6,7,8,9
  • 11.
    Comparing number inbase 10 and base 2 Base 10 Base 2 1 1 2 10 3 11 4 100 5 101
  • 12.
    If you areto write 72 in binary, will you have to start from one to 72? •No, you simply learn the conversion from base 10 to base 2
  • 14.
    Try this •What is17 in base 2? •Answer 10001
  • 15.
    Converting from binaryto denary • Q.1: Convert the binary number 1001 to a decimal number. • Solution: Given, binary number = 10012 • Hence, using the binary to decimal conversion formula, we have: • 10012 = (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰) • = 8 + 0 + 0 + 1 • = (9)₁₀
  • 16.
    Try this •Convert 11010012into an equivalent decimal number.
  • 17.
    Solution • (1101001)₂ =(1 × 2⁶) + (1 × 2⁵) + (0 × 2⁴) + (1 × 2³) + (0 × 2²) + (0 × 2¹) + (1 × 2⁰) = 64 + 32 + 0 + 8 + 0 + 0 + 1 = (105)₁₀