Equations


    Mass

Mass Oligo                           Mass Base               Terminal Correction


    Ionic Strentgh

               n
       1
I                  ci z2
                       i
       2     i 1
where
n is the number of different types of ions
ci is the concentration of each ion
zi is the number of charges on the ion
                                                                                                               IUPAC definition


    Extinction Coefficients

    Linear

                            n                                              n 1
 260       Oligo                 260     dinucleotidei                              260   nucleotidei
                           i 1                                             i 2

                       Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 174-176

    Circular

                                 n
                           1
 260       Oligo                       260   dinucleotidei
                           2    i 1

                       Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 174-176

    Hypochromicity correction

 260 duplex                      260    Top Strand                    260       Bottom Strand           1     h260
where
h260 duplex                 0.287 FractionAT duplex                                   0.059 FractionGC duplex
                                                                                               Biophys.Chem.(2008) 133, 66 - 70




                                                    Printed by Mathematica for Students
2    cheat_sheat.nb




     Thermodynamics

    Gibbs Free Energy


    GT                      H                 T S
    GT                          R T Ln Keq
    Individual Nearest Neighbor                                     Hydrogen Bonding Model (INN - HB)

    G Duplex
     n 1
              G dinucleotidei                                   Initiation Correction               Terminal Correction   Symmetry Correction
     i 1
where
 Initiation Correction is applied to correct for initial complex formation
 Terminal correction is applied once for each terminal A T or A U pair
 Symmetry correction is applied if the sequence is self complimentary palindrome

                                         Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 271-286


     Equilibrium Distribution

        Keq
    A         B

Equlibrium conditions :
                        B       eq
        Keq
                        A       eq
Conservation of mass :
            A      eq           B     eq              A    0        B   0

Substituting conservation of mass into equilibrium conditions yields :
                                             B     eq
        Keq
                        A       0            B     eq           B   0

Solve for B                     eq   :
                            A    0           B    0       Keq
        B     eq
                                     1       Keq
                        A   0            B    0
      A     eq
                            1        Keq




                                                                              Printed by Mathematica for Students
cheat_sheat.nb   3




       KD
  AB          A+B

Equlibrium conditions :
        A eq B eq
   KD
          AB eq
Conservation of mass :
  Assuming all mass starts in AB                                          0
 AB eq  A eq    AB 0
 AB    eq       B   eq           AB       0


Substituting conservation of mass into equilibrium conditions yields the folowing polynomial:

                                                        2
                AB       0            AB           eq
KD
                              AB
Physically relevant solution to the polynomial:

                                     1                  1
 A    eq        B    eq                       KD                KD 2          4 KD AB      0
                                     2                  2
                                     1                  1
 AB       eq        AB       0                KD                KD 2          4 KD AB      0
                                      2                 2

       K Db                  K Dc
  AB           A+B AC               A+C

Equlibrium conditions :
         A eq B eq                                          A   eq   C    eq
   KDb             , KDc
           AB eq                                                AC   eq

Conservation of mass :
  Assuming all mass starts in AB                                          0   and C    0
 AB eq  AC eq   A eq   AB 0
 AB    eq       B   eq           AB       0
 AC    eq       C   eq           C    0


Substituting conservation of mass into equilibrium conditions and subsequent workup yields the folowing polynomial:
     3              2
 A   eq       Α A   eq       Β A         eq     Γ       0
where
Α KDb KDc     A 0
Β KDb    A 0   AB                    0         KDb KDc
Γ   KDb KDc AB 0

Physically relevant solution to the polynomial:




                                                                                Printed by Mathematica for Students
4       cheat_sheat.nb




                   Α           2                                            Θ
    A   eq                                 Α2           3Β        cos
                   3           3                                            3
                                                                                                  Θ
                                       AB       0       2            Α2    3Β           cos       3
                                                                                                          Α
    B   eq     AB          0
                                                                                                  Θ
                                   3 KDb                2            Α2    3Β           cos       3
                                                                                                          Α

                                                                                                                                                                   Θ
                                                            Α        2                                        Θ        AB   0       2    Α2       3Β    cos        3
                                                                                                                                                                       Α
                                                                                2
    C   eq     C       0           AB      0                                Α           3Β        cos
                                                            3        3                                        3                                                    Θ
                                                                                                                    3 KDb           2        Α2   3Β    cos        3
                                                                                                                                                                       Α

                                                                                    Θ
                   AB          0    2               Α2          3Β        cos       3
                                                                                             Α
    AB    eq
                                                                                    Θ
               3 KDb                   2            Α2          3Β        cos       3
                                                                                              Α

                                                                                                      Θ
                                           AB       0       2         Α2   3Β            cos          3
                                                                                                              Α       Α      2                                 Θ
    AC    eq       AB          0                                                                                                        Α2    3Β       cos
                                                                                                      Θ               3      3                                 3
                                       3 KDb                2         Α2    3Β           cos          3
                                                                                                              Α


where


                               2 Α3            9 ΑΒ             27 Γ
Θ        arccos
                                                                 3
                               2           Α2           3Β

                                                                                                                                                             FEBS letters 1995, 360, 111-4


    Melting Temperatures

    A+A            AA

                                   H
Tn
     S R Ln Ct
Where
Ct 2 A 0
                                                Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273

    A+B        AB

                                   H
Tn
                                               Ct
               S           R Ln                4
Where
Ct 2 A                     0

                                                Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273


                                                                                              Printed by Mathematica for Students
cheat_sheat.nb   5




                                          Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273


  Elementary Reaction Kinetics

  Detailed Balance

For a reversible first order equilibrium is defined as the point at which the forward reaction rate is equal to the
reverse reaction rate, and therefore:
kf A        eq        kb B           eq
                 kb B           eq
      kf
                      A     eq

      kf              B     eq

      kb              A     eq

Furthermore thermodynamics tells us that for a reversible first order equilibrium is defined as:
            B    eq
Keq
            A    eq

                 kf
      Keq
                 kb

This works regardless of the order of reaction. For example, in the case of a second order reaction A + B                                        C
kf A       eq    B    eq
                            kb C          eq

                 kb C       eq
      kf
                 A    eq    B    eq

      kf               C    eq

      kb          A    eq   B    eq


And thermodynamics tells us for a second order reaction:
                 C     eq
Keq
            A    eq    B    eq

                 kf
      Keq
                 kb

And thus regardless of the order of the reaction:
                kf
Keq
                kb
                                                                                                  Physical Chemistry Kinetics, (2006) Horia Metiu, 78

  First-Order Irreversible



                                                                   Printed by Mathematica for Students
6    cheat_sheat.nb




    First-Order Irreversible

     k
A        B
                                                           kt
Η t                  A   0        1           A    0
where
 A t             A       0       Η t
 B t             B       0       Η t
                                                                                                        Physical Chemistry Kinetics, (2006) Horia Metiu, 27

    First-Order Reversible

    kf
A        B
    kb

                 kb B             0       kf A         0            kb kf t
Η t                                                                                  1
                                 kb       kf
where
 A t             A       0       Η t
 B t             B       0       Η t
                                                                                                        Physical Chemistry Kinetics, (2006) Horia Metiu, 73

                 A   0   kf               B    0   kb
Ηeq
                         kb           kf
where
 A eq                A       0    Ηeq
 B eq                B       0    Ηeq
                                                                                                       Physical Chemistry Kinetics, (2006) Horia Metiu, 78

    Second-Order Irreversible

             k
A        B       C
                     A                B                A   0   kt       B   0   kt
                             0            0
Η t
                         A                A   0   kt           B        B   0   kt
                                  0                                 0
where
 A t             A       0       Η t
 B t             B       0       Η t
 C t             C       0       Η t
                                                                                                         Physical Chemistry Kinetics (2006) Horia Metiu, 54




                                                                        Printed by Mathematica for Students
cheat_sheat.nb   7




          k
2A            B
                           A        2   kt
                                0
Η t
                   2 1          A       0   kt
where
 A t               A   0    Η t
 B t               B   0    2Η t
                                                                                                    Physical Chemistry Kinetics, (2006) Horia Metiu, 57

    Second-Order Reversible

General Solution :
                                                2 e0
     Η t
                                                            t
                           e1                   Coth            2
where
   e1 2            4 e0 e2
                                                                                                   Physical Chemistry Kinetics, (2006) Horia Metiu, 99

     kf
A         B            C
     kb

e0        kf A 0 kb B                           0   C   0
e1         kf kb B 0                                C   0
e2         kb
where
 A    t            A   0    Η t
 B    t            B   0    Η t
 C    t            C   0    Η t
                                                                                                    Physical Chemistry Kinetics, (2006) Horia Metiu, 93

              kf
A      B           C
              kb

e0 kf A 0 B                             0       kb C    0
e1   kf A 0                                 B   0       kb
e2 kf
where
 A    t            A   0    Η t
 B    t            B   0    Η t
 C    t            C   0    Η t
                                                                                                    Physical Chemistry Kinetics, (2006) Horia Metiu, 93


                                                                    Printed by Mathematica for Students
8   cheat_sheat.nb




                                                         Physical Chemistry Kinetics, (2006) Horia Metiu, 93

           kf
A      B        C    D
           kb

e0 kf A 0 B 0 kb C 0 D 0
e1   kf A 0   B 0  kb C         0          D    0
e2 kf kb
where
 A t    A 0 Η t
 B t   B 0 Η t
 C t   C 0 Η t
 D t   D 0 Η t
                                                         Physical Chemistry Kinetics, (2006) Horia Metiu, 94



Constants


    Mass




                         Printed by Mathematica for Students
cheat_sheat.nb   9




Extinction Coefficients

                                        DNA                260              RNA                  260
                                                            1       1                             1     1
                                    Dinucleotide   L mol      cm        Dinucleotide     L mol     cm
      DNA                260            AA              27 400                 AA          27 400
    Nucleotide            1     1       AG              25 000                 AG          25 000
                 L mol     cm
                                        AT              22 800                 AU          24 000
        A          15 400               AC              21 200                 AC          21 000
        G          11 500               GA              25 200                 GA          25 200
        T           8700                GG              21 600                 GG          21 600
        C           7400                GT              20 000                 GU          21 200
      RNA                260            GC              17 600                 GC          17 400
                          1     1
    Nucleotide   L mol     cm           TA              23 400                 UA          24 600
        A          15 400               TG              19 000                 UG          20 000
        G          11 500               TT              16 800                 UU          19 600
        U           9900                TC              16 200                 UC          17 200
        C           7200                CA              21 200                 CA          21 000
                                        CG              18 000                 CG          17 800
                                        CT              15 200                 CU          16 200
                                        CC              14 600                 CC          14 200

                                                                                         DNA : Biopolymers (1970) 9, 1059 - 1077
                                                                              RNA : Handbook of Biochem.and Mol.Bio.(1975) 1, 589




                                                   Printed by Mathematica for Students
10    cheat_sheat.nb




     Thermodynamics

     DNA | DNA




                                                             Biochemistry (1997) 36, 10581 - 10594




                       Printed by Mathematica for Students
cheat_sheat.nb   11




RNA | RNA




                                                  Biochemistry (1998) 37, 14719 - 14735




            Printed by Mathematica for Students
12    cheat_sheat.nb




     DNA | RNA




                                                             Biochemistry (1995) 34, 11211 - 11216




                       Printed by Mathematica for Students
cheat_sheat.nb     13




Some Emperical Assocation Rate Constants

   Self Hybrid   RNA DNA Ionic Strength         Temp      °C      Sequence                     kf 106 M    1   Sec   1

   Hybrid        RNA     0.025                  23.3              AAAAAAAAA                    0.53
   Hybrid        RNA     0.025                  23.3              AAAAAAAAAAA                  0.5
   Hybrid        RNA     0.025                  23.5              AAAAAAAAAAAAAA               0.61
   Self          RNA     0.125                  21.               AAAAUUUU                     1.
   Self          RNA     0.125                  21.               AAAAAUUUUU                   2.
   Self          RNA     0.125                  21.               AAAAAAUUUUUU                 1.5
   Self          RNA     0.125                  21.               AAAAAAAUUUUUUU               0.8
   Self          RNA     0.5                    22.1              AAAAAAAUUUUUUU               2.7
   Self          RNA     0.025                  23.3              AAGCUU                       1.6
   Self          RNA     0.5                    23.               AAGCUU                       10.
   Self          RNA     0.025                  23.3              AAAGCUUU                     0.75
   Self          RNA     0.025                  23.3              AAAAGCUUUU                   0.13
   Self          RNA     0.5                    23.               AAAAGCUUUU                   0.9
   Hybrid        RNA     0.025                  16.8              AAAAGG                       11.4
   Hybrid        RNA     0.025                  23.3              AAAAAGG                      4.4
   Hybrid        RNA     0.5                    21.1              CAAAAAG                      4.6
   Hybrid        DNA     0.5                    20.               CAAAAAG                      9.
   Hybrid        RNA     0.05                   21.5              GGGC                         5.4
   Self          DNA     0.5                    25.               GCGCGC                       12.
   Hybrid        DNA RNA 0.5                    23.               TTTTTTTTT                    10.
   Self          DNA     0.006                  31.1              GCATGC                       0.98
   Self          DNA     0.021                  31.1              GCATGC                       1.6
   Self          DNA     0.5                    31.1              GCATGC                       9.9
   Self          DNA     0.026                  31.1              GCATGC                       7.3
   Hybrid        DNA     0.025                  25.               TCTCCATGTCACTTC              3.
   Hybrid        DNA     0.06985                37.               CTAGCCTTATGGAGGAGTACCAAC     69.448
   Hybrid        DNA     0.5                    25.               GGAAAGGACAACACCCGCGTATTAG    0.202

                  Nucleic Acids : Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 289




                                            Printed by Mathematica for Students

Nucleic Acid Engineering Math

  • 1.
    Equations Mass Mass Oligo Mass Base Terminal Correction Ionic Strentgh n 1 I ci z2 i 2 i 1 where n is the number of different types of ions ci is the concentration of each ion zi is the number of charges on the ion IUPAC definition Extinction Coefficients Linear n n 1 260 Oligo 260 dinucleotidei 260 nucleotidei i 1 i 2 Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 174-176 Circular n 1 260 Oligo 260 dinucleotidei 2 i 1 Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 174-176 Hypochromicity correction 260 duplex 260 Top Strand 260 Bottom Strand 1 h260 where h260 duplex 0.287 FractionAT duplex 0.059 FractionGC duplex Biophys.Chem.(2008) 133, 66 - 70 Printed by Mathematica for Students
  • 2.
    2 cheat_sheat.nb Thermodynamics Gibbs Free Energy GT H T S GT R T Ln Keq Individual Nearest Neighbor Hydrogen Bonding Model (INN - HB) G Duplex n 1 G dinucleotidei Initiation Correction Terminal Correction Symmetry Correction i 1 where Initiation Correction is applied to correct for initial complex formation Terminal correction is applied once for each terminal A T or A U pair Symmetry correction is applied if the sequence is self complimentary palindrome Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 271-286 Equilibrium Distribution Keq A B Equlibrium conditions : B eq Keq A eq Conservation of mass : A eq B eq A 0 B 0 Substituting conservation of mass into equilibrium conditions yields : B eq Keq A 0 B eq B 0 Solve for B eq : A 0 B 0 Keq B eq 1 Keq A 0 B 0 A eq 1 Keq Printed by Mathematica for Students
  • 3.
    cheat_sheat.nb 3 KD AB A+B Equlibrium conditions : A eq B eq KD AB eq Conservation of mass : Assuming all mass starts in AB 0 AB eq A eq AB 0 AB eq B eq AB 0 Substituting conservation of mass into equilibrium conditions yields the folowing polynomial: 2 AB 0 AB eq KD AB Physically relevant solution to the polynomial: 1 1 A eq B eq KD KD 2 4 KD AB 0 2 2 1 1 AB eq AB 0 KD KD 2 4 KD AB 0 2 2 K Db K Dc AB A+B AC A+C Equlibrium conditions : A eq B eq A eq C eq KDb , KDc AB eq AC eq Conservation of mass : Assuming all mass starts in AB 0 and C 0 AB eq AC eq A eq AB 0 AB eq B eq AB 0 AC eq C eq C 0 Substituting conservation of mass into equilibrium conditions and subsequent workup yields the folowing polynomial: 3 2 A eq Α A eq Β A eq Γ 0 where Α KDb KDc A 0 Β KDb A 0 AB 0 KDb KDc Γ KDb KDc AB 0 Physically relevant solution to the polynomial: Printed by Mathematica for Students
  • 4.
    4 cheat_sheat.nb Α 2 Θ A eq Α2 3Β cos 3 3 3 Θ AB 0 2 Α2 3Β cos 3 Α B eq AB 0 Θ 3 KDb 2 Α2 3Β cos 3 Α Θ Α 2 Θ AB 0 2 Α2 3Β cos 3 Α 2 C eq C 0 AB 0 Α 3Β cos 3 3 3 Θ 3 KDb 2 Α2 3Β cos 3 Α Θ AB 0 2 Α2 3Β cos 3 Α AB eq Θ 3 KDb 2 Α2 3Β cos 3 Α Θ AB 0 2 Α2 3Β cos 3 Α Α 2 Θ AC eq AB 0 Α2 3Β cos Θ 3 3 3 3 KDb 2 Α2 3Β cos 3 Α where 2 Α3 9 ΑΒ 27 Γ Θ arccos 3 2 Α2 3Β FEBS letters 1995, 360, 111-4 Melting Temperatures A+A AA H Tn S R Ln Ct Where Ct 2 A 0 Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273 A+B AB H Tn Ct S R Ln 4 Where Ct 2 A 0 Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273 Printed by Mathematica for Students
  • 5.
    cheat_sheat.nb 5 Nucleic Acids: Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 273 Elementary Reaction Kinetics Detailed Balance For a reversible first order equilibrium is defined as the point at which the forward reaction rate is equal to the reverse reaction rate, and therefore: kf A eq kb B eq kb B eq kf A eq kf B eq kb A eq Furthermore thermodynamics tells us that for a reversible first order equilibrium is defined as: B eq Keq A eq kf Keq kb This works regardless of the order of reaction. For example, in the case of a second order reaction A + B C kf A eq B eq kb C eq kb C eq kf A eq B eq kf C eq kb A eq B eq And thermodynamics tells us for a second order reaction: C eq Keq A eq B eq kf Keq kb And thus regardless of the order of the reaction: kf Keq kb Physical Chemistry Kinetics, (2006) Horia Metiu, 78 First-Order Irreversible Printed by Mathematica for Students
  • 6.
    6 cheat_sheat.nb First-Order Irreversible k A B kt Η t A 0 1 A 0 where A t A 0 Η t B t B 0 Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 27 First-Order Reversible kf A B kb kb B 0 kf A 0 kb kf t Η t 1 kb kf where A t A 0 Η t B t B 0 Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 73 A 0 kf B 0 kb Ηeq kb kf where A eq A 0 Ηeq B eq B 0 Ηeq Physical Chemistry Kinetics, (2006) Horia Metiu, 78 Second-Order Irreversible k A B C A B A 0 kt B 0 kt 0 0 Η t A A 0 kt B B 0 kt 0 0 where A t A 0 Η t B t B 0 Η t C t C 0 Η t Physical Chemistry Kinetics (2006) Horia Metiu, 54 Printed by Mathematica for Students
  • 7.
    cheat_sheat.nb 7 k 2A B A 2 kt 0 Η t 2 1 A 0 kt where A t A 0 Η t B t B 0 2Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 57 Second-Order Reversible General Solution : 2 e0 Η t t e1 Coth 2 where e1 2 4 e0 e2 Physical Chemistry Kinetics, (2006) Horia Metiu, 99 kf A B C kb e0 kf A 0 kb B 0 C 0 e1 kf kb B 0 C 0 e2 kb where A t A 0 Η t B t B 0 Η t C t C 0 Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 93 kf A B C kb e0 kf A 0 B 0 kb C 0 e1 kf A 0 B 0 kb e2 kf where A t A 0 Η t B t B 0 Η t C t C 0 Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 93 Printed by Mathematica for Students
  • 8.
    8 cheat_sheat.nb Physical Chemistry Kinetics, (2006) Horia Metiu, 93 kf A B C D kb e0 kf A 0 B 0 kb C 0 D 0 e1 kf A 0 B 0 kb C 0 D 0 e2 kf kb where A t A 0 Η t B t B 0 Η t C t C 0 Η t D t D 0 Η t Physical Chemistry Kinetics, (2006) Horia Metiu, 94 Constants Mass Printed by Mathematica for Students
  • 9.
    cheat_sheat.nb 9 Extinction Coefficients DNA 260 RNA 260 1 1 1 1 Dinucleotide L mol cm Dinucleotide L mol cm DNA 260 AA 27 400 AA 27 400 Nucleotide 1 1 AG 25 000 AG 25 000 L mol cm AT 22 800 AU 24 000 A 15 400 AC 21 200 AC 21 000 G 11 500 GA 25 200 GA 25 200 T 8700 GG 21 600 GG 21 600 C 7400 GT 20 000 GU 21 200 RNA 260 GC 17 600 GC 17 400 1 1 Nucleotide L mol cm TA 23 400 UA 24 600 A 15 400 TG 19 000 UG 20 000 G 11 500 TT 16 800 UU 19 600 U 9900 TC 16 200 UC 17 200 C 7200 CA 21 200 CA 21 000 CG 18 000 CG 17 800 CT 15 200 CU 16 200 CC 14 600 CC 14 200 DNA : Biopolymers (1970) 9, 1059 - 1077 RNA : Handbook of Biochem.and Mol.Bio.(1975) 1, 589 Printed by Mathematica for Students
  • 10.
    10 cheat_sheat.nb Thermodynamics DNA | DNA Biochemistry (1997) 36, 10581 - 10594 Printed by Mathematica for Students
  • 11.
    cheat_sheat.nb 11 RNA | RNA Biochemistry (1998) 37, 14719 - 14735 Printed by Mathematica for Students
  • 12.
    12 cheat_sheat.nb DNA | RNA Biochemistry (1995) 34, 11211 - 11216 Printed by Mathematica for Students
  • 13.
    cheat_sheat.nb 13 Some Emperical Assocation Rate Constants Self Hybrid RNA DNA Ionic Strength Temp °C Sequence kf 106 M 1 Sec 1 Hybrid RNA 0.025 23.3 AAAAAAAAA 0.53 Hybrid RNA 0.025 23.3 AAAAAAAAAAA 0.5 Hybrid RNA 0.025 23.5 AAAAAAAAAAAAAA 0.61 Self RNA 0.125 21. AAAAUUUU 1. Self RNA 0.125 21. AAAAAUUUUU 2. Self RNA 0.125 21. AAAAAAUUUUUU 1.5 Self RNA 0.125 21. AAAAAAAUUUUUUU 0.8 Self RNA 0.5 22.1 AAAAAAAUUUUUUU 2.7 Self RNA 0.025 23.3 AAGCUU 1.6 Self RNA 0.5 23. AAGCUU 10. Self RNA 0.025 23.3 AAAGCUUU 0.75 Self RNA 0.025 23.3 AAAAGCUUUU 0.13 Self RNA 0.5 23. AAAAGCUUUU 0.9 Hybrid RNA 0.025 16.8 AAAAGG 11.4 Hybrid RNA 0.025 23.3 AAAAAGG 4.4 Hybrid RNA 0.5 21.1 CAAAAAG 4.6 Hybrid DNA 0.5 20. CAAAAAG 9. Hybrid RNA 0.05 21.5 GGGC 5.4 Self DNA 0.5 25. GCGCGC 12. Hybrid DNA RNA 0.5 23. TTTTTTTTT 10. Self DNA 0.006 31.1 GCATGC 0.98 Self DNA 0.021 31.1 GCATGC 1.6 Self DNA 0.5 31.1 GCATGC 9.9 Self DNA 0.026 31.1 GCATGC 7.3 Hybrid DNA 0.025 25. TCTCCATGTCACTTC 3. Hybrid DNA 0.06985 37. CTAGCCTTATGGAGGAGTACCAAC 69.448 Hybrid DNA 0.5 25. GGAAAGGACAACACCCGCGTATTAG 0.202 Nucleic Acids : Structures, Properties, and Functions.(2000) V. Bloomfield, D. Crothers, I. Tinoco, 289 Printed by Mathematica for Students