NIPS 2018
2018/10/29
◾ h :
◾ a A6 6
/ - .
◾ I 4 4 e 6
◾
f b
-
probabilistic U-Net
S. Kohl, et. al. “A Probabilistic U-Net for Segmentation of Ambiguous
Images ”
arXiv
https://arxiv.org/abs/1806.05034
my Qiita
https://qiita.com/masataka46/items/61615e069c03049aecff
GitHub tensorflow
https://github.com/SimonKohl/probabilistic_unet
my GitHub tensorflow
https://github.com/masataka46/probabilistic_UNet
probabilistic U-Net
Simon A. A. Kohl DeepMind
segmentation
1.
2. VAE U-Net
3.
probabilistic U-Net
l CT
l
l
probabilistic U-Net
l Unet VAE
U-Net
VAE variational
auto-encoder
→
probabilistic U-Net
• U-Net
• X
S
probabilistic U-Net
X N
μ σ
probabilistic U-Net
Zi
U-Net
probabilistic U-Net
Zi
→
probabilistic U-Net
X ground truth
Posterior Net
N
μ σ
probabilistic U-Net
z U-Net
probabilistic U-Net
X S
probabilistic U-Net
Prior Net Posterior Net
KL-divergence
probabilistic U-Net
KL-divergence
probabilistic U-Net
Y, Y’
S, S’
tp
tn
fnfp
X Y
![#(%, ')]l x y
probabilistic U-Net
dropout
Dropout U-Net U-Net Ensemble M-Heads Image2Image VAE
Lung abnormalities segmentation
CityScapes dataset
•
• 4
•
•
a b
•
•
• U-Net VAE
• tf.linalg
my
• CityScapes dataset
• X
Ground Truth
output
input
z1 z2 z3 z4 z5 z6
l Probabilistic U-Net
l U-Net VAE

Nips2018 study only_pu_net_pdf