5.7 Rational Exponents
Fraction Exponents
Radical expression and Exponents
By definition of Radical Expression.
The index of the Radical is 3.
5
125
125
5 3
3

 so
How would we simplify this
expression?
What does the fraction exponent do to the
number?
The number can be written as a Radical
expression, with an index of the
denominator.
2
1
9

2
9
The Rule for Rational Exponents
4
64
64 3
3
1
1


 n
n
b
b
Write in Radical form


2
1
6
1
m
a
Write in Radical form
m
m
a
a


2
1
6
6
1
Write each Radical using Rational
Exponents


w
b
5
Write each Radical using Rational
Exponents
2
1
5
1
5
w
w
b
b


What about Negative exponents
Negative exponents make inverses.
7
1
49
1
49
2
1
2
1



What if the numerator is not 1
Evaluate
5 2
5
2
32
32 
What if the numerator is not 1
Evaluate
  5 10
5 2
5
5 2
5
2
2
2
32
32


What if the numerator is not 1
Evaluate
 
4
2
2
2
32
32
2
5 10
5 2
5
5 2
5
2



For any nonzero real number b,
and integer m and n
Make sure the Radical express is real, no
b<0 when n is even.
 m
n
n m
n
m
b
or
b
b 
Simplify each expression
No fraction in the denominators.
3
2
7
4
7
1


x
y
y
Simplify
3
1
6
1
3
6
2
16
2
16

Simplify
3
1
6
4
3
1
6
1
4
3
1
6
1
3
6
2
2
2
)
2
(
2
16
2
16



Simplify
3
3
1
3
1
3
2
3
1
3
2
3
1
6
4
3
1
6
1
4
3
1
6
1
3
6
2
2
2
2
2
2
2
2
2
)
2
(
2
16
2
16








Simplify
6 4
4x
Simplify
6
4
6
1
6 4
4
4 x
x 
Simplify
  6
4
6
1
2
6
4
6
1
6 4
2
4
4
x
x
x


Simplify
 
6
4
6
2
6
4
6
1
2
6
4
6
1
6 4
2
2
4
4
x
x
x
x



Simplify
 
3
2
3
1
6
4
6
2
6
4
6
1
2
6
4
6
1
6 4
2
2
2
4
4
x
x
x
x
x




Simplify
 
  3 2
3
1
2
3
2
3
1
6
4
6
2
6
4
6
1
2
6
4
6
1
6 4
2
2
2
2
2
4
4
x
x
x
x
x
x
x







Negative Rational Exponent in Radical Expressions