IS2-04:
SSII2010

       カラーチャートを用いた複数の再撮モニタ
                とカメラの最適色補正
Optimal Color Correction for Multiple On-set Monitors
     or Cameras by Using Color Checker Chart


                松永 力 趙 延軍 和田 雅徳
      Chikara Matsunaga, Yanjun Zhao and Masanori Wada
            株式会社朋栄 佐倉研究開発センター
            FOR-A Co., Ltd. Sakura R&D Center

                E-mail: matsunaga@for-a.co.jp
再撮モニタの例
再撮モニタの例




          SSII2010 第16回画像センシングシンポジウム
再撮モニタの例
再撮モニタの例




          SSII2010 第16回画像センシングシンポジウム
再撮モニタの色補正
 再撮モニタの色補正
色補正装置
                  ① 色補正装置から色校正用カラーチャート
                    画像を発生




        マスタモニタ
        (カメラ映像)
                                    スタジオ内
                                    再撮モニタ
                           カメラ




                        SSII2010 第16回画像センシングシンポジウム
再撮モニタの色補正
       再撮モニタの色補正
     色補正装置
                       ① 色補正装置から色校正用カラーチャート
                         画像を発生




② カメラ映像を
 キャプチャする.



             マスタモニタ
             (カメラ映像)
                                         スタジオ内
                                         再撮モニタ
                                カメラ




                             SSII2010 第16回画像センシングシンポジウム
再撮モニタの色補正
       再撮モニタの色補正
     色補正装置
                       ① 色補正装置から色校正用カラーチャート
                         画像を発生



                 ③ 自動色校正処理
                  (オートカラーキャリブレーション)
                  カメラ映像のカラーチャートを
② カメラ映像を          認識して色補正パラメータを計算
 キャプチャする.



             マスタモニタ
             (カメラ映像)
                                         スタジオ内
                                         再撮モニタ
                                カメラ




                             SSII2010 第16回画像センシングシンポジウム
再撮モニタの色補正(続き)
      再撮モニタの色補正(続き)
      色補正装置
                          ④ 色校正処理の結果により
VTR   カラーイコライ              再撮モニタ映像を色補正する.
          ザ
        (仮称)




                マスタモニタ
                (カメラ映像)
                                            スタジオ内
                                            再撮モニタ
                                   カメラ




                                SSII2010 第16回画像センシングシンポジウム
複数カメラの色補正
        複数カメラの色補正




             色補正装置

 ビデオ
スイッチャ




                     SSII2010 第16回画像センシングシンポジウム
カラーチャートによる色補正
カラーチャートによる色補正




                SSII2010 第16回画像センシングシンポジウム
カラーチャートによる色補正
カラーチャートによる色補正




                SSII2010 第16回画像センシングシンポジウム
何が問題か?
     何が問題か?


・ カラーチャートから抽出した色レベルには
 観測誤差が含まれている.

・ 色空間にはレベル制限があり,レベルを越えると
 ガマット誤差になる.




                  SSII2010 第16回画像センシングシンポジウム
何が問題か?
     何が問題か?


・ カラーチャートから抽出した色レベルには
 観測誤差が含まれている.

・ 色空間にはレベル制限があり,レベルを越えると
 ガマット誤差になる.

⇒ 色補正パラメータの推定に影響を及ぼす.




                  SSII2010 第16回画像センシングシンポジウム
何が問題か?
     何が問題か?


・ カラーチャートから抽出した色レベルには
 観測誤差が含まれている.

・ 色空間にはレベル制限があり,レベルを越えると
 ガマット誤差になる.

⇒ 色補正パラメータの推定に影響を及ぼす.

⇒ 金谷の統計的最適化の理論を用いて,
  観測誤差,ガマット誤差を考慮した
  最適な色補正パラメータを推定する.



                  SSII2010 第16回画像センシングシンポジウム
色変換モデル(3次元アフィン変換)
    色変換モデル(3次元アフィン変換)

x=(r g b)T              x=(r g b)T
             T3x3   +



                    β3x1




                           SSII2010 第16回画像センシングシンポジウム
色変換モデル(3次元アフィン変換)
    色変換モデル(3次元アフィン変換)

x=(r g b)T              x=(r g b)T
             T3x3   +



                    β3x1




                           SSII2010 第16回画像センシングシンポジウム
色変換モデル(3次元アフィン変換)
    色変換モデル(3次元アフィン変換)

x=(r g b)T              x=(r g b)T
             T3x3   +



                    β3x1




  “逆変換”である色補正パラメータを推定する.
  ⇒ 入力と出力を入れ替える(入力誤差モデル).
                           SSII2010 第16回画像センシングシンポジウム
3次元アフィン変換
  3次元アフィン変換

色データを4次元同次ベクトルで表す.




  は4次元ベクトルの第4成分を1とする正規化作用素である.


                 SSII2010 第16回画像センシングシンポジウム
3次元アフィン変換(続き)
  3次元アフィン変換(続き)




13次元ベクトル




                  SSII2010 第16回画像センシングシンポジウム
3次元アフィン変換の最適計算
  3次元アフィン変換の最適計算

 組の色データ
期待値0,標準偏差   の正規分布に従う誤差が加わる.

次の目的関数を最小化するパラメータ    を最適推定する.




最適化には多拘束FNS法を用いる.


                    SSII2010 第16回画像センシングシンポジウム
数値シミュレーション
数値シミュレーション




基準画像               観測画像




             SSII2010 第16回画像センシングシンポジウム
数値シミュレーション結果
              数値シミュレーション結果

E   0.12
                KCRLB
                FNS
    0.1
                LS

    0.08



    0.06



    0.04



    0.02



      0
          0      2      4    6     8        10        12
                                                 σ
     計算した3次元アフィン変換のRMS誤差
                                 SSII2010 第16回画像センシングシンポジウム
色変換モデル(3次元アフィン変換+クリップ処理)
色変換モデル(3次元アフィン変換+クリップ処理)

x=(r g b)T              x=(r g b)T
             T3x3   +



                    β3x1

色空間における色変換処理であることから,
厳密にはレベルに関する制限であるクリップ処理が付く.




                           SSII2010 第16回画像センシングシンポジウム
色変換モデル(3次元アフィン変換+クリップ処理)
色変換モデル(3次元アフィン変換+クリップ処理)

x=(r g b)T                              x=(r g b)T
             T3x3   +          Clip



                    β3x1

色空間における色変換処理であることから,
厳密にはレベルに関する制限であるクリップ処理が付く

⇒ 色空間のレベルに関する制限であるクリップ処理によって生じる
  ガマット誤差は,色補正パラメータの推定に影響を及ぼす.


                           SSII2010 第16回画像センシングシンポジウム
レベル制約付き最適推定とモデル選択
 レベル制約付き最適推定とモデル選択
ガマット誤差が含まれている場合,
素朴な方法 ⇒ 色空間の上限下限近傍の色データを用いない
      ⇒ 色空間の上限下限の色レベルにおいて,
        正しい色補正の結果が得られない.

色空間の上限下限における色データの対応を拘束条件とした
レベル制約付き最適化によって色補正パラメータを推定する.
最適化の手法には,拡張FNS法を用いる.




                   SSII2010 第16回画像センシングシンポジウム
レベル制約付き最適推定とモデル選択
 レベル制約付き最適推定とモデル選択
ガマット誤差が含まれている場合,
素朴な方法 ⇒ 色空間の上限下限近傍の色データを用いない
      ⇒ 色空間の上限下限の色レベルにおいて,
        正しい色補正の結果が得られない.

色空間の上限下限における色データの対応を拘束条件とした
レベル制約付き最適化によって色補正パラメータを推定する.
最適化の手法には,拡張FNS法を用いる.

十分な色補正を行うためには,,
⇒ 線形の色変換であっても,逆変換としては高次の色補正モデルが
  必要
⇒ ガマット誤差が含まれているか未知,色補正モデルも未知
  一般に高次項を含む色補正モデルによる色補正は不安定

複数の色補正モデルを当てはめた結果から,モデル選択によって
現実的な色補正モデルを選択する.

                   SSII2010 第16回画像センシングシンポジウム
数値シミュレーション(2)
  数値シミュレーション(2)
多項式モデルによる色補正パラメータの
レベル制約付き最適推定とモデル選択
【2次多項式モデル】



【内部拘束】
ある特定の色レベル    が特定の色レベル    に補正される.



【目的関数】




                     SSII2010 第16回画像センシングシンポジウム
300
         Ideal
250



200



150



100



50



 0
     0   50      100   150   200     250



  (a) 理想画像と波形表示
                               SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         Transformed
250
         Data

200



150



100



50



 0
     0   50       100   150   200     250



  (b) 色変換画像と波形表示
                                SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         1st Correction
250
         Data

200



150



100



50



 0
     0   50        100    150   200     250



  (c) クリップされたデータを除外した場合の
  1次式による色補正モデル
                                  SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         Corrected
250



200



150



100



50



 0
     0   50          100   150   200     250



  (d) 色補正モデル(c)による補正画像と波形表示
                                   SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         1st Correction
250



200

         Data
150



100



50



 0
     0   50        100    150   200     250



  (e) レベル制約を課した多項式色補正モデル
                                  SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         1st Correction
250
         2nd Correction

200

         Data
150



100



50



 0
     0   50        100    150   200     250



  (e) レベル制約を課した多項式色補正モデル
                                  SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         1st Correction
250
         2nd Correction
         3rd Correction
200

         Data
150



100



50



 0
     0   50        100    150   200     250



  (e) レベル制約を課した多項式色補正モデル
                                  SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         1st Correction
250
         2nd Correction
         3rd Correction
200
         4th Correction
         Data
150



100



50



 0
     0   50        100    150   200     250



  (e) レベル制約を課した多項式色補正モデル
                                  SSII2010 第16回画像センシングシンポジウム
色補正モデルのモデル選択
     色補正モデルのモデル選択

【幾何学的AIC】

【幾何学的MDL】

            未知パラメータの自由度
            基準長.データが    になるように選ぶ.

【二乗ノイズレベル】
一般モデル(最も自由度の高いモデル)から計算する.
1次元4次多項式モデルを一般モデルとすると,




⇒ 幾何学的AICあるいはMDLが最小になるモデルを選択する.

                    SSII2010 第16回画像センシングシンポジウム
300
         Ideal
         Corrected
250



200



150



100



50



 0
     0   50          100   150   200     250



  (f) 色補正モデル(e)の4次多項式による
  補正画像と波形表示
                                   SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




   モニタ撮影画像
             SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




   理想カラーチャート
               SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




 レベル制約なしの最適推定による色補正画像
                SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




   理想カラーチャート
               SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




 レベル制約付き最適推定による色補正画像
                SSII2010 第16回画像センシングシンポジウム
実画像実験
実画像実験




 レベル制約なしの最適推定による色補正画像
                SSII2010 第16回画像センシングシンポジウム
まとめと今後の課題
    まとめと今後の課題

再撮モニタの色補正を行うために,既知の色レベルからなる
カラーチャートをモニタに表示したものをカメラで撮影して,
撮影画像中のカラーチャートの色レベルを自動的に検出した.
観測誤差やガマット誤差を考慮した最適なパラメータ推定による
色補正を行った.

ビデオ信号において標準的に用いられる輝度色差色空間における
色補正モデルによる色補正も検討することである.
色補正モデルとして,3次元アフィン変換モデル,1次元多項式モデル
を用いたが,その他のモデルも検討したい.

立体視映像の撮影への適用も検討したい.




                   SSII2010 第16回画像センシングシンポジウム

カラーチャートを用いた複数の再撮モニタ とカメラの最適色補正スライド

  • 1.
    IS2-04: SSII2010 カラーチャートを用いた複数の再撮モニタ とカメラの最適色補正 Optimal Color Correction for Multiple On-set Monitors or Cameras by Using Color Checker Chart 松永 力 趙 延軍 和田 雅徳 Chikara Matsunaga, Yanjun Zhao and Masanori Wada 株式会社朋栄 佐倉研究開発センター FOR-A Co., Ltd. Sakura R&D Center E-mail: matsunaga@for-a.co.jp
  • 2.
    再撮モニタの例 再撮モニタの例 SSII2010 第16回画像センシングシンポジウム
  • 3.
    再撮モニタの例 再撮モニタの例 SSII2010 第16回画像センシングシンポジウム
  • 4.
    再撮モニタの色補正 再撮モニタの色補正 色補正装置 ① 色補正装置から色校正用カラーチャート 画像を発生 マスタモニタ (カメラ映像) スタジオ内 再撮モニタ カメラ SSII2010 第16回画像センシングシンポジウム
  • 5.
    再撮モニタの色補正 再撮モニタの色補正 色補正装置 ① 色補正装置から色校正用カラーチャート 画像を発生 ② カメラ映像を キャプチャする. マスタモニタ (カメラ映像) スタジオ内 再撮モニタ カメラ SSII2010 第16回画像センシングシンポジウム
  • 6.
    再撮モニタの色補正 再撮モニタの色補正 色補正装置 ① 色補正装置から色校正用カラーチャート 画像を発生 ③ 自動色校正処理 (オートカラーキャリブレーション) カメラ映像のカラーチャートを ② カメラ映像を 認識して色補正パラメータを計算 キャプチャする. マスタモニタ (カメラ映像) スタジオ内 再撮モニタ カメラ SSII2010 第16回画像センシングシンポジウム
  • 7.
    再撮モニタの色補正(続き) 再撮モニタの色補正(続き) 色補正装置 ④ 色校正処理の結果により VTR カラーイコライ 再撮モニタ映像を色補正する. ザ (仮称) マスタモニタ (カメラ映像) スタジオ内 再撮モニタ カメラ SSII2010 第16回画像センシングシンポジウム
  • 8.
    複数カメラの色補正 複数カメラの色補正 色補正装置 ビデオ スイッチャ SSII2010 第16回画像センシングシンポジウム
  • 9.
    カラーチャートによる色補正 カラーチャートによる色補正 SSII2010 第16回画像センシングシンポジウム
  • 10.
    カラーチャートによる色補正 カラーチャートによる色補正 SSII2010 第16回画像センシングシンポジウム
  • 11.
    何が問題か? 何が問題か? ・ カラーチャートから抽出した色レベルには 観測誤差が含まれている. ・ 色空間にはレベル制限があり,レベルを越えると ガマット誤差になる. SSII2010 第16回画像センシングシンポジウム
  • 12.
    何が問題か? 何が問題か? ・ カラーチャートから抽出した色レベルには 観測誤差が含まれている. ・ 色空間にはレベル制限があり,レベルを越えると ガマット誤差になる. ⇒ 色補正パラメータの推定に影響を及ぼす. SSII2010 第16回画像センシングシンポジウム
  • 13.
    何が問題か? 何が問題か? ・ カラーチャートから抽出した色レベルには 観測誤差が含まれている. ・ 色空間にはレベル制限があり,レベルを越えると ガマット誤差になる. ⇒ 色補正パラメータの推定に影響を及ぼす. ⇒ 金谷の統計的最適化の理論を用いて, 観測誤差,ガマット誤差を考慮した 最適な色補正パラメータを推定する. SSII2010 第16回画像センシングシンポジウム
  • 14.
    色変換モデル(3次元アフィン変換) 色変換モデル(3次元アフィン変換) x=(r g b)T x=(r g b)T T3x3 + β3x1 SSII2010 第16回画像センシングシンポジウム
  • 15.
    色変換モデル(3次元アフィン変換) 色変換モデル(3次元アフィン変換) x=(r g b)T x=(r g b)T T3x3 + β3x1 SSII2010 第16回画像センシングシンポジウム
  • 16.
    色変換モデル(3次元アフィン変換) 色変換モデル(3次元アフィン変換) x=(r g b)T x=(r g b)T T3x3 + β3x1 “逆変換”である色補正パラメータを推定する. ⇒ 入力と出力を入れ替える(入力誤差モデル). SSII2010 第16回画像センシングシンポジウム
  • 17.
    3次元アフィン変換 3次元アフィン変換 色データを4次元同次ベクトルで表す. は4次元ベクトルの第4成分を1とする正規化作用素である. SSII2010 第16回画像センシングシンポジウム
  • 18.
  • 19.
    3次元アフィン変換の最適計算 3次元アフィン変換の最適計算 組の色データ 期待値0,標準偏差 の正規分布に従う誤差が加わる. 次の目的関数を最小化するパラメータ を最適推定する. 最適化には多拘束FNS法を用いる. SSII2010 第16回画像センシングシンポジウム
  • 20.
    数値シミュレーション 数値シミュレーション 基準画像 観測画像 SSII2010 第16回画像センシングシンポジウム
  • 21.
    数値シミュレーション結果 数値シミュレーション結果 E 0.12 KCRLB FNS 0.1 LS 0.08 0.06 0.04 0.02 0 0 2 4 6 8 10 12 σ 計算した3次元アフィン変換のRMS誤差 SSII2010 第16回画像センシングシンポジウム
  • 22.
    色変換モデル(3次元アフィン変換+クリップ処理) 色変換モデル(3次元アフィン変換+クリップ処理) x=(r g b)T x=(r g b)T T3x3 + β3x1 色空間における色変換処理であることから, 厳密にはレベルに関する制限であるクリップ処理が付く. SSII2010 第16回画像センシングシンポジウム
  • 23.
    色変換モデル(3次元アフィン変換+クリップ処理) 色変換モデル(3次元アフィン変換+クリップ処理) x=(r g b)T x=(r g b)T T3x3 + Clip β3x1 色空間における色変換処理であることから, 厳密にはレベルに関する制限であるクリップ処理が付く ⇒ 色空間のレベルに関する制限であるクリップ処理によって生じる ガマット誤差は,色補正パラメータの推定に影響を及ぼす. SSII2010 第16回画像センシングシンポジウム
  • 24.
    レベル制約付き最適推定とモデル選択 レベル制約付き最適推定とモデル選択 ガマット誤差が含まれている場合, 素朴な方法 ⇒色空間の上限下限近傍の色データを用いない ⇒ 色空間の上限下限の色レベルにおいて, 正しい色補正の結果が得られない. 色空間の上限下限における色データの対応を拘束条件とした レベル制約付き最適化によって色補正パラメータを推定する. 最適化の手法には,拡張FNS法を用いる. SSII2010 第16回画像センシングシンポジウム
  • 25.
    レベル制約付き最適推定とモデル選択 レベル制約付き最適推定とモデル選択 ガマット誤差が含まれている場合, 素朴な方法 ⇒色空間の上限下限近傍の色データを用いない ⇒ 色空間の上限下限の色レベルにおいて, 正しい色補正の結果が得られない. 色空間の上限下限における色データの対応を拘束条件とした レベル制約付き最適化によって色補正パラメータを推定する. 最適化の手法には,拡張FNS法を用いる. 十分な色補正を行うためには,, ⇒ 線形の色変換であっても,逆変換としては高次の色補正モデルが 必要 ⇒ ガマット誤差が含まれているか未知,色補正モデルも未知 一般に高次項を含む色補正モデルによる色補正は不安定 複数の色補正モデルを当てはめた結果から,モデル選択によって 現実的な色補正モデルを選択する. SSII2010 第16回画像センシングシンポジウム
  • 26.
  • 27.
    300 Ideal 250 200 150 100 50 0 0 50 100 150 200 250 (a) 理想画像と波形表示 SSII2010 第16回画像センシングシンポジウム
  • 28.
    300 Ideal Transformed 250 Data 200 150 100 50 0 0 50 100 150 200 250 (b) 色変換画像と波形表示 SSII2010 第16回画像センシングシンポジウム
  • 29.
    300 Ideal 1st Correction 250 Data 200 150 100 50 0 0 50 100 150 200 250 (c) クリップされたデータを除外した場合の 1次式による色補正モデル SSII2010 第16回画像センシングシンポジウム
  • 30.
    300 Ideal Corrected 250 200 150 100 50 0 0 50 100 150 200 250 (d) 色補正モデル(c)による補正画像と波形表示 SSII2010 第16回画像センシングシンポジウム
  • 31.
    300 Ideal 1st Correction 250 200 Data 150 100 50 0 0 50 100 150 200 250 (e) レベル制約を課した多項式色補正モデル SSII2010 第16回画像センシングシンポジウム
  • 32.
    300 Ideal 1st Correction 250 2nd Correction 200 Data 150 100 50 0 0 50 100 150 200 250 (e) レベル制約を課した多項式色補正モデル SSII2010 第16回画像センシングシンポジウム
  • 33.
    300 Ideal 1st Correction 250 2nd Correction 3rd Correction 200 Data 150 100 50 0 0 50 100 150 200 250 (e) レベル制約を課した多項式色補正モデル SSII2010 第16回画像センシングシンポジウム
  • 34.
    300 Ideal 1st Correction 250 2nd Correction 3rd Correction 200 4th Correction Data 150 100 50 0 0 50 100 150 200 250 (e) レベル制約を課した多項式色補正モデル SSII2010 第16回画像センシングシンポジウム
  • 35.
    色補正モデルのモデル選択 色補正モデルのモデル選択 【幾何学的AIC】 【幾何学的MDL】 未知パラメータの自由度 基準長.データが になるように選ぶ. 【二乗ノイズレベル】 一般モデル(最も自由度の高いモデル)から計算する. 1次元4次多項式モデルを一般モデルとすると, ⇒ 幾何学的AICあるいはMDLが最小になるモデルを選択する. SSII2010 第16回画像センシングシンポジウム
  • 36.
    300 Ideal Corrected 250 200 150 100 50 0 0 50 100 150 200 250 (f) 色補正モデル(e)の4次多項式による 補正画像と波形表示 SSII2010 第16回画像センシングシンポジウム
  • 37.
    実画像実験 実画像実験 モニタ撮影画像 SSII2010 第16回画像センシングシンポジウム
  • 38.
    実画像実験 実画像実験 理想カラーチャート SSII2010 第16回画像センシングシンポジウム
  • 39.
  • 40.
    実画像実験 実画像実験 理想カラーチャート SSII2010 第16回画像センシングシンポジウム
  • 41.
  • 42.
  • 43.
    まとめと今後の課題 まとめと今後の課題 再撮モニタの色補正を行うために,既知の色レベルからなる カラーチャートをモニタに表示したものをカメラで撮影して, 撮影画像中のカラーチャートの色レベルを自動的に検出した. 観測誤差やガマット誤差を考慮した最適なパラメータ推定による 色補正を行った. ビデオ信号において標準的に用いられる輝度色差色空間における 色補正モデルによる色補正も検討することである. 色補正モデルとして,3次元アフィン変換モデル,1次元多項式モデル を用いたが,その他のモデルも検討したい. 立体視映像の撮影への適用も検討したい. SSII2010 第16回画像センシングシンポジウム