SlideShare a Scribd company logo
1 of 31
Download to read offline
1
1. Name: M.S. Thakur
2. Date of Birth: 20th
June 1954
3. Current position and address:
Dr. M.S. Thakur,
Chief Scientist (Retd)
and former Head
Fermentation Technology and
Bioengineering Department
Central Food Technological
Research Institute, Mysore- 570020
msthakur@yahoo.com
Presently : Hon. Visiting Professor
Center of Material Science
University of Mysore, Mysore -570006,
INDIA.
Tel: 0821-2515792, 0821-2546936
Fax: 0821-251723 Mob. No. 9449055108
For publication please open following link:
http://scholar.google.com/citations?user=5gmRvK8AAAAJ&hl=en
4. Research Experience:
R& D - Professional Experience
2
Summary of Significant contributions to science and/or technology development based on
the work done in India with specific reference is to be made to research papers published
and patents taken in this context
Dr. M. S. Thakur has made fundamental contribution in bio-inspired, biomolecular
electronics, nanobiotechnology, nanobiosensors and biophotonics by interfacing biochemical
events in biological systems with opto-electronic systems making complicated expensive
diagnostics/biosensing, affordable, simple, specific, rapid and ultrasensitive. He has
developed several biosensing technologies for food, environmental and clinical monitoring. His
significant contribution has been in increasing the potential of bio-sensors by conjugating
nanoparticleswith biomolecules like antibodies and aptamers,making biosensing a high
throughput technology. His work has given considerable insight into the understanding of opto-
physical properties of nanoparticles and their biomolecular interactions such as Fluorescence
Resonance Energy Transfer (FRET) and Bioluminescence Resonance Energy Transfer
(BRET) phenomena's.
Publications and patents on above concept:
1. Biosensors and Bioelectronics, 2012, 38(1): 411-415,IF= 5.4
2. Bioconjugate Chemistry , 2011, 22, 968–975. IF= 4.35
3. Biosensors and Bioelectronics, 2009, 25,224-227. IF= 5.4
4. Biosensors and Bioelectronics, 2014,57, 317–323 IF= 5.4
5. Anal Chim Acta. 2012, 13;722:107-13. IF=4.5
6.Analyst. 2012, Sep 2,1137(18):4343-8. IF= 4.23
7. Patent :NF No. 206NF2008.
8.Patent NF No. 139/08 .
9. Patent 726/DEL/2005.
His work has been in the development ofnon-conventional protein based stabilizers has
made breakthrough in the stabilization of enzymes and antibodies for biosensor application
and viable technology development
Publications and patents on above concept:
1. Journal of Biological Chemistry, 2003,278,27,24324-24333. IF= 7.385 now 4.5
2. Biosensors and Bioelectronics, 2004, 20,903-906. IF = 5.4
3. Biosensors and Bioelectronics, 2004,19,1337-1341, IF= 5.4
4. Biosensors and Bioelectronics, 2004,19, 621-625. IF= 5.4
5. Biosensor and Bioelectronics,2005, 21,206-211, IF= 5.4
6. Biochimica et Biophysica Acta, 2002, 1597,133-139. IF= 4.3
7. Patent 653/DEL/2009.
8. 7267971,USA, 25-Mar-2003-11-Sep-2007,
9. EP1608747EU, 24- Dec- 2008.
Dr. Thakur has developed the state of art biosensing techniques based on
Localized Surface Plasmon Resonance (LSPR), nanosensors, aptasensors and image
processing.
Publications papers and patents on above concept:
1. Biosensors and Bioelectronics. 2009,25,224-227. IF= 5.4
2. Analytical Methods,2013,5, 653-659,IF= 1.855
3. Anal Biochem. 2013, 441, 1, 73-9.IF= 2.582.
3
4. Chem. Commun., 2013, 49, 5960-5962, IF= 6.3
Several bio-inspired prototype devices have been developed by him for sensitive
detection and quantification of L-lactate, sucrose, glucose, pesticides, heavy metals,
monitoring hygiene and sanitation, freshness of meat, fish and milk and toxins. A
notable one among them has been the rapid pre-screening of heavy metals and pesticide in
water using an approach via use of immobilized biophotonic beads consisting of
bioluminescent bacteria. This approach is novel and unlike commercially available "Microtox"
toxicity monitoring system, the method developed by his team is much more efficient, rapid,
sensitive and reusable for a prolonged duration of time at an affordable cost. This particular
technology was awarded the "Gandhian Young Innovation Awards, 2014.
Published papers and patents on above concept:
1. Biosensor and Bioelectronics. 2006, 21,1264-1271. IF= 5.4
2. Anal Bioanal Chem. 2007. 389:2227-2234, IF=3.6
3. AnalyticaChemica Acta. 2006, 560,30-34. IF=4.5
4. AnalyticaChimica Acta. 2006, 582,329-334. IF=4.5
5. Journal of Hazardous materials. 2012, 225–226, 114–123. IF=4.173
AFFORDABLE DIAGNOSTICS:
An advancement in cutting edge technology to detect vitamin B12 in food. Attempts
were made for visual analysis of vitamin B12 using Gold nanoparticles and aptamer. This
particular technology was awarded the "Gandhian Young Innovation Awards, 2013.
Awards and Honors:
1. Recipient of LaljeeGodhooSmarakNidhi Award for contribution in Food Science and Technology
by Association of Food Scientists and Technologists of India. 2000.
2. Recipient of CFTRI Foundation day award for best research paper 2003 published.
3. Recipient of CFTRI Foundation day award for Best applied Research Paper published
2007-08.
4. Recipient of CFTRI Foundation day Award for best research paper published in 2008-09 .
5. Recipient of CFTRI Foundation day Award for best Scientist in 2008-09
6. Recipient of CFTRI Foundation day Award for best research paper published in 2012 .
7. Long-Term DBT Overseas Associateship Award during 1988-1990.
8. Recipient of Long Term National Scholarship for study Abroadby Ministry of Human
Resource Development (Govt. of India) from 1988-1990.
Honors:
1. Member of Expert Advisory Committee of Molecular electronics and Biosensor, (DST-GOI).
2. Expert Member, Board of Directors Madhya Pradesh Biotechnology Council, Government of
Madhya Pradesh.
3. Member of Board of Governors, the Institution of Engineers (INDIA), National Design &
Research Forum.
4. I was expert advisory committee member DBT.
5. Member- Advisory committee of UGC-SAP programme. University of Madras.
6. Expert member of future R&D planning of Defence Food Research Laboratory, Mysore.
7. Member of board of studies in Alagappa University.
4
8. Member of the selection committee for SRF- DFRL, Mysore.
9. Selection committee of scientists- Bhabha Atomic Research Center, Mumbai.
10. Editorial Board member: Member of the editorial board of international journal “Journal of
Agriculture, Food and Environment” published by the International Society for Food,
Agriculture and Environment, Finland.
11. Referee for several journal of national and international repute, name a few are Biosensor
and Bioelectronics, Talanta, Sensors and Actuators, Analytical Chimica Acta and Analytical
and Bioanalytical Chemistry.
12. I have chaired President position of Association of Microbiologists of India (Mysore Chapter)
2005-06.
13. Several invited lectures and key note addresses delivered by me in national and International
conferences.
14. Received several best poster awards in national and international symposia/conferences.
Under “Turning point “ programme Doordarshan (DD) national network have made
documentary on Tea biosensor (developed by my group) which was short listed as one of the
5. R& D projects handled:
1 International Projects:
1. On-line monitoring of fermentation processes using Biosensors:
Work was done in-collaboration with Biotechnology Process Engineering
Center, Massachusetts Institute of Technology (MIT) and University of
Maryland UMBC) USA during my Overseas Associateship awarded by
Department of Technology 1988-1990
Capacity: As a visiting Scientist
2. Cultivation of microorganisms and production of lactic acid by
fermentation. Funded by DBT- SIDA: Indo-Swedish collaborative
project. 1993-2001.In this project we have developed L-lactate
biosensor and Technology has been transferred to Mr. F.K. Godrej,
M/S Solid State Electronics, Pune .
Capacity: Co- Principal Investigator
3. Development of Immuno-bioreactor based biosensors for the analysis
of pesticides and herbicides in water. Funded by INDO-SWISS
Collaborative project (SDC-DBT) 2000-2005.Phase 1
Capacity: Principal Investigator
5
4. Development of Immuno-bioreactor based Biosensor for Detection of
Pesticides in Water and Environment. Funded by Indo-Swiss 2005-
2008.Phase 2.
Capacity: Principal Investigator
We are interfacing with Industries (M/s Bigtech, Bangalore) for technology
transfer through DBT SIBIRI Project.
5. Biosensors based on the action of transport proteins Funded
Swedish Research Council, 2006-2009.
Capacity: Principal Investigator
6. Aptamer based biosensing for the detection of Food Toxins, Indo-
Spanish Joint Programme for Technological Co-operation in
Biotechnology.Funded by DBT-India, CIFGA-CSIR-CFTRI collaboration,
2013-2016.
Capacity: Principal Investigator
2National projects
1. Development of Biosensor for food and fermentation analysis,Funded by
CFTRI, 1994-96.
2. Development of a biosensor with flow injection analysis system for on-line
monitoring of glucose and sucrose. Funded by DST, 1999-2002. Capacity:
Principal Investigator
3. Development of Biosensor for quality assessment in tea processing.
Fundedby DST –2003-2005. Capacity: Principal Investigator
4. Microprocessor based biosensor instrument development for monitoring of
food and fermentation processes. Funded by DST, 1996- 2000. Capacity:
Principal Investigator
5. Biotechnological Research for food safety: Development of Biosensor for
OP pesticides. Funded by DBT 1995-1998. Capacity: Co-Principal
Investigator
6. Development of Biosensor for chlorinated pesticides Funded by DBT 2005-
2008. Capacity: Principal Investigator
6
7. Development of Biosensor for assessing the microbiological quality of foods
and monitoring of formaldehyde concentration in selected marine foods.
Funded by National Programme on Micro and Smart Systems (NPMASS) -
ADA-DRDO. 2010-2013. Capacity: Principal Investigator.
8. Purification of caffeine from waste tea leaves and their biotransformation to
valuable/potent pharmaceutical molecules. A collaborative project with IIT-
Guwahati under North –East Twinning programme funded by DBT India.
Capacity: Principal coordinator, 2011 – 2014
9. Detection of Food borne Pathogens by Nanobiosensors, funded by DST
211-2014. Capacity: Principal Investigator
10. Development of new protocols for evaluation of traditional foods.In
house (CSIR-CFTRI) funded projectMLP-092, 2010-2012, Capacity:
Principal Investigator.
11. Fermentative production and monitoring of biologically
importantmolecules. In house (CSIR-CFTRI) funded project, MLP-0102,
2012- 2014.Capacity, Principal Investigator.
3. Industrial Projects handled:
a)Studies on development of a biotechnological process for decaffeination of
beverages. Project funded by M/s TATA TEA, 2002- 2003. Project Leader
b) Bio-decaffeination of dhool (tea paste): Application of microbial enzymes
Consultancy project with M/s AV Thomas and company, Chennai. Project
Leader
6. Total Publications:
Sl.N
o.
Year Authors Title of Paper Name of Journal/Volume/Page
no.
1.
2014
Radhakrishnan Jayasree
Padmaja, Akshath U.S
Uchangi, Kunhitlu
Subrahmanya Abhijith,
Prakash Motiram Halami
and Munna Singh
Thakur
Gold nanoparticle based
immunodetection of
Staphylococcus aureus
LeukotoxinM/F´-PV in subclinical
samples of bovine mastitis
Anal. Methods, 2014, Accepted
Manuscript
DOI: 10.1039/C4AY00525B
7
2. 2014 Uchangi Satyaprasad
Akshath, likitha. R.
Shubha,
Praveena Bhatt, M.S.
Thakur*
Quantum dots as optical labels for
ultrasensitive
detection of polyphenols
Biosensors and Bioelectronics,
2014, 57, 317–323 IF=5.602,
3. 2014 Uchangi Satyaprasad
Akshath, likitha. R.
Shubha,
Praveena Bhatt, M.S.
Thakur*
Optical sensor to detect Dietary
polyphenols
Nature
Highlights
DOI10.1038-NIDIA.2014.49
4. 2014 Abhijith K.S., Sharma R.,
Ranjan R., Thakur M.S.*
Facile synthesis of gold-silver alloy
nanoparticles for application in
metal enhanced bioluminescence
Photochem. Photobiol. Sci.
In Press, DOI: 10.1039/C4PP00046C
IF=2.93
5. 2014 Ranjan R., Priyanka B.S.,
Thakur M.S*
ATPase inhibitor based luciferase
assay for prolonged and enhanced
atp pool measurement as an
efficient fish freshness indicator
Anal. Bioanal. Chem.
In-press, DOI 10.1007/s00216-014-7840-6
IF=3.659
6. 2014 Priyanka B.S., Abhijith
K.S., Rastogi N.K.,
Raghavarao K.S. M.S.,
Thakur M.S.+
Integrated approach for the
extraction and purification of igy
from chicken egg yolk
Sep. Sci. Technol,
49, Issue 4, pages 562-568
IF=1.16
7. 2013 Ragavan K.V.,
SelvaKumar L.S., Thakur
M.S.*
Nanoprobe detects harmful
chemicals
Nature
Highlights
DIO10.1038-NINDIA.2013.101
IF= NA
8. 2013 Priyanka, B.S., Rastogi,
Navin k., Raghavarao,
K.S.M.S., and Thakur,
M.S.+
Optimization of extraction of
luciferase from fireflies
(Photinuspyralis) using aqueous
two-phase extraction
Separation and Purification
Technology, 2013, 118, 40-48.
I.F=2.894
9. 2014 Ragavan K.V.,
SelvaKumar L.S., Thakur
M.S.
Nanoprobe detects harmful
chemicals
Nature
Highlights,DOI.:10.1038/nindia.2013.
101
IF= NA
10. 2013 K. V.Ragavan,
Sagaya L Selva Kumar
and M. S. Thakur *
Functionalized aptamers as
nano-bioprobe for ultrasensitive
detection of Bisphenol-A
Chem. Commun., 2013, 49, 5960-5962
IF=6.378
11. 2013 K.V. Ragavan,
Navin K. Rastogi,
M.S. Thakur*
Sensors and biosensors for
analysis of bisphenol-A
Trends in Analytical Chemistry,
2013, 52, 248-260IF=6.351
12. K.V. Ragavan,
Navin K. Rastogi,
M.S. Thakur
Sensors and biosensors for
analysis of bisphenol-A
Trends in Analytical Chemistry
(Online Corrected manuscript,)
IF=6.351
13. K. S. Abhijith, K. V.
Ragavan and M. S.
Thakur
Gold nanoparticles enhanced
chemiluminescence – a novel
approach for sensitive
determination of aflatoxin-B1
Anal. Methods, 2013,5, 4838-4845
IF= 1.855
8
14. 2013 K. V.Ragavan, Sagaya
L SelvaKumar and M.
S. Thakur *
Functionalized aptamers as nano-
bioprobe for ultrasensitive detection
of Bisphenol-A
Chem. Commun., 2013, Accepted
Manuscript
DOI: 10.1039/C3CC42002G
IF=6.378
15. 2012 Vinayaka A.C. and M.S.
Thakur*
Facile synthesis and photophysical
characterization of luminescent
CdTe quantum dots for FRET
based immunosensing of
staphylococcal enterotoxin B
Luminescence
DOI: 10.1002/bio.2440
IF=1.93
16. 2012 Kunhitlu Subrahmanya
Abhijith and M.S.
Thakur*
Application of green synthesis of
gold nanoparticles for sensitive
detection of aflatoxin B1 based on
metal enhanced fluorescence
Analytical Methods
DOI: 10.1039/c2ay25979f
IF= 1.855
17. 2012 Neeraj Katiyar, Sagaya
Selva kumar,
SanjuktaPatra, M.S.
Thakur*
Gold nanoparticles based
colorimetric aptasensor for
theophylline
Analytical Methods
DOI: 10.1039/c2ay26133b
IF= 1.5
18. 2012 Akshath U.S., Vinayaka
A.C. and M.S. Thakur*
Fluorescent disease sniffers doi:10.1038/nindia.2012.121;
Published online 23 August 2012
Research highlight
19. 2012 Vinayaka, A.C. and M.S.
Thakur*,
An immunoreactor based
competitive fluoroimmunoassay for
monitoring staphylococcal
enterotoxin B using bioconjugated
quantum dots
Analyst, 2012, Accepted
Manuscript
DOI: 10.1039/C2AN35760G,
IF=4.23
20. 2012 Sagaya Selva kumar, and
M.S.Thakur*
Dipstick based
immunochemiluminescence
biosensor for the analysis of
vitamin B12 in energy drinks: A
novel approach
Anal. Chimi. Acta –
Volume 722, 13 April 2012, Pages
107–113, IF=4.555
21. 2012 Sagaya Selva kumar, and
M.S. Thakur*
Nano RNA aptamer wire for
analysis of vitamin B12
Analytical biochemistry, Volume
427, Issue 2, 15 August 2012,
Pages 151–157, IF=2.996
22. 2012 Sagaya Selva kumar, and
M.S.Thakur*
Vitamin sensor Nature India,
doi:10.1038/nindia.2012.56;
Published online 20 April 2012
23. 2012 Rajeev Ranjan, Naveen.
K. Rastogi and M.S.
Thakur*
Development of immobilized
biophotonic beads consisting of
Photobacterium leiognathi for the
detection of heavy metals and
pesticide
Journal of Hazardous Materials
Volumes 225–226, 30 July 2012,
Pages 114–123,
IF=4.173
24. 2012 SowmyaNagarajappa,
M.S. Thakur+, H.K.
Manonmani
Detection of eneterotoxigenic
staphylococci by loop mediated
isothermal amplification method
Journal of Food Safety
Volume 32, Page 59-65
IF= 0.72
9
25. 2012 SowmyaNagarajappa,
M.S. Thakur+, H.K.
Manonmani
Rapid and simple DNA extraction
method for the detection of
eneterotoxigenicstaphylococcus
aureus directly from food samples:
comparison of PCR and LAMP
methods
Journal of applied Microbiology
Volume 113, Page 106-113
IF= 2.337
26. 2012 Priyanka B.S,
N.K.Rastogi, K.S.M.S.
Raghavarao and M.S.
Thakur*
Downstream processing of
luciferase from fireflies
(Photinuspyralis) using aqueous
two-phase extraction
Process Biochemistry, Volume 47,
Issue 9, September 2012, Pages
1358–1363,
IF=2.627
27. 2012 Akshath U.S., Vinayaka
A.C. and M.S. Thakur*
Quantum dots as nano plug-in's for
efficient NADH resonance energy
routing
Volume 38, Issue 1, October–
December 2012, Pages 411–415I
F=5.602
28. 2012 M.S. Thakur*, K.V.
Ragavan
Biosensors in food processing Journal of food science and
technology, In press, IF=1.123
29. 2011 Vinayaka, A.C. and M.S.
Thakur*,.
Photo-absorption and Resonance
Energy Transfer Phenomenon in
CdTe-protein Bioconjugates: An
Insight towards QD-biomolecular
Interactions
Bioconjugate Chemistry , 2011, 22,
968–975
IF= 4.35
30. 2012 Shabana Basheer, Dieter
Samyn, Martin Hedström,
M. S. Thakur+,
BengtPersson, Bo
Mattiasson
A membrane protein based
biosensor: Use of a phosphate -
H(+) symporter membrane protein
(Pho84) in the sensing of
phosphate ions.
Biosensors and Bioelectronics
27,(1) 58-63,
IF=5.602
31. 2012 SanjuktaPatra,
SarathBabu and M.S.
Thakur+
Effect of Physicochemical
Parameters on
EnzymaticBiodecaffeination During
Tea Fermentation
Applied Biochemistry and
Biotechnology Part A Enzyme
Engineering and Biotechnology.
166, 1 (2012), 112-126
IF= 1.89
32. 2012 V.R. SarathBabu, M.S.
Thakur+,Sanjuktapatra
Effect of physicochemical
parameters on enzymatic
biodecaffeination during tea
fermentation
Appl. Biochem Biotechnol.
166: 112-126
IF= 1.943
33. 2012 M.M. Naidu, P.V.
Sujithkumar, B.N.
Shyamala,G.
Sulochanamma, M.
Prakash, M.S. Thakur+
Enzyme assisted process for
production of superior quality
vanilla extracts from green vanilla
pods using tea leaf enzymes
Food Bioprocess Technology
Volume 5: Page 527-532
IF= 3.703
34. 2012 LathaRangachary, R.P.
Rajagopalan, M.S.
Thakur+, H.K.
Manonmani
Purification and characterization of
DDT-Dehydrohalogenase from
Pseudomonas putida T5
Preparative Biochemistry and
Biotechnology
Volume: 42, page 60-76
IF= 0.466
35. 2011 Akshath U.S, Sagaya
selva kumar, M.S
Thakur*
Detection of Formaldehyde in Food
samples by Enhanced
Chemiluminescence
Analytical Methods, 2012,4, 699-
704
I.F=1.5
10
36. 2011 S. Baker, A. C.
Vinayaka, H. K.
Manonmani, M. S.
Thakur*
Development of dipstick based
immuno-chemiluminescence
techniques for the rapid detection
of dichlorodiphenyltrichloroethane
In Press:
Luminescence: The Journal of
Biological and Chemical
Luminescence
IF=1.397
37. 2011 Sagaya Selva kumar L,
and M.S.Thakur*
Competitive immunoassay for
vitamin B12
Anal. Biochem– 418(2):238-46
IF= 2.99
38. 2011 Shabana Basheer
Sujith, PV
Ravi
M.S.Thakur*.
Comparative assessment tea
quality, with emphasis on Tea
polyphenols, by various analytical
and sensory methods
Journal of Food Science and
Technology
48, 4, 440-446
IF=0.498
39. 2010 Murthy HMR, Thakur,
M.S+. Manonmani HK
Degradation of Technical Grade
Hexachlorocyclohexane In Soil
Slurry by a Defined Microbial
Consortium
International journal of
environmental
research Volume: 4 Issue:
3 Pages: 471-478
40. 2010 Vinayaka AC, Thakur
MS*
Focus on quantum dots as potential
fluorescent probes for monitoring
food toxicants and foodborne
pathogens.
Anal Bioanal Chem.; 397(4):1445-
55.
IF 3.778,
41. 2010 Kumudha A, Kumar S.S,
Thakur M.S+,
Ravishankar G.A, Sarada
R.
Purification, identification, and
characterization of
methylcobalamin from
Spirulinaplatensis.
J Agric Food Chem. 2010 Sep
22;58 (18):9925-30.
IF 2.8, Cited 0
42. 2010 Chouhan, R. S. Vinayaka
A. C. andThakur, M. S*.
Chemiluminescence based
technique for the detection of
methyl parathion in water and fruit
beverages.
Anal. Methods, 2010, 2, 924–928.
IF = 1.5
43. 2010 Murthy MR ,Mandappa
IM Latha R Vinayaka AC,
M.S. Thakur*,
Manonmani HK
An immobilized dehydrohalogenase
based potentiometric biosensor for
the detection of chlorinated
pesticides
Anal. Methods, 2, 1355-1359
IF= 1.5
44. 2010 R.S. Chouhan,
K.V.S. Rana ,
C.R. Suri.
K.R.Thampi,
M.S.Thakur*.
Trace Level Detection of Atrazine
Using Immuno-
Chemiluminescence: Dipstick and
Automated Flow Injection Analysis
Formats
Journal of AOAC
INTERNATIONAL, 93,1.
IF 1.22
45. 2010 R.S.Chouhan,
A.C.Vinayaka,
M.S.Thakur*.
Thiol-stabilized luminescent CdTe
quantum dot as biological
fluorescent probe for sensitive
detection of methyl parathion by a
fluoroimmunochromatographic
technique.
Anal Bioanal Chem. 2010;
397(4):1467-75.
IF 3.778
46. 2009 R.S.Chouhan,
A.C.Vinayaka,
M.S.Thakur*.
Aqueous synthesis of CdTe
quantum dot as biological
fluorescent probe for monitoring
methyl parathion by
fluoroimmunosensor.
Nature Proceedings : 3451.1
11
47.
2009
A.C. Vinayaka,
S.Basheer,
M.S.Thakur*.
Bioconjugation of CdTe Quantum
dot for the detection of 2,4-
Dichlorophenoxyacetic acid by
Competitive Fluoroimmunoassay
based biosensor
Biosensors and Bioelectronics,
24,1615-1620.
IF=5.6
Cited:12
48. 2009 S. Selvakumar,
R.S.Chouhan,
M.S.Thakur*.
Enhancement of
chemiluminescence for vitamin B12
analysis
Analytical Biochemistry.
388,312-316.
IF= 2.9, Cited= 4
49. 2009 R.Krishneveni,
VandanaRathod,
M.S.Thakur+,
Y.F.Neelgund.
Transformation of L-Tyrosinase to
L-Dopa by a novel fungus,
Acremoniumrutilum under
submerged fermentation.
CurrMicrobiol.
58,122-128.
IF= 1.33
Cited= 2
50. 2009 M.Lisa, R.S.Chouhan,
A.C.Vinayaka,
H.K.Manonmani,
M.S.Thakur*.
Gold nanoparticles based dipstick
immuno-assay for the rapid
detection of organochlorine
pesticides
Biosensors and Bioelectronics
25,224-227.
IF= 5.6, Cited= 9
51. 2009 S. Selvakumar,
R. S. Chouhan,
M. S.Thakur*.
Trends in analysis of vitamin B 12 :
A review
Anal Biochem. 201,15; 398(2):139-
49.
IF 3.7, Cited 1
52. 2008 R.Krishneveni,
VandanaRathod,
M.S.Thakur+,
Y.F.Neelgund.
Screening and characterization of
novel cytosolic tyrosinase producer
AcremoniumRutilumw.gams
The Bioscan.
3,523-528.
IF= 1.031
Cited=2
53. 2007 M.S.Thakur*. Application of Nano-biotechnology
in Biosensor Development: An
overview
Ima-Gene .
54. 2007 K.S.Abhijith, P.V. Sujith
Kumar, M.A. Kumar,
M.S.Thakur*
Immobilised tyrosinase-based
biosensor for the detection of tea
polyphenols.
Anal Bioanal Chem,
389:2227-2234
IF= 3.7
Cited= 9
55. 2006 R.S.Chouhan,
K.VivekBabu,
M.A.Kumar, N.S.Neeta,
M.S.Thakur*, B.E.Amitha
Rani, Akmal Pasha,
N.G.Karanth,
Detection of methyl parathion using
immuno-chemiluminescence based
image analysis using charge
coupled Device (CCD ).
Biosensor and Bioelectronics.
21,1264-1271.
IF= 5.6
Cited= 22
56. 2006 A.HirlekarSchmid,
S.E.Stanca,
M.S.Thakur+,
K.RavindranathanThampi
, C.R.Suri.
Site directed antibody
immobilization on gold substrate for
surface Plasmon resonance
sensors.
Sensors and Actuators B.
113,297-303.
IF= 3.9
Cited= 15
57. 2006 M.A.Kumar,
R.S.Chouhan,
M.S.Thakur+, B.E.Amita
Rani, Bo Mattiasson,
N.G.Karanth.
Automated flow ELISA system for
analysis of methyl parathion
Analytica Chemical Acta.
560,30-34.
IF=4.3
Cited= 8
12
58. 2006 V.R.SarathBabu, S.Patra,
N.G.Karanth, M.A.Kumar,
M.S.Thakur*.
Development of a Biosensor for
caffeine.
AnalyticaChimica Acta.
582,329-334.
IF= 4.3
Cited= 7
59. 2005 V.R.SarathBabu, S.Patra,
M.S.Thakur*,
N.G.Karanth,
M.C.Varadraj.
Degradation of Caffeine by
Pseudomonas alcaligenesCFR
1708
Enzyme and Microbial Technology.
37,617-624
IF= 2.367
Cited= 7
60. 2005 J.Jegan Roy, T. Emilia
Abraham, K.S. Abhijith,
P.V. Sujith Kumar,
M.S.Thakur*
Biosensor for the determination of
phenols based on Cross Linked
Enzyme Crystals (CLEC) of
Laccase.
Biosensor and Bioelectronics
21,206-211.
IF=5.6
Cited= 36
61. 2004 K.C.Gulla,
M.D.Gouda,
M.S.Thakur*,
N.G.Karanath.
Enhancement of stability of
immobilized glucose oxidase by
modification of free thiols generated
by reducing disulfide bond and
using additives
Biosensors and Bioelectronics,19,
621-625.
IF= 5.6
Cited= 9
62. 2004 V.R.SarathBabu,
M.A.Kumar,
N.G.Karanath,
M.S.Thakur*.
Stabilization of immobilized glucose
oxidase against thermal inactivation
by silanization for biosensor
applications
Biosensors and Bioelectronics.
19,1337-1341.
IF= 5.6
Cited= 22
63. 2004 V.B.Kandimalla,
N.S.Neeta, N.G.Karanth,
M.S. Thakur*,
K.R.Roshini, B.E.A.Rani,
A.Pasha, N.G.K.Karanth.
Regeneration Of Ethyl Parathion
Antibodies For Repeated Use In
Immunosensor: A Study On
Dissociation Of Antigens From
Antibodies
Biosensors and Bioelectronics,
20,903-906.
IF= 5.6
Cited= 18
64. 2003 M.D.Gouda,
S.A.Singh,
A.G.Appu Rao,
M.S. Thakur+
N.G.Karanth.
Thermal Inactivation of glucose
oxidase: mechanism and
stabilization using additives.
Journal of Biological Chemistry
278,27,24324-24333.
IF= 7.385
Cited= 94
65. 2003 M.S. Thakur+,
N.G. Karanth.
Biosensors: A modern tool in
biotechnology
In: 5th International Food
Convention, CFTRI, Mysore.
66. 2002 Thakur M.S*., Development of New technologies
in Food Science and Technology
RakshaKhadyaVigyanPatrika,
2002, 10, pp:26-28 (Article in Hindi)
67. 2002 K.C.Gulla,
M.D Gouda,
M.S.Thakur+,
N.G.Karanth.
Reactivation of immobilized acetyl
cholinesterase in an amperometric
biosensor for organophosphorus
pesticide
Biochimica et Biophysica Acta.
1597,133-139.
IF= 4.374
68. 2002 M.D.Gouda, M.A.Kumar,
M.S.Thakur+,
N.G.Karanth.
Enhancement of operational
stability of an enzyme biosensor for
glucose and sucrose using protein
based stabilizing agents
Biosensors and Bioelectronics
17,503—507.
IF= 5.6
Cited= 32
69. 2002 M. D. Gouda,
M. S. Thakur+,
N. G. Karanth.
Reversible denaturation behaviour
of immobilized glucose oxidase
Applied Biochemistry and applied
Biotechnology.
102,471-480.
IF= 1.42, Cited= 2
13
70. 2001 M. D. Gouda,
M. S. Thakur+,
N. G. Karanth
Stability Studies on Immobilized
Glucose Oxidase Using an
Amperometric Biosensor-Effect of
Protein Based Stabilizing Agents,
Electroanalysis.
13,10.
IF= 3.08
Cited= 15
71. 2001 M.A.Kumar,
M.S.Thakur+,
A.Senthuran, V.Senterun,
N.G.Karanth,
R.Hatti-kaul,
B.Mattiasson.
An automated flow injection
analysis system for on-line
monitoring of glucose and L-lactate
during lactic acid fermentation in a
recycle bioreactor.
World Journal of Microbiology and
Biotechnology.
17,23-29.
IF= 1.082
Cited= 7
72. 2001 M.D.Gouda,
M.S.Thakur+,
N.G.Karanth.
Optimization of the multienzyme
system for sucrose biosensor by
response surface methodology
World Journal of Microbiology and
Biotechnology
17,595-600.
IF= 1.082, Cited= 11
73. 2001 K.C.Gulla,
M.S.Thakur*,
N.G.Karanth.
Biocapteurs et chasse aux
pesticides
BIOFUTUR.
215,56-59.
IF= 0.022
74. 2000 K.Rekha,
M.D Gouda,
M.S.Thakur*,
N.G.Karanth
Ascorbate Oxidase Based
Amperometric biosensor for
Organophosphorus Pesticide
Monitoring.
Biosensors and Bioelectronics
15,499-502.
IF= 5.6
Cited= 30
75. 2000 K.Rekha,
M.S.Thakur,*N.G.Karant
h
Biosensors for Organophosphorus
Pesticide Monitoring.
CRC Critical Reviews in
Biotechnology
20,213-235.
IF= 3.57
Cited= 21
76. 2000 A.K.Misra.
M.S.Thakur*, P.Srinivas,
N.G.Karanth.
Screening of Poly-ß-hydroxy
butyrate Producing Microorganisms
using FTIR Spectroscopy
Biotechnol. Letters,
22,1217-1219.
IF=0 .976
Cited= 10
77. 1999 M.S.Thakur,
N.G.Karanth.
Application of Biosensors for global
standards in food quality
In: Proceeding of
InternationalCoference (IFCON-98)
Published by Association of food
Scientists and Technologists ( India).
78. 1999 M.P.Nandakumar,
M.S.thakur+,
K.S.M.S.Raghavarao,
N.P.Ghildyal.
Studies on catabolite repression in
solid state fermentation for
biosynthesis of fungal amylases.
Letters in Applied Microbiology.
29,380-384.
IF= 1.46
Cited= 11
79. 1997 M.D.Gouda,
M.S.Thakur+,
N.G.Karanth.
A dual enzyme amperometric
biosensor for monitoring
organophosphorous pesticides
Biotechnology Techniques.
11,653-655.
IF= 0 .9
Cited= 16
80. 1996 M. P.Nandakumar,
M. S. Thakur+,
K. S. M. S. Raghavarao
,
Substrate particle size reduction by
Bacillus coagulans in solid state
fermentation.
Enzyme and microbiol. Technol.
18,121-125.
IF= 2.86
Cited= 16
81. 1994 M.P.Nandakumar,
M.S.Thakur+,
K..S.Raghavarao,
N.P.Ghildyal.
Mechanism of solid particle
degradation by Aspergillusniger in
solid state fermentation
Process Biochemistry.
Vol.29, No.7, 545-551.
IF= 2.6
Cited=16
14
82. 1993 Max J. Kennedy,
M. S. Thakur+.
The use of Neural Net works to aid
in Microorganism identification
Antonie Van Leewenhoek.
63, 35-38.
IF= 1.98
Cited= 9
83. 1993 M.V.Ramana Murthy,
M.S.Thakur+,N.G.Karant
h
Monitoring of biomass in solid state
fermentation using light reflectance
Biosensors and Bioelectronics
8,59-63.
IF= 5.6
Cited= 16
84. 1992 M.J.Kennedy,
M.S.Thakur+,D.I.C.Wang
, Gregory
N.Stephanopoulos.
Estimating cell concentration in the
presence of suspendable solid : A
Light Scatter Technique.
Biotechnology and Bioengineering.
40,875-888.
IF= 3.377
Cited= 19
85. 1992 M.J.Kennedy,
M.S.Thakur+,D.I.C.Wang
, Gregory
N.Stephanopoulos.
Techniques for the estimation of
cell concentration in the presence
of solid particles: A review
Biotechnology progress.
8,375-381.
IF= 2.398
Cited= 16
86. 1992 M.J.Kennedy,
S.G Prapulla,
M.S. Thakur+.
Designing fermentation media : A
comparison of Neural Network to
Factorial design.
Biotechnology Techniques.
6 (4), 293-298.
IF= 0.97
Cited= 15
87. 1993 S.G.Prapulla,
M.S.Thakur+,
M.C.Misra,
N.G.Karanth.
Effect of lipid content on the
centrifugal recovery of oleaginous
yeast cells - Experimental
observations and mathematical
model.
Bioseparation.
3, 359-364.
IF=
Cited=
88. 1990 M.S.Thakur+, -
N.G.Karanath,
Krishna Nand.
Production of fungal rennet by
Mucormiehei using solid state
fermentation.
Appl. Microbiol.Biotechnol,
32,409-413.
IF= 3.624
Cited= 40
89. 1989 M.S.Thakur+,
S.G.Prapulla,
N.G.Karanth.
Estimation of intracellular lipids by
optical density measurement of
yeast cells stained with Sudan
Black ‘B’
Enzy. Microbiol. Technol.
11, 251-253.
IF= 2.638
Cited= 4
90. 1988 M.S.Thakur+,S.G.Prapull
a, N.G.Karanth.
Microscopic Observation of sudan
black B staining to monitor lipid
production by microbes.
J.Chem.Tech. Biotechnol.
42,129-134.
IF=
Cited= 4
91. 1987 M.S.Thakur+, S.G.
Prapulla ,
S.A..Jaleel,
M.S. Prasad ,
N.P.Ghildyal,
B.K. Lonsane .
Cultural stability of Streptomyces
fradiae in the production of xylose
isomerase: studies in shake flasks.
Folia Microbioligica
33(1):21-8.
IF= 0.97
92. 1987 N.P.Ghildyal ,
M.S.Thakur+ ,
S.S.Srikanta
S.A.Jaleel ,
S.G.Prapulla.
Rheological studies on
streptomycesfradiac SCF 5 in
submerged fermentation
J. Chem. Techn. Biotechnol.
38(4), 221-234.
IF= 2.045
Cited= 6
15
93. 1987 P, Prema,
M.S. Thakur+,
S.G. Prapulla,
S.V.Ramakrishna,
B.K.Lonsane.
Production of Gibberellic acid by
solid state fermentation : Potentials
and feasibility
Indian .J., of Microbiology.
28 (1&2), 78-81.
IF= 0 .78
Cited= 33
94. 1986 S.G.Prapulla,
M.S.Thakur+,S.A.Jaleel,
S.Srikanta, M.S.Prasad,
P.N.Devi, N.P.Ghildyal,
B.K.Lonsane.
Cultural Stability of Streptomyces
fradiae SCF 5 in production of
glucose Isomerase : Studies in
laboratory and pilot plant fermenter.
Chemie.Microbiologic Technologic
der Labensmittel.
10,168-171.
95. 1983 M.S.Thakur*,
K.M. Vyas .
Production of plant growth
regulators by some Fusarium
species
Folia microbiologica.
28(2):124-9.
IF= .97
Cited= 6
96. 1981 T.Satyanarayana,
M.S.Thakur *.
Auxin-like activity of some
antibiotics on germination of seeds
Proceeding of the National
Academy of Sciences.
51 (B), 38-40.
97. 1978 M.S. Thakur*,
N. Pathak,
S.B. Saksena.
Seasonal variation inleaf surface
mycofloraof Azadirachtaindica.
Indian Phytopathology, 31(2): 255-
256.
98. 1990 M.S. Thakur*. Studies on the production of
microbial rennet by solid state
fermentation
Transaction of Mycological Society
of Republic of China.
Cited= 9
99. 1993 Krishnananda,
M.S. Thakur*,
N.G. Karanth.
Downstream processing of
Microbial rennet from solid state
fermentation mouldy bran
Biotechnology Advances.
11, 399-407.
IF= 9.646
MANUSCRIPTS COMMUNICATED
1. 2014 Rajeev Ranja, M.
Sowmya, K. Vatcharavelu
and M.S. Thakur*
Rapid detection of toxic metal
contamination using Biophotonic
beads
interfaced with Avalanche
Photodiode
Analytical Methods
2. 2014 PrasannaJoglekar,
MandappaIychettiraMach
aiah, M. S. Thakur+ and
Manonmani Haravey
Krishnan
φ29 DNA Polymerase based Real
Time Isothermal Amplification
(RTIA) for the detection of Yersinia
enterocolitica
Food Microbiology
3. 2014 IychettiraMachaiahManda
ppa, PrasannaJoglekar,
M. S. Thakur+ and
Haravey Krishnan
Manonmani
Loop-mediated Isothermal
Amplification (LAMP) assay for
rapid detection of Bacillus cereus
diarrheal toxin genes
International Journal of Food
Microbiology
7. No. of Books Authored/Edited : Authored
16
1. Biosensors for Pesticides and Foodborne Pathogens.
In: Biosensors in Food Processing, Safety, and Quality
Control.
2010, PP 147-192,
CRC, Press.USA
2. Assay by biosensor and chemiluminescence for
vitamin B12
2012, Inc press, RSC publishing group
3. Research and Development on Biosensors for food
Analysis in India In: Advances in Biosensors 2003
Oxford
University , Press, 2003
4. Application of Nanotechnology for Biosensors and
Bioelectronics.
Proceedings published by INAE
Conference on Nanotechnology (INAE-
2003), Indian National Academy of
Engineering, 2003.
5. Enzymatic treatment for Downstream processing of
microbial oils. In : Downstream Processing in
Biotechnology
TATA McGill Publication, 1998
6. Biosensors and Bioelectronics and their applications
In: Advances in Biotechnology
Educational Publishers &Distributors,
India
7. Nanoparticles and Biophotonics as Efficient Tools in
Resonance Energy Transfer based Biosensing for
Monitoring Food Toxins and Pesticides
ACS publications, 2013
Chapter 4, 55-84
Eds: MichellAppell
8. No. of patents granted/Applied for : 15 Nos.
Sl.
No.
Title Country Filed on
(Date)
Granted
on
(Date)
Names of other
inventors
International Patents
1 Decaffeinating microorganism
and process of
biodecaffeination of caffeine
containing solutions
US patent granted:7,141,411
An Industrial collaboration with
M/S TATA tea and M/s AVT,
Natural Products was
established
USA 30-Sep-
2004
28-Nov-
2006
M.S.Thakur
R.SarathBabuN.G.Karan
th, M.C.Varadaraj
17
2 A process for the preparation of
thermostable enzyme of high
transition temperature. US
patent granted: 7267971
USA 25-Mar-
2003
11-Sep-
2007
M.S.Thakur
R.SharathBabuN.G.Kara
nthM.A.Kumar
3. Isolation of
Psedomonasalcaligenes for
biodecaffeination of caffeine
containing solution
US patent granted :
2007/0036,880
USA 28-Oct. -
2006
15-Feb.-
2007
M.S.Thakur
R.SarathBabuN.G.Karan
th,
M.C.Varadaraj
4. A process for the preparation of
thermostable enzyme
EP1608747
EU 24- Dec-
2008
M.S.Thakur
R.SharathBabuN.G.Kara
nth
M.A.Kumar
5. An improved process for the
preparation of natural vanilla
extract
WO/2009/031160
WO/PCT 25-Aug-
2008
12-March-
2009
S.R.D.SampathuM.M
Naidu.,
Raghavan B.,
M.S Thakur.
Sujithkumar.,
V. Prakash
National Patents
6. Method and kit for pesticide
analysis
487/DEL/2004
INDIA 16-Mar-
2004
26-May-
2006
M.S.Thakur
N.G. Karanth
M.A. Kumar
Amita Rani
A.Pasha
N.G.K. Karanth
7. A process for preparing
immobilized antibodies dipstick
for quantitative detection of
pesticides at high sensitive
level using
chemiluminescence.
NF No. 206NF2008
INDIA 2009 M.S.Thakur,
H.K.ManonmaniR.S.Cho
uhan.
8. Kit for the detection of
Dichlorodiphenyltrichloroethane
(DDT) by Dot-ELISA method
using IgY (NF No. 139/08)
INDIA 2009 Deepthi N, Manonmani
H.K, Thakur M.S.
9. An improved process for
preparation of Fumonisin B1
654/DEL/2008A
INDIA 14-
Mar,2008
18-Sept-
2009
R. Latha
H.K. Manonmani
A. Pasha
M.S. Thakur
10. An immobilized enzyme
based biosensor for
INDIA 2008 P.V.Sujithkumar
M.S.Thakur
18
measurement of
polyphenols. 653/DEL/2009
Vatchravelu
N.G.Karanth
M.A.Kumar
11. A process for microbial
biotransformation of
caffeine totheophylline.
(Ref.No.329/DEL/2006 A)
INDIA 3Feb.2006. 12-Feb
2010
SanjuktaPatra
M.S.Thakur
N.G.Karanth
12. A biosensor device for the
determination of caffeine,
(Ref. No.726/DEL/2005).
INDIA 2005 SarathBabu
SanjuktaPatra
M.S.Thakur
13. A process for preparation of
an enzyme electrode for the
determination of copper ions
363/DEL/2002 A
INDIA 27-Mar.-
2002
9-Mar-
2007
M.D.Gouda
M.S.Thakur
N.G. Karanth
M.A. Kumar
14 Development of process for
stabilization of enzymes
2159/DEL/98
INDIA 1998 M.D.Gouda
M.S.Thakur
N.G. Karanth
15. A device useful for the
measurement of organic acids
and their derivatives
21/DEL/98
Commercialized.
INDIA 1998 M.S. Thakur
Nanda Kumar
M.A. Kumar
N.G. Karanth
M.C. Misra
9. Details of R& D work done: Application of Nanotechnology in
biosensors
Development of new age and upcoming bio-diagnostic techniques has
revolutionized the field of analytical and bioanalytical chemistry. The coordinated
efforts from various fields such as biochemistry, biotechnology and material science
has led to the development of several robust and reliable biosensing tools applicable
in numerous fields such as health sector, environmental safety, clinical diagnostics
and food technology. The usage of nanoparticles such as quantum dots, silver and
gold nanoparticles for their efficient tailoring to conjugate with numerous biosensing
agents such as enzymes, antibodies, aptamers, cells and tissues which can be used
in high throughput and multiplexed analysis of a variety of analytes has greatly
improved and replaced the conventional analytical methods. Unique opto-physical
properties, surface plasmon resonance and field confinement effects of
19
semiconductor nanoparticles have greatly enhanced the sensitivity and robustness
of bio-diagnostics involved in the detection of pathogens/ toxins and other hazardous
materials such as pesticides and heavy metals. We have tried to deal with the
upcoming and novel bioassays for quick and multivariate analytical approach for
monitoring pathogens, toxins and other hazardous analytes at ultrasensitive levels.
1. Development of Nanobiosensors for analysis of food contaminants:
With gained experience in electrochemical, optical, enzyme, tissues, antibodies and
DNA, we started thinking to progress in application of nanotechnology for biosensor
development. With a vision to miniaturize the biosensor devices with very high
sensitivity and affordable cost possess high reliability.
i) Detection of pesticides and Toxins using Q-dots:
Efforts are on for the detection of pesticides and microorganisms and microbial
toxins using nanoparticles such as quantum dots (CdSe, CdTe, and CdS) and gold
(Au) nanoparticles. Studies have been conducted on conjugation of Atrazine with
CdTe quantum dots for highly sensitive detection based on fluorescence. Antibodies
raised against pesticides/toxins and work is in progress. We have successfully used
these nanoparticles for detection of pesticides. We have proved a novel
phenomenon called Fluorescence Resonance Energy Transfer (FRET) between
QD-Nanoparticles and Protein molecules (please see our publication).
ii) DNA nano probes:
Quantum dots are being used for the detection of food pathogens such as
Staphylococcusaureus and E.coli. The simple process of hybridization between
complementary strands of targeted ss DNA is being use for detection. For this
purpose the gene for the SEB/Ent B toxins are being used as the target sequence.
Biotinylated complementary probes will be conjugated with streptavidin coated
quantum dots. These DNA probes on binding with the target sequence will show a
20-fold increase in fluorescence compared to conventional dyes and hence very low
number of target sequence in sample solution can be traced.
iii) Fluorescent Nano-probes for targeted monitoring
Cancer is still extremely difficult to treat, so effective diagnosis strategies in the early
stages of cancer are critical. In this respect, imaging can become an indispensable
tool in cancer clinical trials and medical practice. In vivo fluorescence imaging of
tumors may offer a possibility for the direct bio-imaging of tumors for precise
diagnosis of cancer and monitoring of the treatment process. In situ fluorescent bio-
imaging is also of great significance for visualizing the expression and activity of
particular molecules, cells, and biological processes that influence the behaviour of
20
tumors and/or their responsiveness to therapeutic drugs. In this connection,
fluorescent gold Nano clusters will be synthesized and tagged with marker
proteins/aptamers for in-vivo self-bio-imaging. Protein markers like p53
antibody/aptamers bio conjugated with fluorescent gold nanoclusters will be targeted
for site specific response studies. The vast majority of all agents used to directly kill
cancer cells (ionizing radiation, most chemotherapeutic agents and some targeted
therapies) work through either directly or indirectly generating reactive oxygen
species that block key steps in the cell cycle. The question thus arises whether most,
programmed cell death caused by anti-cancer therapies is also ROS induced. The
“two-face” character of ROS is substantiated by growing body of evidence that ROS
within cells act as secondary messengers in intracellular signalling cascades, which
induce and maintain the oncogenic phenotype of cancer cells, however, ROS can
also induce cellular senescence and apoptosis and can therefore function as anti-
tumorigenic species. In this context, it is essential to know the role of ROS, the levels
at which they can bring about cellular damage and apoptosis and/or help cancer
cells maintain their phenotype. For in-vitro detection of ROS, a variety of
electrochemical, spectroscopic, chemiluminescent, and fluorescent methods have
been developed. Among them, the fluorescence detection method has distinctive
advantages in terms of high sensitivity and experimental convenience. For example,
previously commercialized fluorescent probes such as 20,70-
dichlorodihydrofluorescein (DCFH) and 2-[6-(40-amino)phenoxy-3H-xanthen-3-on-9-
yl] benzoic acid (APF) are widely used for the optical detection of intracellular ROS.
However, these ROS fluorescent probes exhibit several limitations such as light-
induced auto-oxidation and insufficient ROS sensitivity. Therefore, the development
of an environmentally stable, species selective, and extremely sensitive fluorescent
probe is necessary for the quantitative analysis of intracellular ROS in biological
systems. In particular, present work will be aimed at developing a situ intracellular
ROS/anti-cancer drug fluorescent probe that could provide real-time physiological
information within live cells responding to various external stimuli.
iv) Aptamer based biosensing platforms
Aptamer based ultrasensitive biosensing systems were developed for vitamin B12,
Theophylline, Bisphenol A and p53. Present work was based on interaction of
aptamer with gold nanoparticles and differential binding of aptamer in presence and
absence of analytes. Currently, as a part of Indo-Spain project, we are working on
generation of aptamer for marine toxins and aflatoxins and its detection at food
samples at sensitive levels.
2. Protein/ biomolecule stabilization:
There is no biomolecules on the earth, which remain forever. To stabilize the
biomolecules are extremely difficult task, which is very essential for biosensor
development. Attempts were made and are being continued to stabilize biomolecules
21
for operational and thermal stability by using protein based stabilizing agents (PBSA)
and other stabilizers. This study is very much essential to reduce the cost of
analysis, and repeated biosensor use. Stabilization of biomolecules is also an
important factor governing the enzymatic biotransformations on an industrial scale.
My group came out with important breakthrough in stabilizing biomolecules such as
enzymes and antibodies extreme conditions. We have several patents and
publications in these regards.
3. Biosensor for Vitamin B12 Analysis:
Methods for the detection of Vitamin B12 remain still questionable due to its low
sensitivity and complex chemical structure. In the present work, a simple, faster and
sensitive technique based on Immuno-chemiluminescence (CL) is being developed
to detect vitamin B12at very sensitive level (ppt).
4. Optical principle based detection system:
During my biosensors research during 20 years I have worked in core areas of optics
including light scattering, absorbance, surface plasmon resonance, atomic force
microscopy (cantilever optical system), refraction, reflection, fluorescence and
luminescence (Bio and chemiluminescence) for biosensor development. I find
chemiluminescence system based biosensors are more sensitive to detect any
analyte at very low concentration.
10.Food Biosensor research at CFTRI:
Realizing the importance of biosensor research for food analysis early 90’s, now my
lab on biosensor has been recognized nationally and internationally. During the last
10-15 years, I have handled several projects on Biosensor research, which were
funded byCFTRI, DST, DBT, Indo-Swiss and Indo-Swedish agencies.
Currently I am working on the development of biosensors for food, environment (water) and
fermentation monitoring. Biosensors are being developed in my group, based on enzymes,
antibodies, tissues, cells etc. as biological recognition elements with optical or amperometric
detector systems as physical transducers. Biochemical signal processing for the biosensors
including, signal detection, transduction, amplification and processing are being done using
microprocessors and microcomputer.
1. Biosensors for pesticide monitoring in Food and Environmental samples:
It must be mentioned that a highly sensitive immuno-sensor system was developed
for the detection of ethyl and methyl parathions, 2,4D and atrazine at Picograms
22
concentration (ppt) based on the immuno-chemiluminescence principle. Antibodies
against pesticides were raised in Chicken (IgY) and rabbit (IgG). An economical IgY
was produced for highly sensitive detection system based on immuno-
chemiluminescence biosensor. No existing system available, which can detect
pesticides at ppt concentrations.
The high sensitivities of pesticides
detection achieved in the project
show promise of excellent
applications of our immunosensor for
field application.
International Scientific collaboration
in Biotechnology funded this project
under Indo-Swiss collaboration
(SDC-DBT). International monitoring
committee (JAC) of this project
appreciated the progress of the
project and recommended for
industrial collaboration.
In this connection we are now interfacing with the Industries (M/s Bigtech,
Bangalore) for technology transfer through collaborative project, which was
submitted to DBT under Small Business innovation research Initiative (SBIRI).
Significant work has been done in terms of establishing the concept of detection of
pesticides based on chemiluminescence (CL) wherein the required sensitivity at sub-
nanogram level could be attained.
2. Biosensors for organophosphorous pesticides based on enzymes:
A variety of pesticides and herbicides have been extensively used in agricultural
practices to increase productivity, leading to pesticide residues in soil, water and
food. These contaminants create serious health hazards to human population.
Following biosensor systems were developed for the detection of pesticides.
i) Acetyl Choline Esterase ( AChE ) inhibition based biosensor:
AchE based biosensor system was developed for monitoring of OP pesticide.
Electrode was polarised at +410mV and signals were correlated with OP pesticide
concentrations. While biosensors based on AchE inhibition have been known for
monitoring of OP, pesticides, in food and water samples. However strong inhibition
of the enzyme is a major drawback in practical application of the biosensor, this can
be at least partially overcome by reactivation of the enzyme for repeated use. In our
laboratory study on enzyme reactivation by oximes was explored. Two oximes viz.,
1,1’-trimethylene bis 4 – formylpyridinium bromide dioxime (TMB-4) and pyridine 2-
aldoxime methiodide (2-PAM) were compared for the reactivation of the immobilized
23
AChE. TMB-4 was found to be a more efficient reactivator under repeated use,
retaining more than 60% of initial activity.
ii) Detection of OP pesticides using ascorbic acid oxidase:
A laboratory biosensor has been constructed at CFTRI, Mysore for paraoxon with a
sensitivity of 0.5 ppm. This sensitivity is not quite adequate for practical applications
and efforts are in progress to improve the biosensor performance.
Considerable research has been carried out at CFTRI; Mysore on the development
of single and multi-enzyme based amperometric biosensors for
organophosphorous(OP) pesticides detection. It is known that organophosphates
exhibit their pesticide power through a strong inhibition of acetylcholine esterase
(AChE) activity. This inhibition principle has been used to develop a biosensor for
detection of OP pesticides.
iii) Acid phosphatase inhibition-based detection.
An amperometry-based biosensor has also been developed to analyse the OP pesticide
using the dual enzyme system consists of acid phosphatase and glucose oxidase (GOD).
Using the above system, an amperometric biosensor consisting of a potato layer rich
in acid phosphatase and on immobilized GOD membrane, when operated in
conjunction with a Clark type electrode, detected the pesticide. A notable advantage
of this biosensor is that the inhibition of acid phosphatase by the pesticide is
reversible and thereby eliminates the serious problem of enzyme inactivation.
3. Construction of a prototype biosensor instrument for glucose and sucrose
analysis for Food Industry application:
A prototype biosensor instrument has
been constructed, and has
undergone tests and
troubleshooting in the laboratory for
glucose and sucrose analyses. With
a view to commercialisation of the
instrument collaboration was
established with an instrument
manufacturing company. Later it
was also been field tested in the
sugar factories and confectionery
industries.
4. Construction of a Lactate Monoxigenase (LMO) enzyme electrode:
24
A batch type L-lactate biosensor for analysis in the concentration range 50-800 mg/dl has
been constructed at CFTRI, Mysore and the technology has been transferred to industry
(M/s Solid State Electronics, Pune). This features an enhanced operating life of 60 days
for enzymes sensing element of the biosensor, which is covered by patent (2159/DEL/98).
This biosensor can be used for L-lactate detection in fruit pulp, fermented samples and dairy
products.
5. On-line Monitoring of fermentation process using biosensor:
A biosensor with Flow Injection Analysis (FIA) system
(Fig. 3), useful for continuous monitoring and control
of food and fermentation processes was
developedOn-line data acquisition and real time
control of Food and Fermentation processes is a
difficult task and limits the use of a batch type of
biosensor. Through FIA system it was possible
todetect Glucose and L-lactate subsequently and
details of the process is given in figure 3.
6. Biosensor for Ascorbic acid analysis:
Work has been carried out at CFTRI, Mysore on the development of a tissue based
biosensor for L-ascorbic acid analysis in food and pharmaceutical samples. An immobilized
Ascorbic acid oxidase enzyme was used fordetection of ascorbic acid oxidase obtained from
cucumber peels. We found that Ascorbic acid oxidase was suitable enzyme for the
development of several biosensor systems for detection of pesticides (Pl. see Annexure I,
section 2, ii), Vitamin C (as above) and Copper ions (see below).
7. Detection of Copper ions by biosensor:
An ascorbic acid oxidase based system was used for the detection of Cu
ions. This enzyme contains Cu++
in its active site. Based on its folding and unfolding
(Biomolecular phenomenon) activity a biosensor was constructed. It was able to
detect Cu ions in water sample.
8. Tea Biosensor:
India is exporting a large quantity of
black tea all over the world. Tea
polyphenols play a crucial role in
determining quality of black and green tea.
Major quality attributes such as colour and
astringency directly linked with polyphenol
contents. Therefore, it is necessary to know
quantity of Polyphenols in tea. Also, tea
polyphenols are gaining importance due to
their strong antioxidant properties for
nutrition and health. In this context in our
lab, we have successfully developed an
enzyme based amperometric biosensor (Fig
25
4) for the determination of total polyphenol
content in tea infusions. Both in lab and
industry trials were satisfactory for tea
polyphenols detection and tea biosensor
technology is going to be transferred to M/s
Ti Industries Calcutta (MoU signed).
Food Microbiology and Fermentation Technology:
1979 to 2000:
1. Microbial Production of Glucose Isomerase enzyme for high Fructose Syrup
(Large scale trial) :
In this project Streptomyces fradie culture was cultivated in 10 to 200L capacity
fermentors for the production of Glucose Isomerase which was very important
enzyme for production of High Fructose Syrup (HFS) for beverages industries. This
enzyme was isolated and immobilised for the production of HFS. A process was
developed.
2. Microbial production of rennet on solid state and submerged fermentation:
Rennet enzyme is very important enzyme for cheese making and in early 80’s this
enzyme was obtained through slaughtering the calf, keeping this in view a process
for production, extraction and purification of microbial rennet for vegetarian cheese
using Mucormuhei and Rhizopus was developed using solid state fermentations.
Cheese made out of this rennet was very suitable.
Several papers on this aspect were published.
3. Studies on the engineering aspects of solid state fermentation ( SSF):
Bioengineering and microbiological studies on the growth of microorganisms and
production of many food enzymes were done using SSF. Several papers were
published and our contribution on SSF through this project was unique.
4. Cultivation of mammalian cells in fermentation for Human growth hormones
and hybridoma cells ( MIT, USA ).
5. Microbial production of Single cell oil in submerged fermentation:
Rhodotorulagracilis(Rg) was used to produce single cell oil. It was observed that Rg
could able to accumulate oil 75-80% intracellularly. Now it is an important area for
biofuel.
6. Cultivation of microorganisms and production of lactic acid by fermentation. Funded
by DBT- SIDA: Indo-Swedish collaborative project. 1993-2001:
26
7. Ecofriendlybiodegradable packing material: 1999-2000.
Several strains of microorganisms were isolated and biodegradable
Biopolymers PHA, PHB, PHV etc were isolated, extracted purified and identified. It
was found that Pseudomonas and RhizobacteriumSp. were potent to produce these
biopolymers. Research papers published.
2000 –continued:
8. Microbial degradation of Caffeine and polyphenols to produce value added products.
9. Microbial Production of Caffeine degrading enzymes in submerged and solid state
fermentation
10. Biotransformation of caffeine to theophylline using whole microbial cell, Enzymes
Funded by CFTRI.
11. Immobilization of enzymes/cells for decaffeination of coffee and tea.
I ) Biodecaffeination of Tea and coffee:
Caffeine when taken in excess exhibits various deleterious effects. It
stimulates the central nervous system, shows toxicity when fed in excess and
is even mutagenic in vitro. Excessive consumption of caffeine through
beverages is associated with a number of health problems like adrenal
stimulation, irregular muscular activity, cardiac arrhythmias and increased
heart output. Excess caffeine is reported to cause mutation, inhibition of DNA
repairs and inhibition of adenosine monophosphodiesterase and during
pregnancy causes malformation of fetus and may reduce central nervous
system, shows toxicity when fed in excess and is even mutagenic in vitro. It
also causes osteoporosis, i.e. decrease in mineral density.
Biodecaffeination is defined as the complete removal of caffeine and related methyl
xanthines form caffeine-containing materials like coffee, tea, cocoa etc., by the use of
enzymes/cells capable of degrading caffeine. We report the development of a
biodecaffeination process for coffee and tea using enzymes isolated from
Pseudomonas alcaligenes MTCC 5264. The enzymes involved in biodecaffeination
were caffeine 1N-Demethylase, 7N-Demethylase, xanthine dehydrogenase, xanthine
oxidase, uricase, allantoinase, allantoicase, glyoxylatede-hyrogenase and urease.
These enzymes could be stabilized for 90 days under cold storage in the presence of
lysozymeand sorbose.
Biodecaffeination of green coffee beans (Fig 5 item 7) was carried out using the
multienzyme system immobilized in calcium alginate beads ( Fig 5, item 3) and 70%
of the caffeine could be completely degraded which was present in the beans and tea
leaves. Inhibitory factors like caffeine- polyphenol complexes and polyphenol- protein
27
complexes, which were inhibitory for biodecaffeination were prevented by the use of
glycine in the dhool. Biodecafeeianted samples of Tea and coffee were supplied to
M/s AVT, Natural products Pvt, Ltd. And company is interested to explore the
possibility of biodecaffienated tea and coffee in world market using our technology.
This is the first report on the stabilization of enzymes involved in biodecaffeination
and their application in the successful development of a biodecaffeination process for
coffee and tea.
ii) Molecular studies on biodecaffeinating Enzyme- Caffeine Demethylase.
Molecular charecterization of decaffeinating enzyme was done. The Decaffeinating
enzyme was found to have less than 31% similarity with existing proteins, which
indicates that the enzyme is novel. The region of similarity is in the Rieske Fe-S
cluster, which is a dioxygenase subunit protein iron-sulfur oxidoreductase
ferredoxin electron transport, which has a length of 116aa.
iii) Biotransformation of caffeine to Theophylline:
Keeping in view the deleterious effects of caffeine and its easy availability, it
can be biotransformed to potent therapeuticmolecules as theophylline. The
structural resemblance of theophylline to adenine is being made use of to
venture into the possibilities of its use as anti viral (HIV), anti cancerous, anti
tumourous activity. Production of Theophylline was carried out with an
isolated strain of Penicilliumcitrinum MTCC 5215 in a 5-liter fermentor in a
designed media. The fermentation parameters for theophylline production
were optimised. Under Optimised conditions 80% conversion of caffeine to
Theophylline was achieved. The fermentation broth was extracted using ethyl
acetate and then acetone precipitated to separate theophylline from the rest
of the crude extract. Theophylline was further crystallised using ethyl alcohol
and confirmed as theophylline by HPLC, FTIR and NMR.
iv) Production of Theaflavin (TF)
Theaflavins in tea has a high health significance and medicinal properties.
The content of TF in tea is much higher than that of many popular herbal
extracts, such as dry standardized extracts of Ginkgo biloba, bilberry, grape
seed extract and so on.Theaflavin, and theaflavindigallate induced apoptosis.
Theaflavinspresent in black tea possess at least the same antioxidant
potencyas catechins present in green tea. Specifically theaflavin-3, 3’-
digallate (TF3)has strong antioxidant activity similar to (-)-
epigallocatechingallate (EGCG), a major antioxidant in green tea.
Crude enzyme was isolated from fungi and immobilized in suitable matrix. Sodium
alginate was found to be the best matrix. Production of Theaflavins was carried out
with an immobilized enzyme based reactor. Polyphenols extracted from waste tea
leaves (fallen at time of pruning having no commercial value) were taken for
28
biotransformation to TF and TR. The parameters for theaflavin production were
optimised and a fluidised bed reactor was developed. Under Optimized conditions
60% conversion of Theaflavins from green tea catechins was achieved. The product
was purified, spray dried and contained 20% w/w of theaflavins.
12. An enzyme assisted process for the preparation of natural vanilla
extract:
The major aim of the present study was to prepare vanilla flavor extract from
green beans with enzymatic process without going through the elaborate and
time consuming conventional curing process (4-6 weeks). We have
successfully produced better quality natural vanilla extract using our tea
enzyme andvanillin content was found to be three times higher when
compared to the control. Also it had higher intensity of vanilla flavor, sweet
and floral notes compared to conventionally cured bean extract in the sensory
analysis.
14. Cultivation and whole cell immobilization of marine bioluminescent
bacteria for environmental monitoring:
Highly luminescent and potent strain of bioluminescent bacteria was isolated
from marine mussels. These bioluminescent bacterial strains were
immobilized using physical entrapment methods and were used for the
prescreening/monitoring of heavy metals and pesticides at ppm levels within a
period of thirty minutes.
11. Dissertations supervised:
a. Ph.D. : 8 Nos
4 Nos. Students submitted Ph.D. Theses
4 Nos. (Working)
b. Post Graduate : 65 students
18. Technology / Process / Product development:
Technology Transferred and being commercialized:
Technology Transferred :
1. Biosensor for L-Lactate:
29
A batch type L-lactate biosensor device for the analysis of L-lactate in food samples
within the concentration range of 50-800 mg/dL was constructed at CFTRI, Mysore
and the technology has been transferred to industry (M/s Solid State Electronics,
Pune). This features an enhanced operating life of 60 days for enzymes sensing
element of the biosensor, which is covered by patent (2159/DEL/98). This
biosensor can be used for L-lactate detection in fruit pulp, fermented samples and
dairy products.
2. Biosensor for Sugars:
An amperometric Biosensor system based on enzyme membrane for the detection
of Sugars in food, beverages and clinical samples has been of transferred to
M/s Innovate Software Solutions Pvt. LTD, 333,18th
G main Road, 6th
Block,
Kormangala, Bangalore.
3. Biosensor for tea quality assessment:
Tea Biosensor :Patent No. 653 DEL/ 2009
India is exporting a large quantity of black tea all over the world. Tea polyphenols
play a crucial role in determining the quality of black and green tea. Major quality
attributes such as colour and astringency are directly linked with polyphenol
contents. Therefore, it is necessary to know quantity of Polyphenols in tea. Also, tea
polyphenols are gaining importance due to their strong antioxidant properties for
nutrition and health. In this context in our lab, we have successfully developed an
enzyme based amperometric biosensor for the determination of total polyphenol
content in tea infusions. Both in lab and industry trials were satisfactory for tea
polyphenols detection and tea biosensor technology is going to be transferred to
M/s TiIndustries Calcutta (MoU signed) and M/s Innovate Software Solutions Pvt
LTD, 333,18th
G main Road, 6th
Block, Kormangala, Bangalore (MoU signed).
4. Biosensors for pesticide monitoring in Food and Environmental samples:
a) A Rapid Test kit for pesticide analysis based on charge coupled device
(Indian Patent Ref. No. 502 NF/2003).
b) A Rapid Test kit for pesticide analysis based on charge coupled device
International Patent application Ref. No. PCT/IN 03/00446 ( Dated 31st
Dec.
2003).
It must be mentioned that a highly sensitive Immunobiosensor system was
developed for the detection of ethyl and methyl parathions, 2,4-D and
atrazine at Pico gram concentration (ppt=parts per trillion) based on the
Immuno-chemiluminescence principle. Antibodies against pesticides were
raised in Chicken (IgY) and rabbit (IgG). An economical IgY was produced
30
for highly sensitive detection system based on Immuno-chemiluminescence
biosensor. No existing system is available, which can detect pesticides at
ppt concentrations. International monitoring committee (JAC) of this project
appreciated the progress of the project and recommended for industrial
collaboration. In this connection we are now interfacing with the Industries
(M/s Bigtech, Bangalore) for technology transfer through collaborative
project, which was submitted to DBT under Small Business innovation
research Initiative (SBIRI).
19. Overseas visits:
Sl
No.
Organization and country
Period Purpose
1
Massachusetts Institute of
Technology , Cambridge,
USA
April, 89- April, 90 DBT Long term Associateship
2
University of Maryland
Baltimore, USA
May, 90- Sep., 90 Continuation of above
Associateship
3 University of Lund, Sweden April, 94 - June, 94 Indo-Swedish collaborative project
4 University of Lund, Sweden
May, 96 - June, 96
Indo-Swedish collaborative project
5 University of Lund, Sweden
Sept, 98 - Nov, 98
Indo-Swedish collaborative project
6 EPFL, IMT, Switzerland
Aug., 2001- Oct.,
2001
Indo- Swiss collaborative Project
7 EPFL, Switzerland May 10 – 29, 2006
Indo-Swiss collaborative Project
8
Toronto (Canada) to attend 9th
Biosensor world Congress at
Toronto
May, 8-13, 2006 To present work on the Biosensor
9
University of Kalmar, Sweden
University of Lund, Sweden
6th
- 22nd
June 2007
Under our collaborative Indo-
Swedish programme
10 University of Malaysia, Perlis 23-31st
Aug. 2008
Invited talks at International
conference on Smart Materials &
sensors held at Penang & at
University of Malaysia, Perlis
(UniMAP)
11
a) Moscow State University ,
Moscow.
b) Russian Academy of Sciences,
Moscow
20-30 Aug. 2009
Part of delegation to Russia and
delivered an invited talk
12
i.Visit to University of Hong Kong
– Science and Technology
ii.Invited talk at International
Conference at Shenzhen
a) 23-24th
Feb, 2011
b) 25-27th
Feb 2011
Visit to HKU-ST
And
31
International High Technology
Forum – Shenzhen
Delivered an invited talk

More Related Content

What's hot

Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...
Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...
Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...ElisaMendelsohn
 
General biology 8-2-14-2
General biology 8-2-14-2General biology 8-2-14-2
General biology 8-2-14-2Niceng Pd
 
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...Zahangir Alam
 
Dr KVS AD
Dr KVS ADDr KVS AD
Dr KVS ADkvvvorg
 
khouryintroourauthors
khouryintroourauthorskhouryintroourauthors
khouryintroourauthorsGeorge Khoury
 
CV Girish sept
CV Girish septCV Girish sept
CV Girish septGirish Rai
 
ICT Based Digital Dissection: A solution For Animal Dissection
ICT Based Digital Dissection: A solution For Animal DissectionICT Based Digital Dissection: A solution For Animal Dissection
ICT Based Digital Dissection: A solution For Animal Dissectiongnriem
 
Silver Nano Dots as Effective Biosensors in the Field of Medicine
Silver Nano Dots as Effective Biosensors in the Field of MedicineSilver Nano Dots as Effective Biosensors in the Field of Medicine
Silver Nano Dots as Effective Biosensors in the Field of MedicineIRJET Journal
 
CSIR Labs : 38 Labs in India
CSIR Labs : 38 Labs in IndiaCSIR Labs : 38 Labs in India
CSIR Labs : 38 Labs in Indiasakshi
 

What's hot (20)

Manish adhikari Resume
Manish adhikari ResumeManish adhikari Resume
Manish adhikari Resume
 
Updated CV of SPSingh2017
Updated CV of SPSingh2017Updated CV of SPSingh2017
Updated CV of SPSingh2017
 
Resume Of Roki02.08.2016 (1)
Resume Of  Roki02.08.2016 (1)Resume Of  Roki02.08.2016 (1)
Resume Of Roki02.08.2016 (1)
 
Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...
Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...
Assessment of Biowalls: An Overview of Plant- and Microbial-based Indoor Air ...
 
General biology 8-2-14-2
General biology 8-2-14-2General biology 8-2-14-2
General biology 8-2-14-2
 
CV
CVCV
CV
 
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...
Md. Zahangir Alam, Assistant Professor, Department of Plant Pathology, Bangla...
 
Dr KVS AD
Dr KVS ADDr KVS AD
Dr KVS AD
 
Krishna Cv[1]
Krishna Cv[1]Krishna Cv[1]
Krishna Cv[1]
 
General Overview of INBT
General Overview of INBTGeneral Overview of INBT
General Overview of INBT
 
8a.BAD6
8a.BAD68a.BAD6
8a.BAD6
 
khouryintroourauthors
khouryintroourauthorskhouryintroourauthors
khouryintroourauthors
 
RKCV-Brief_2016
RKCV-Brief_2016RKCV-Brief_2016
RKCV-Brief_2016
 
CV Girish sept
CV Girish septCV Girish sept
CV Girish sept
 
Effect of Thiourea on Growth, Structural, Optical and Nlo Properties of Ammon...
Effect of Thiourea on Growth, Structural, Optical and Nlo Properties of Ammon...Effect of Thiourea on Growth, Structural, Optical and Nlo Properties of Ammon...
Effect of Thiourea on Growth, Structural, Optical and Nlo Properties of Ammon...
 
ICT Based Digital Dissection: A solution For Animal Dissection
ICT Based Digital Dissection: A solution For Animal DissectionICT Based Digital Dissection: A solution For Animal Dissection
ICT Based Digital Dissection: A solution For Animal Dissection
 
Curriculum vitae
Curriculum vitaeCurriculum vitae
Curriculum vitae
 
Silver Nano Dots as Effective Biosensors in the Field of Medicine
Silver Nano Dots as Effective Biosensors in the Field of MedicineSilver Nano Dots as Effective Biosensors in the Field of Medicine
Silver Nano Dots as Effective Biosensors in the Field of Medicine
 
CSIR Labs : 38 Labs in India
CSIR Labs : 38 Labs in IndiaCSIR Labs : 38 Labs in India
CSIR Labs : 38 Labs in India
 
SophaP_infoCV_
SophaP_infoCV_SophaP_infoCV_
SophaP_infoCV_
 

Viewers also liked (8)

VYSHAK JAIN - CV
VYSHAK JAIN - CVVYSHAK JAIN - CV
VYSHAK JAIN - CV
 
Umashankar-CV-16-05-15
Umashankar-CV-16-05-15Umashankar-CV-16-05-15
Umashankar-CV-16-05-15
 
CV prakash
CV prakashCV prakash
CV prakash
 
CV Chandrajit Samanta
CV Chandrajit SamantaCV Chandrajit Samanta
CV Chandrajit Samanta
 
Baswaraj CV
Baswaraj CVBaswaraj CV
Baswaraj CV
 
Antonia Final CV
Antonia Final CVAntonia Final CV
Antonia Final CV
 
DINAKARAN D RESUME
DINAKARAN D RESUMEDINAKARAN D RESUME
DINAKARAN D RESUME
 
Harsha CV
Harsha CVHarsha CV
Harsha CV
 

Similar to MST CV 2015A

MANOJ KUMAR CV latest link
MANOJ KUMAR CV latest linkMANOJ KUMAR CV latest link
MANOJ KUMAR CV latest linkDR. MANOJ KUMAR
 
3.Curriculum vitae
3.Curriculum vitae3.Curriculum vitae
3.Curriculum vitaeAnnadurai B
 
JANCY VARGHESE
JANCY VARGHESEJANCY VARGHESE
JANCY VARGHESEJancy Joby
 
Recent trends in applied sciences: 1
Recent trends in applied sciences: 1Recent trends in applied sciences: 1
Recent trends in applied sciences: 1rohitrohit353735
 
Curriculum Vitae.docx Sruthy. pdf
Curriculum Vitae.docx Sruthy. pdfCurriculum Vitae.docx Sruthy. pdf
Curriculum Vitae.docx Sruthy. pdfSruthy P.B
 
Sriram Sankar Cv
Sriram Sankar CvSriram Sankar Cv
Sriram Sankar CvSriram8587
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Ankit Sharma Seminar Report..pdf
Ankit Sharma Seminar Report..pdfAnkit Sharma Seminar Report..pdf
Ankit Sharma Seminar Report..pdfriddheshbore97
 
sahithi Updated CV for jobs
sahithi Updated CV for jobssahithi Updated CV for jobs
sahithi Updated CV for jobssahithi p b
 
CURRICULUM (1) 2
CURRICULUM (1) 2CURRICULUM (1) 2
CURRICULUM (1) 2hari babu
 
Soil Testing
Soil TestingSoil Testing
Soil Testingsonia4v
 

Similar to MST CV 2015A (20)

MANOJ KUMAR CV latest link
MANOJ KUMAR CV latest linkMANOJ KUMAR CV latest link
MANOJ KUMAR CV latest link
 
dtpcv M2015
dtpcv M2015dtpcv M2015
dtpcv M2015
 
dtpcv Dec 2016
dtpcv Dec 2016dtpcv Dec 2016
dtpcv Dec 2016
 
3.Curriculum vitae
3.Curriculum vitae3.Curriculum vitae
3.Curriculum vitae
 
JANCY VARGHESE
JANCY VARGHESEJANCY VARGHESE
JANCY VARGHESE
 
NAAC Presentation MBBI_2022.pptx
NAAC Presentation MBBI_2022.pptxNAAC Presentation MBBI_2022.pptx
NAAC Presentation MBBI_2022.pptx
 
Recent trends in applied sciences: 1
Recent trends in applied sciences: 1Recent trends in applied sciences: 1
Recent trends in applied sciences: 1
 
Curriculum Vitae.docx Sruthy. pdf
Curriculum Vitae.docx Sruthy. pdfCurriculum Vitae.docx Sruthy. pdf
Curriculum Vitae.docx Sruthy. pdf
 
Sriram Sankar Cv
Sriram Sankar CvSriram Sankar Cv
Sriram Sankar Cv
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Prathameshbagewadicv(1)
Prathameshbagewadicv(1)Prathameshbagewadicv(1)
Prathameshbagewadicv(1)
 
Anisha Hercules Feb2016
Anisha Hercules Feb2016Anisha Hercules Feb2016
Anisha Hercules Feb2016
 
Appendix__VPCV
Appendix__VPCVAppendix__VPCV
Appendix__VPCV
 
Ankit Sharma Seminar Report..pdf
Ankit Sharma Seminar Report..pdfAnkit Sharma Seminar Report..pdf
Ankit Sharma Seminar Report..pdf
 
Dr. Amala Rajasundari CV
Dr. Amala Rajasundari CVDr. Amala Rajasundari CV
Dr. Amala Rajasundari CV
 
sahithi Updated CV for jobs
sahithi Updated CV for jobssahithi Updated CV for jobs
sahithi Updated CV for jobs
 
CURRICULUM (1) 2
CURRICULUM (1) 2CURRICULUM (1) 2
CURRICULUM (1) 2
 
REPORT Final
REPORT FinalREPORT Final
REPORT Final
 
Soil Testing
Soil TestingSoil Testing
Soil Testing
 
2014 CV of Prof. BVV doc
2014 CV of Prof. BVV doc2014 CV of Prof. BVV doc
2014 CV of Prof. BVV doc
 

MST CV 2015A

  • 1. 1 1. Name: M.S. Thakur 2. Date of Birth: 20th June 1954 3. Current position and address: Dr. M.S. Thakur, Chief Scientist (Retd) and former Head Fermentation Technology and Bioengineering Department Central Food Technological Research Institute, Mysore- 570020 msthakur@yahoo.com Presently : Hon. Visiting Professor Center of Material Science University of Mysore, Mysore -570006, INDIA. Tel: 0821-2515792, 0821-2546936 Fax: 0821-251723 Mob. No. 9449055108 For publication please open following link: http://scholar.google.com/citations?user=5gmRvK8AAAAJ&hl=en 4. Research Experience: R& D - Professional Experience
  • 2. 2 Summary of Significant contributions to science and/or technology development based on the work done in India with specific reference is to be made to research papers published and patents taken in this context Dr. M. S. Thakur has made fundamental contribution in bio-inspired, biomolecular electronics, nanobiotechnology, nanobiosensors and biophotonics by interfacing biochemical events in biological systems with opto-electronic systems making complicated expensive diagnostics/biosensing, affordable, simple, specific, rapid and ultrasensitive. He has developed several biosensing technologies for food, environmental and clinical monitoring. His significant contribution has been in increasing the potential of bio-sensors by conjugating nanoparticleswith biomolecules like antibodies and aptamers,making biosensing a high throughput technology. His work has given considerable insight into the understanding of opto- physical properties of nanoparticles and their biomolecular interactions such as Fluorescence Resonance Energy Transfer (FRET) and Bioluminescence Resonance Energy Transfer (BRET) phenomena's. Publications and patents on above concept: 1. Biosensors and Bioelectronics, 2012, 38(1): 411-415,IF= 5.4 2. Bioconjugate Chemistry , 2011, 22, 968–975. IF= 4.35 3. Biosensors and Bioelectronics, 2009, 25,224-227. IF= 5.4 4. Biosensors and Bioelectronics, 2014,57, 317–323 IF= 5.4 5. Anal Chim Acta. 2012, 13;722:107-13. IF=4.5 6.Analyst. 2012, Sep 2,1137(18):4343-8. IF= 4.23 7. Patent :NF No. 206NF2008. 8.Patent NF No. 139/08 . 9. Patent 726/DEL/2005. His work has been in the development ofnon-conventional protein based stabilizers has made breakthrough in the stabilization of enzymes and antibodies for biosensor application and viable technology development Publications and patents on above concept: 1. Journal of Biological Chemistry, 2003,278,27,24324-24333. IF= 7.385 now 4.5 2. Biosensors and Bioelectronics, 2004, 20,903-906. IF = 5.4 3. Biosensors and Bioelectronics, 2004,19,1337-1341, IF= 5.4 4. Biosensors and Bioelectronics, 2004,19, 621-625. IF= 5.4 5. Biosensor and Bioelectronics,2005, 21,206-211, IF= 5.4 6. Biochimica et Biophysica Acta, 2002, 1597,133-139. IF= 4.3 7. Patent 653/DEL/2009. 8. 7267971,USA, 25-Mar-2003-11-Sep-2007, 9. EP1608747EU, 24- Dec- 2008. Dr. Thakur has developed the state of art biosensing techniques based on Localized Surface Plasmon Resonance (LSPR), nanosensors, aptasensors and image processing. Publications papers and patents on above concept: 1. Biosensors and Bioelectronics. 2009,25,224-227. IF= 5.4 2. Analytical Methods,2013,5, 653-659,IF= 1.855 3. Anal Biochem. 2013, 441, 1, 73-9.IF= 2.582.
  • 3. 3 4. Chem. Commun., 2013, 49, 5960-5962, IF= 6.3 Several bio-inspired prototype devices have been developed by him for sensitive detection and quantification of L-lactate, sucrose, glucose, pesticides, heavy metals, monitoring hygiene and sanitation, freshness of meat, fish and milk and toxins. A notable one among them has been the rapid pre-screening of heavy metals and pesticide in water using an approach via use of immobilized biophotonic beads consisting of bioluminescent bacteria. This approach is novel and unlike commercially available "Microtox" toxicity monitoring system, the method developed by his team is much more efficient, rapid, sensitive and reusable for a prolonged duration of time at an affordable cost. This particular technology was awarded the "Gandhian Young Innovation Awards, 2014. Published papers and patents on above concept: 1. Biosensor and Bioelectronics. 2006, 21,1264-1271. IF= 5.4 2. Anal Bioanal Chem. 2007. 389:2227-2234, IF=3.6 3. AnalyticaChemica Acta. 2006, 560,30-34. IF=4.5 4. AnalyticaChimica Acta. 2006, 582,329-334. IF=4.5 5. Journal of Hazardous materials. 2012, 225–226, 114–123. IF=4.173 AFFORDABLE DIAGNOSTICS: An advancement in cutting edge technology to detect vitamin B12 in food. Attempts were made for visual analysis of vitamin B12 using Gold nanoparticles and aptamer. This particular technology was awarded the "Gandhian Young Innovation Awards, 2013. Awards and Honors: 1. Recipient of LaljeeGodhooSmarakNidhi Award for contribution in Food Science and Technology by Association of Food Scientists and Technologists of India. 2000. 2. Recipient of CFTRI Foundation day award for best research paper 2003 published. 3. Recipient of CFTRI Foundation day award for Best applied Research Paper published 2007-08. 4. Recipient of CFTRI Foundation day Award for best research paper published in 2008-09 . 5. Recipient of CFTRI Foundation day Award for best Scientist in 2008-09 6. Recipient of CFTRI Foundation day Award for best research paper published in 2012 . 7. Long-Term DBT Overseas Associateship Award during 1988-1990. 8. Recipient of Long Term National Scholarship for study Abroadby Ministry of Human Resource Development (Govt. of India) from 1988-1990. Honors: 1. Member of Expert Advisory Committee of Molecular electronics and Biosensor, (DST-GOI). 2. Expert Member, Board of Directors Madhya Pradesh Biotechnology Council, Government of Madhya Pradesh. 3. Member of Board of Governors, the Institution of Engineers (INDIA), National Design & Research Forum. 4. I was expert advisory committee member DBT. 5. Member- Advisory committee of UGC-SAP programme. University of Madras. 6. Expert member of future R&D planning of Defence Food Research Laboratory, Mysore. 7. Member of board of studies in Alagappa University.
  • 4. 4 8. Member of the selection committee for SRF- DFRL, Mysore. 9. Selection committee of scientists- Bhabha Atomic Research Center, Mumbai. 10. Editorial Board member: Member of the editorial board of international journal “Journal of Agriculture, Food and Environment” published by the International Society for Food, Agriculture and Environment, Finland. 11. Referee for several journal of national and international repute, name a few are Biosensor and Bioelectronics, Talanta, Sensors and Actuators, Analytical Chimica Acta and Analytical and Bioanalytical Chemistry. 12. I have chaired President position of Association of Microbiologists of India (Mysore Chapter) 2005-06. 13. Several invited lectures and key note addresses delivered by me in national and International conferences. 14. Received several best poster awards in national and international symposia/conferences. Under “Turning point “ programme Doordarshan (DD) national network have made documentary on Tea biosensor (developed by my group) which was short listed as one of the 5. R& D projects handled: 1 International Projects: 1. On-line monitoring of fermentation processes using Biosensors: Work was done in-collaboration with Biotechnology Process Engineering Center, Massachusetts Institute of Technology (MIT) and University of Maryland UMBC) USA during my Overseas Associateship awarded by Department of Technology 1988-1990 Capacity: As a visiting Scientist 2. Cultivation of microorganisms and production of lactic acid by fermentation. Funded by DBT- SIDA: Indo-Swedish collaborative project. 1993-2001.In this project we have developed L-lactate biosensor and Technology has been transferred to Mr. F.K. Godrej, M/S Solid State Electronics, Pune . Capacity: Co- Principal Investigator 3. Development of Immuno-bioreactor based biosensors for the analysis of pesticides and herbicides in water. Funded by INDO-SWISS Collaborative project (SDC-DBT) 2000-2005.Phase 1 Capacity: Principal Investigator
  • 5. 5 4. Development of Immuno-bioreactor based Biosensor for Detection of Pesticides in Water and Environment. Funded by Indo-Swiss 2005- 2008.Phase 2. Capacity: Principal Investigator We are interfacing with Industries (M/s Bigtech, Bangalore) for technology transfer through DBT SIBIRI Project. 5. Biosensors based on the action of transport proteins Funded Swedish Research Council, 2006-2009. Capacity: Principal Investigator 6. Aptamer based biosensing for the detection of Food Toxins, Indo- Spanish Joint Programme for Technological Co-operation in Biotechnology.Funded by DBT-India, CIFGA-CSIR-CFTRI collaboration, 2013-2016. Capacity: Principal Investigator 2National projects 1. Development of Biosensor for food and fermentation analysis,Funded by CFTRI, 1994-96. 2. Development of a biosensor with flow injection analysis system for on-line monitoring of glucose and sucrose. Funded by DST, 1999-2002. Capacity: Principal Investigator 3. Development of Biosensor for quality assessment in tea processing. Fundedby DST –2003-2005. Capacity: Principal Investigator 4. Microprocessor based biosensor instrument development for monitoring of food and fermentation processes. Funded by DST, 1996- 2000. Capacity: Principal Investigator 5. Biotechnological Research for food safety: Development of Biosensor for OP pesticides. Funded by DBT 1995-1998. Capacity: Co-Principal Investigator 6. Development of Biosensor for chlorinated pesticides Funded by DBT 2005- 2008. Capacity: Principal Investigator
  • 6. 6 7. Development of Biosensor for assessing the microbiological quality of foods and monitoring of formaldehyde concentration in selected marine foods. Funded by National Programme on Micro and Smart Systems (NPMASS) - ADA-DRDO. 2010-2013. Capacity: Principal Investigator. 8. Purification of caffeine from waste tea leaves and their biotransformation to valuable/potent pharmaceutical molecules. A collaborative project with IIT- Guwahati under North –East Twinning programme funded by DBT India. Capacity: Principal coordinator, 2011 – 2014 9. Detection of Food borne Pathogens by Nanobiosensors, funded by DST 211-2014. Capacity: Principal Investigator 10. Development of new protocols for evaluation of traditional foods.In house (CSIR-CFTRI) funded projectMLP-092, 2010-2012, Capacity: Principal Investigator. 11. Fermentative production and monitoring of biologically importantmolecules. In house (CSIR-CFTRI) funded project, MLP-0102, 2012- 2014.Capacity, Principal Investigator. 3. Industrial Projects handled: a)Studies on development of a biotechnological process for decaffeination of beverages. Project funded by M/s TATA TEA, 2002- 2003. Project Leader b) Bio-decaffeination of dhool (tea paste): Application of microbial enzymes Consultancy project with M/s AV Thomas and company, Chennai. Project Leader 6. Total Publications: Sl.N o. Year Authors Title of Paper Name of Journal/Volume/Page no. 1. 2014 Radhakrishnan Jayasree Padmaja, Akshath U.S Uchangi, Kunhitlu Subrahmanya Abhijith, Prakash Motiram Halami and Munna Singh Thakur Gold nanoparticle based immunodetection of Staphylococcus aureus LeukotoxinM/F´-PV in subclinical samples of bovine mastitis Anal. Methods, 2014, Accepted Manuscript DOI: 10.1039/C4AY00525B
  • 7. 7 2. 2014 Uchangi Satyaprasad Akshath, likitha. R. Shubha, Praveena Bhatt, M.S. Thakur* Quantum dots as optical labels for ultrasensitive detection of polyphenols Biosensors and Bioelectronics, 2014, 57, 317–323 IF=5.602, 3. 2014 Uchangi Satyaprasad Akshath, likitha. R. Shubha, Praveena Bhatt, M.S. Thakur* Optical sensor to detect Dietary polyphenols Nature Highlights DOI10.1038-NIDIA.2014.49 4. 2014 Abhijith K.S., Sharma R., Ranjan R., Thakur M.S.* Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence Photochem. Photobiol. Sci. In Press, DOI: 10.1039/C4PP00046C IF=2.93 5. 2014 Ranjan R., Priyanka B.S., Thakur M.S* ATPase inhibitor based luciferase assay for prolonged and enhanced atp pool measurement as an efficient fish freshness indicator Anal. Bioanal. Chem. In-press, DOI 10.1007/s00216-014-7840-6 IF=3.659 6. 2014 Priyanka B.S., Abhijith K.S., Rastogi N.K., Raghavarao K.S. M.S., Thakur M.S.+ Integrated approach for the extraction and purification of igy from chicken egg yolk Sep. Sci. Technol, 49, Issue 4, pages 562-568 IF=1.16 7. 2013 Ragavan K.V., SelvaKumar L.S., Thakur M.S.* Nanoprobe detects harmful chemicals Nature Highlights DIO10.1038-NINDIA.2013.101 IF= NA 8. 2013 Priyanka, B.S., Rastogi, Navin k., Raghavarao, K.S.M.S., and Thakur, M.S.+ Optimization of extraction of luciferase from fireflies (Photinuspyralis) using aqueous two-phase extraction Separation and Purification Technology, 2013, 118, 40-48. I.F=2.894 9. 2014 Ragavan K.V., SelvaKumar L.S., Thakur M.S. Nanoprobe detects harmful chemicals Nature Highlights,DOI.:10.1038/nindia.2013. 101 IF= NA 10. 2013 K. V.Ragavan, Sagaya L Selva Kumar and M. S. Thakur * Functionalized aptamers as nano-bioprobe for ultrasensitive detection of Bisphenol-A Chem. Commun., 2013, 49, 5960-5962 IF=6.378 11. 2013 K.V. Ragavan, Navin K. Rastogi, M.S. Thakur* Sensors and biosensors for analysis of bisphenol-A Trends in Analytical Chemistry, 2013, 52, 248-260IF=6.351 12. K.V. Ragavan, Navin K. Rastogi, M.S. Thakur Sensors and biosensors for analysis of bisphenol-A Trends in Analytical Chemistry (Online Corrected manuscript,) IF=6.351 13. K. S. Abhijith, K. V. Ragavan and M. S. Thakur Gold nanoparticles enhanced chemiluminescence – a novel approach for sensitive determination of aflatoxin-B1 Anal. Methods, 2013,5, 4838-4845 IF= 1.855
  • 8. 8 14. 2013 K. V.Ragavan, Sagaya L SelvaKumar and M. S. Thakur * Functionalized aptamers as nano- bioprobe for ultrasensitive detection of Bisphenol-A Chem. Commun., 2013, Accepted Manuscript DOI: 10.1039/C3CC42002G IF=6.378 15. 2012 Vinayaka A.C. and M.S. Thakur* Facile synthesis and photophysical characterization of luminescent CdTe quantum dots for FRET based immunosensing of staphylococcal enterotoxin B Luminescence DOI: 10.1002/bio.2440 IF=1.93 16. 2012 Kunhitlu Subrahmanya Abhijith and M.S. Thakur* Application of green synthesis of gold nanoparticles for sensitive detection of aflatoxin B1 based on metal enhanced fluorescence Analytical Methods DOI: 10.1039/c2ay25979f IF= 1.855 17. 2012 Neeraj Katiyar, Sagaya Selva kumar, SanjuktaPatra, M.S. Thakur* Gold nanoparticles based colorimetric aptasensor for theophylline Analytical Methods DOI: 10.1039/c2ay26133b IF= 1.5 18. 2012 Akshath U.S., Vinayaka A.C. and M.S. Thakur* Fluorescent disease sniffers doi:10.1038/nindia.2012.121; Published online 23 August 2012 Research highlight 19. 2012 Vinayaka, A.C. and M.S. Thakur*, An immunoreactor based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots Analyst, 2012, Accepted Manuscript DOI: 10.1039/C2AN35760G, IF=4.23 20. 2012 Sagaya Selva kumar, and M.S.Thakur* Dipstick based immunochemiluminescence biosensor for the analysis of vitamin B12 in energy drinks: A novel approach Anal. Chimi. Acta – Volume 722, 13 April 2012, Pages 107–113, IF=4.555 21. 2012 Sagaya Selva kumar, and M.S. Thakur* Nano RNA aptamer wire for analysis of vitamin B12 Analytical biochemistry, Volume 427, Issue 2, 15 August 2012, Pages 151–157, IF=2.996 22. 2012 Sagaya Selva kumar, and M.S.Thakur* Vitamin sensor Nature India, doi:10.1038/nindia.2012.56; Published online 20 April 2012 23. 2012 Rajeev Ranjan, Naveen. K. Rastogi and M.S. Thakur* Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide Journal of Hazardous Materials Volumes 225–226, 30 July 2012, Pages 114–123, IF=4.173 24. 2012 SowmyaNagarajappa, M.S. Thakur+, H.K. Manonmani Detection of eneterotoxigenic staphylococci by loop mediated isothermal amplification method Journal of Food Safety Volume 32, Page 59-65 IF= 0.72
  • 9. 9 25. 2012 SowmyaNagarajappa, M.S. Thakur+, H.K. Manonmani Rapid and simple DNA extraction method for the detection of eneterotoxigenicstaphylococcus aureus directly from food samples: comparison of PCR and LAMP methods Journal of applied Microbiology Volume 113, Page 106-113 IF= 2.337 26. 2012 Priyanka B.S, N.K.Rastogi, K.S.M.S. Raghavarao and M.S. Thakur* Downstream processing of luciferase from fireflies (Photinuspyralis) using aqueous two-phase extraction Process Biochemistry, Volume 47, Issue 9, September 2012, Pages 1358–1363, IF=2.627 27. 2012 Akshath U.S., Vinayaka A.C. and M.S. Thakur* Quantum dots as nano plug-in's for efficient NADH resonance energy routing Volume 38, Issue 1, October– December 2012, Pages 411–415I F=5.602 28. 2012 M.S. Thakur*, K.V. Ragavan Biosensors in food processing Journal of food science and technology, In press, IF=1.123 29. 2011 Vinayaka, A.C. and M.S. Thakur*,. Photo-absorption and Resonance Energy Transfer Phenomenon in CdTe-protein Bioconjugates: An Insight towards QD-biomolecular Interactions Bioconjugate Chemistry , 2011, 22, 968–975 IF= 4.35 30. 2012 Shabana Basheer, Dieter Samyn, Martin Hedström, M. S. Thakur+, BengtPersson, Bo Mattiasson A membrane protein based biosensor: Use of a phosphate - H(+) symporter membrane protein (Pho84) in the sensing of phosphate ions. Biosensors and Bioelectronics 27,(1) 58-63, IF=5.602 31. 2012 SanjuktaPatra, SarathBabu and M.S. Thakur+ Effect of Physicochemical Parameters on EnzymaticBiodecaffeination During Tea Fermentation Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology. 166, 1 (2012), 112-126 IF= 1.89 32. 2012 V.R. SarathBabu, M.S. Thakur+,Sanjuktapatra Effect of physicochemical parameters on enzymatic biodecaffeination during tea fermentation Appl. Biochem Biotechnol. 166: 112-126 IF= 1.943 33. 2012 M.M. Naidu, P.V. Sujithkumar, B.N. Shyamala,G. Sulochanamma, M. Prakash, M.S. Thakur+ Enzyme assisted process for production of superior quality vanilla extracts from green vanilla pods using tea leaf enzymes Food Bioprocess Technology Volume 5: Page 527-532 IF= 3.703 34. 2012 LathaRangachary, R.P. Rajagopalan, M.S. Thakur+, H.K. Manonmani Purification and characterization of DDT-Dehydrohalogenase from Pseudomonas putida T5 Preparative Biochemistry and Biotechnology Volume: 42, page 60-76 IF= 0.466 35. 2011 Akshath U.S, Sagaya selva kumar, M.S Thakur* Detection of Formaldehyde in Food samples by Enhanced Chemiluminescence Analytical Methods, 2012,4, 699- 704 I.F=1.5
  • 10. 10 36. 2011 S. Baker, A. C. Vinayaka, H. K. Manonmani, M. S. Thakur* Development of dipstick based immuno-chemiluminescence techniques for the rapid detection of dichlorodiphenyltrichloroethane In Press: Luminescence: The Journal of Biological and Chemical Luminescence IF=1.397 37. 2011 Sagaya Selva kumar L, and M.S.Thakur* Competitive immunoassay for vitamin B12 Anal. Biochem– 418(2):238-46 IF= 2.99 38. 2011 Shabana Basheer Sujith, PV Ravi M.S.Thakur*. Comparative assessment tea quality, with emphasis on Tea polyphenols, by various analytical and sensory methods Journal of Food Science and Technology 48, 4, 440-446 IF=0.498 39. 2010 Murthy HMR, Thakur, M.S+. Manonmani HK Degradation of Technical Grade Hexachlorocyclohexane In Soil Slurry by a Defined Microbial Consortium International journal of environmental research Volume: 4 Issue: 3 Pages: 471-478 40. 2010 Vinayaka AC, Thakur MS* Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem.; 397(4):1445- 55. IF 3.778, 41. 2010 Kumudha A, Kumar S.S, Thakur M.S+, Ravishankar G.A, Sarada R. Purification, identification, and characterization of methylcobalamin from Spirulinaplatensis. J Agric Food Chem. 2010 Sep 22;58 (18):9925-30. IF 2.8, Cited 0 42. 2010 Chouhan, R. S. Vinayaka A. C. andThakur, M. S*. Chemiluminescence based technique for the detection of methyl parathion in water and fruit beverages. Anal. Methods, 2010, 2, 924–928. IF = 1.5 43. 2010 Murthy MR ,Mandappa IM Latha R Vinayaka AC, M.S. Thakur*, Manonmani HK An immobilized dehydrohalogenase based potentiometric biosensor for the detection of chlorinated pesticides Anal. Methods, 2, 1355-1359 IF= 1.5 44. 2010 R.S. Chouhan, K.V.S. Rana , C.R. Suri. K.R.Thampi, M.S.Thakur*. Trace Level Detection of Atrazine Using Immuno- Chemiluminescence: Dipstick and Automated Flow Injection Analysis Formats Journal of AOAC INTERNATIONAL, 93,1. IF 1.22 45. 2010 R.S.Chouhan, A.C.Vinayaka, M.S.Thakur*. Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoroimmunochromatographic technique. Anal Bioanal Chem. 2010; 397(4):1467-75. IF 3.778 46. 2009 R.S.Chouhan, A.C.Vinayaka, M.S.Thakur*. Aqueous synthesis of CdTe quantum dot as biological fluorescent probe for monitoring methyl parathion by fluoroimmunosensor. Nature Proceedings : 3451.1
  • 11. 11 47. 2009 A.C. Vinayaka, S.Basheer, M.S.Thakur*. Bioconjugation of CdTe Quantum dot for the detection of 2,4- Dichlorophenoxyacetic acid by Competitive Fluoroimmunoassay based biosensor Biosensors and Bioelectronics, 24,1615-1620. IF=5.6 Cited:12 48. 2009 S. Selvakumar, R.S.Chouhan, M.S.Thakur*. Enhancement of chemiluminescence for vitamin B12 analysis Analytical Biochemistry. 388,312-316. IF= 2.9, Cited= 4 49. 2009 R.Krishneveni, VandanaRathod, M.S.Thakur+, Y.F.Neelgund. Transformation of L-Tyrosinase to L-Dopa by a novel fungus, Acremoniumrutilum under submerged fermentation. CurrMicrobiol. 58,122-128. IF= 1.33 Cited= 2 50. 2009 M.Lisa, R.S.Chouhan, A.C.Vinayaka, H.K.Manonmani, M.S.Thakur*. Gold nanoparticles based dipstick immuno-assay for the rapid detection of organochlorine pesticides Biosensors and Bioelectronics 25,224-227. IF= 5.6, Cited= 9 51. 2009 S. Selvakumar, R. S. Chouhan, M. S.Thakur*. Trends in analysis of vitamin B 12 : A review Anal Biochem. 201,15; 398(2):139- 49. IF 3.7, Cited 1 52. 2008 R.Krishneveni, VandanaRathod, M.S.Thakur+, Y.F.Neelgund. Screening and characterization of novel cytosolic tyrosinase producer AcremoniumRutilumw.gams The Bioscan. 3,523-528. IF= 1.031 Cited=2 53. 2007 M.S.Thakur*. Application of Nano-biotechnology in Biosensor Development: An overview Ima-Gene . 54. 2007 K.S.Abhijith, P.V. Sujith Kumar, M.A. Kumar, M.S.Thakur* Immobilised tyrosinase-based biosensor for the detection of tea polyphenols. Anal Bioanal Chem, 389:2227-2234 IF= 3.7 Cited= 9 55. 2006 R.S.Chouhan, K.VivekBabu, M.A.Kumar, N.S.Neeta, M.S.Thakur*, B.E.Amitha Rani, Akmal Pasha, N.G.Karanth, Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled Device (CCD ). Biosensor and Bioelectronics. 21,1264-1271. IF= 5.6 Cited= 22 56. 2006 A.HirlekarSchmid, S.E.Stanca, M.S.Thakur+, K.RavindranathanThampi , C.R.Suri. Site directed antibody immobilization on gold substrate for surface Plasmon resonance sensors. Sensors and Actuators B. 113,297-303. IF= 3.9 Cited= 15 57. 2006 M.A.Kumar, R.S.Chouhan, M.S.Thakur+, B.E.Amita Rani, Bo Mattiasson, N.G.Karanth. Automated flow ELISA system for analysis of methyl parathion Analytica Chemical Acta. 560,30-34. IF=4.3 Cited= 8
  • 12. 12 58. 2006 V.R.SarathBabu, S.Patra, N.G.Karanth, M.A.Kumar, M.S.Thakur*. Development of a Biosensor for caffeine. AnalyticaChimica Acta. 582,329-334. IF= 4.3 Cited= 7 59. 2005 V.R.SarathBabu, S.Patra, M.S.Thakur*, N.G.Karanth, M.C.Varadraj. Degradation of Caffeine by Pseudomonas alcaligenesCFR 1708 Enzyme and Microbial Technology. 37,617-624 IF= 2.367 Cited= 7 60. 2005 J.Jegan Roy, T. Emilia Abraham, K.S. Abhijith, P.V. Sujith Kumar, M.S.Thakur* Biosensor for the determination of phenols based on Cross Linked Enzyme Crystals (CLEC) of Laccase. Biosensor and Bioelectronics 21,206-211. IF=5.6 Cited= 36 61. 2004 K.C.Gulla, M.D.Gouda, M.S.Thakur*, N.G.Karanath. Enhancement of stability of immobilized glucose oxidase by modification of free thiols generated by reducing disulfide bond and using additives Biosensors and Bioelectronics,19, 621-625. IF= 5.6 Cited= 9 62. 2004 V.R.SarathBabu, M.A.Kumar, N.G.Karanath, M.S.Thakur*. Stabilization of immobilized glucose oxidase against thermal inactivation by silanization for biosensor applications Biosensors and Bioelectronics. 19,1337-1341. IF= 5.6 Cited= 22 63. 2004 V.B.Kandimalla, N.S.Neeta, N.G.Karanth, M.S. Thakur*, K.R.Roshini, B.E.A.Rani, A.Pasha, N.G.K.Karanth. Regeneration Of Ethyl Parathion Antibodies For Repeated Use In Immunosensor: A Study On Dissociation Of Antigens From Antibodies Biosensors and Bioelectronics, 20,903-906. IF= 5.6 Cited= 18 64. 2003 M.D.Gouda, S.A.Singh, A.G.Appu Rao, M.S. Thakur+ N.G.Karanth. Thermal Inactivation of glucose oxidase: mechanism and stabilization using additives. Journal of Biological Chemistry 278,27,24324-24333. IF= 7.385 Cited= 94 65. 2003 M.S. Thakur+, N.G. Karanth. Biosensors: A modern tool in biotechnology In: 5th International Food Convention, CFTRI, Mysore. 66. 2002 Thakur M.S*., Development of New technologies in Food Science and Technology RakshaKhadyaVigyanPatrika, 2002, 10, pp:26-28 (Article in Hindi) 67. 2002 K.C.Gulla, M.D Gouda, M.S.Thakur+, N.G.Karanth. Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide Biochimica et Biophysica Acta. 1597,133-139. IF= 4.374 68. 2002 M.D.Gouda, M.A.Kumar, M.S.Thakur+, N.G.Karanth. Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents Biosensors and Bioelectronics 17,503—507. IF= 5.6 Cited= 32 69. 2002 M. D. Gouda, M. S. Thakur+, N. G. Karanth. Reversible denaturation behaviour of immobilized glucose oxidase Applied Biochemistry and applied Biotechnology. 102,471-480. IF= 1.42, Cited= 2
  • 13. 13 70. 2001 M. D. Gouda, M. S. Thakur+, N. G. Karanth Stability Studies on Immobilized Glucose Oxidase Using an Amperometric Biosensor-Effect of Protein Based Stabilizing Agents, Electroanalysis. 13,10. IF= 3.08 Cited= 15 71. 2001 M.A.Kumar, M.S.Thakur+, A.Senthuran, V.Senterun, N.G.Karanth, R.Hatti-kaul, B.Mattiasson. An automated flow injection analysis system for on-line monitoring of glucose and L-lactate during lactic acid fermentation in a recycle bioreactor. World Journal of Microbiology and Biotechnology. 17,23-29. IF= 1.082 Cited= 7 72. 2001 M.D.Gouda, M.S.Thakur+, N.G.Karanth. Optimization of the multienzyme system for sucrose biosensor by response surface methodology World Journal of Microbiology and Biotechnology 17,595-600. IF= 1.082, Cited= 11 73. 2001 K.C.Gulla, M.S.Thakur*, N.G.Karanth. Biocapteurs et chasse aux pesticides BIOFUTUR. 215,56-59. IF= 0.022 74. 2000 K.Rekha, M.D Gouda, M.S.Thakur*, N.G.Karanth Ascorbate Oxidase Based Amperometric biosensor for Organophosphorus Pesticide Monitoring. Biosensors and Bioelectronics 15,499-502. IF= 5.6 Cited= 30 75. 2000 K.Rekha, M.S.Thakur,*N.G.Karant h Biosensors for Organophosphorus Pesticide Monitoring. CRC Critical Reviews in Biotechnology 20,213-235. IF= 3.57 Cited= 21 76. 2000 A.K.Misra. M.S.Thakur*, P.Srinivas, N.G.Karanth. Screening of Poly-ß-hydroxy butyrate Producing Microorganisms using FTIR Spectroscopy Biotechnol. Letters, 22,1217-1219. IF=0 .976 Cited= 10 77. 1999 M.S.Thakur, N.G.Karanth. Application of Biosensors for global standards in food quality In: Proceeding of InternationalCoference (IFCON-98) Published by Association of food Scientists and Technologists ( India). 78. 1999 M.P.Nandakumar, M.S.thakur+, K.S.M.S.Raghavarao, N.P.Ghildyal. Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Letters in Applied Microbiology. 29,380-384. IF= 1.46 Cited= 11 79. 1997 M.D.Gouda, M.S.Thakur+, N.G.Karanth. A dual enzyme amperometric biosensor for monitoring organophosphorous pesticides Biotechnology Techniques. 11,653-655. IF= 0 .9 Cited= 16 80. 1996 M. P.Nandakumar, M. S. Thakur+, K. S. M. S. Raghavarao , Substrate particle size reduction by Bacillus coagulans in solid state fermentation. Enzyme and microbiol. Technol. 18,121-125. IF= 2.86 Cited= 16 81. 1994 M.P.Nandakumar, M.S.Thakur+, K..S.Raghavarao, N.P.Ghildyal. Mechanism of solid particle degradation by Aspergillusniger in solid state fermentation Process Biochemistry. Vol.29, No.7, 545-551. IF= 2.6 Cited=16
  • 14. 14 82. 1993 Max J. Kennedy, M. S. Thakur+. The use of Neural Net works to aid in Microorganism identification Antonie Van Leewenhoek. 63, 35-38. IF= 1.98 Cited= 9 83. 1993 M.V.Ramana Murthy, M.S.Thakur+,N.G.Karant h Monitoring of biomass in solid state fermentation using light reflectance Biosensors and Bioelectronics 8,59-63. IF= 5.6 Cited= 16 84. 1992 M.J.Kennedy, M.S.Thakur+,D.I.C.Wang , Gregory N.Stephanopoulos. Estimating cell concentration in the presence of suspendable solid : A Light Scatter Technique. Biotechnology and Bioengineering. 40,875-888. IF= 3.377 Cited= 19 85. 1992 M.J.Kennedy, M.S.Thakur+,D.I.C.Wang , Gregory N.Stephanopoulos. Techniques for the estimation of cell concentration in the presence of solid particles: A review Biotechnology progress. 8,375-381. IF= 2.398 Cited= 16 86. 1992 M.J.Kennedy, S.G Prapulla, M.S. Thakur+. Designing fermentation media : A comparison of Neural Network to Factorial design. Biotechnology Techniques. 6 (4), 293-298. IF= 0.97 Cited= 15 87. 1993 S.G.Prapulla, M.S.Thakur+, M.C.Misra, N.G.Karanth. Effect of lipid content on the centrifugal recovery of oleaginous yeast cells - Experimental observations and mathematical model. Bioseparation. 3, 359-364. IF= Cited= 88. 1990 M.S.Thakur+, - N.G.Karanath, Krishna Nand. Production of fungal rennet by Mucormiehei using solid state fermentation. Appl. Microbiol.Biotechnol, 32,409-413. IF= 3.624 Cited= 40 89. 1989 M.S.Thakur+, S.G.Prapulla, N.G.Karanth. Estimation of intracellular lipids by optical density measurement of yeast cells stained with Sudan Black ‘B’ Enzy. Microbiol. Technol. 11, 251-253. IF= 2.638 Cited= 4 90. 1988 M.S.Thakur+,S.G.Prapull a, N.G.Karanth. Microscopic Observation of sudan black B staining to monitor lipid production by microbes. J.Chem.Tech. Biotechnol. 42,129-134. IF= Cited= 4 91. 1987 M.S.Thakur+, S.G. Prapulla , S.A..Jaleel, M.S. Prasad , N.P.Ghildyal, B.K. Lonsane . Cultural stability of Streptomyces fradiae in the production of xylose isomerase: studies in shake flasks. Folia Microbioligica 33(1):21-8. IF= 0.97 92. 1987 N.P.Ghildyal , M.S.Thakur+ , S.S.Srikanta S.A.Jaleel , S.G.Prapulla. Rheological studies on streptomycesfradiac SCF 5 in submerged fermentation J. Chem. Techn. Biotechnol. 38(4), 221-234. IF= 2.045 Cited= 6
  • 15. 15 93. 1987 P, Prema, M.S. Thakur+, S.G. Prapulla, S.V.Ramakrishna, B.K.Lonsane. Production of Gibberellic acid by solid state fermentation : Potentials and feasibility Indian .J., of Microbiology. 28 (1&2), 78-81. IF= 0 .78 Cited= 33 94. 1986 S.G.Prapulla, M.S.Thakur+,S.A.Jaleel, S.Srikanta, M.S.Prasad, P.N.Devi, N.P.Ghildyal, B.K.Lonsane. Cultural Stability of Streptomyces fradiae SCF 5 in production of glucose Isomerase : Studies in laboratory and pilot plant fermenter. Chemie.Microbiologic Technologic der Labensmittel. 10,168-171. 95. 1983 M.S.Thakur*, K.M. Vyas . Production of plant growth regulators by some Fusarium species Folia microbiologica. 28(2):124-9. IF= .97 Cited= 6 96. 1981 T.Satyanarayana, M.S.Thakur *. Auxin-like activity of some antibiotics on germination of seeds Proceeding of the National Academy of Sciences. 51 (B), 38-40. 97. 1978 M.S. Thakur*, N. Pathak, S.B. Saksena. Seasonal variation inleaf surface mycofloraof Azadirachtaindica. Indian Phytopathology, 31(2): 255- 256. 98. 1990 M.S. Thakur*. Studies on the production of microbial rennet by solid state fermentation Transaction of Mycological Society of Republic of China. Cited= 9 99. 1993 Krishnananda, M.S. Thakur*, N.G. Karanth. Downstream processing of Microbial rennet from solid state fermentation mouldy bran Biotechnology Advances. 11, 399-407. IF= 9.646 MANUSCRIPTS COMMUNICATED 1. 2014 Rajeev Ranja, M. Sowmya, K. Vatcharavelu and M.S. Thakur* Rapid detection of toxic metal contamination using Biophotonic beads interfaced with Avalanche Photodiode Analytical Methods 2. 2014 PrasannaJoglekar, MandappaIychettiraMach aiah, M. S. Thakur+ and Manonmani Haravey Krishnan φ29 DNA Polymerase based Real Time Isothermal Amplification (RTIA) for the detection of Yersinia enterocolitica Food Microbiology 3. 2014 IychettiraMachaiahManda ppa, PrasannaJoglekar, M. S. Thakur+ and Haravey Krishnan Manonmani Loop-mediated Isothermal Amplification (LAMP) assay for rapid detection of Bacillus cereus diarrheal toxin genes International Journal of Food Microbiology 7. No. of Books Authored/Edited : Authored
  • 16. 16 1. Biosensors for Pesticides and Foodborne Pathogens. In: Biosensors in Food Processing, Safety, and Quality Control. 2010, PP 147-192, CRC, Press.USA 2. Assay by biosensor and chemiluminescence for vitamin B12 2012, Inc press, RSC publishing group 3. Research and Development on Biosensors for food Analysis in India In: Advances in Biosensors 2003 Oxford University , Press, 2003 4. Application of Nanotechnology for Biosensors and Bioelectronics. Proceedings published by INAE Conference on Nanotechnology (INAE- 2003), Indian National Academy of Engineering, 2003. 5. Enzymatic treatment for Downstream processing of microbial oils. In : Downstream Processing in Biotechnology TATA McGill Publication, 1998 6. Biosensors and Bioelectronics and their applications In: Advances in Biotechnology Educational Publishers &Distributors, India 7. Nanoparticles and Biophotonics as Efficient Tools in Resonance Energy Transfer based Biosensing for Monitoring Food Toxins and Pesticides ACS publications, 2013 Chapter 4, 55-84 Eds: MichellAppell 8. No. of patents granted/Applied for : 15 Nos. Sl. No. Title Country Filed on (Date) Granted on (Date) Names of other inventors International Patents 1 Decaffeinating microorganism and process of biodecaffeination of caffeine containing solutions US patent granted:7,141,411 An Industrial collaboration with M/S TATA tea and M/s AVT, Natural Products was established USA 30-Sep- 2004 28-Nov- 2006 M.S.Thakur R.SarathBabuN.G.Karan th, M.C.Varadaraj
  • 17. 17 2 A process for the preparation of thermostable enzyme of high transition temperature. US patent granted: 7267971 USA 25-Mar- 2003 11-Sep- 2007 M.S.Thakur R.SharathBabuN.G.Kara nthM.A.Kumar 3. Isolation of Psedomonasalcaligenes for biodecaffeination of caffeine containing solution US patent granted : 2007/0036,880 USA 28-Oct. - 2006 15-Feb.- 2007 M.S.Thakur R.SarathBabuN.G.Karan th, M.C.Varadaraj 4. A process for the preparation of thermostable enzyme EP1608747 EU 24- Dec- 2008 M.S.Thakur R.SharathBabuN.G.Kara nth M.A.Kumar 5. An improved process for the preparation of natural vanilla extract WO/2009/031160 WO/PCT 25-Aug- 2008 12-March- 2009 S.R.D.SampathuM.M Naidu., Raghavan B., M.S Thakur. Sujithkumar., V. Prakash National Patents 6. Method and kit for pesticide analysis 487/DEL/2004 INDIA 16-Mar- 2004 26-May- 2006 M.S.Thakur N.G. Karanth M.A. Kumar Amita Rani A.Pasha N.G.K. Karanth 7. A process for preparing immobilized antibodies dipstick for quantitative detection of pesticides at high sensitive level using chemiluminescence. NF No. 206NF2008 INDIA 2009 M.S.Thakur, H.K.ManonmaniR.S.Cho uhan. 8. Kit for the detection of Dichlorodiphenyltrichloroethane (DDT) by Dot-ELISA method using IgY (NF No. 139/08) INDIA 2009 Deepthi N, Manonmani H.K, Thakur M.S. 9. An improved process for preparation of Fumonisin B1 654/DEL/2008A INDIA 14- Mar,2008 18-Sept- 2009 R. Latha H.K. Manonmani A. Pasha M.S. Thakur 10. An immobilized enzyme based biosensor for INDIA 2008 P.V.Sujithkumar M.S.Thakur
  • 18. 18 measurement of polyphenols. 653/DEL/2009 Vatchravelu N.G.Karanth M.A.Kumar 11. A process for microbial biotransformation of caffeine totheophylline. (Ref.No.329/DEL/2006 A) INDIA 3Feb.2006. 12-Feb 2010 SanjuktaPatra M.S.Thakur N.G.Karanth 12. A biosensor device for the determination of caffeine, (Ref. No.726/DEL/2005). INDIA 2005 SarathBabu SanjuktaPatra M.S.Thakur 13. A process for preparation of an enzyme electrode for the determination of copper ions 363/DEL/2002 A INDIA 27-Mar.- 2002 9-Mar- 2007 M.D.Gouda M.S.Thakur N.G. Karanth M.A. Kumar 14 Development of process for stabilization of enzymes 2159/DEL/98 INDIA 1998 M.D.Gouda M.S.Thakur N.G. Karanth 15. A device useful for the measurement of organic acids and their derivatives 21/DEL/98 Commercialized. INDIA 1998 M.S. Thakur Nanda Kumar M.A. Kumar N.G. Karanth M.C. Misra 9. Details of R& D work done: Application of Nanotechnology in biosensors Development of new age and upcoming bio-diagnostic techniques has revolutionized the field of analytical and bioanalytical chemistry. The coordinated efforts from various fields such as biochemistry, biotechnology and material science has led to the development of several robust and reliable biosensing tools applicable in numerous fields such as health sector, environmental safety, clinical diagnostics and food technology. The usage of nanoparticles such as quantum dots, silver and gold nanoparticles for their efficient tailoring to conjugate with numerous biosensing agents such as enzymes, antibodies, aptamers, cells and tissues which can be used in high throughput and multiplexed analysis of a variety of analytes has greatly improved and replaced the conventional analytical methods. Unique opto-physical properties, surface plasmon resonance and field confinement effects of
  • 19. 19 semiconductor nanoparticles have greatly enhanced the sensitivity and robustness of bio-diagnostics involved in the detection of pathogens/ toxins and other hazardous materials such as pesticides and heavy metals. We have tried to deal with the upcoming and novel bioassays for quick and multivariate analytical approach for monitoring pathogens, toxins and other hazardous analytes at ultrasensitive levels. 1. Development of Nanobiosensors for analysis of food contaminants: With gained experience in electrochemical, optical, enzyme, tissues, antibodies and DNA, we started thinking to progress in application of nanotechnology for biosensor development. With a vision to miniaturize the biosensor devices with very high sensitivity and affordable cost possess high reliability. i) Detection of pesticides and Toxins using Q-dots: Efforts are on for the detection of pesticides and microorganisms and microbial toxins using nanoparticles such as quantum dots (CdSe, CdTe, and CdS) and gold (Au) nanoparticles. Studies have been conducted on conjugation of Atrazine with CdTe quantum dots for highly sensitive detection based on fluorescence. Antibodies raised against pesticides/toxins and work is in progress. We have successfully used these nanoparticles for detection of pesticides. We have proved a novel phenomenon called Fluorescence Resonance Energy Transfer (FRET) between QD-Nanoparticles and Protein molecules (please see our publication). ii) DNA nano probes: Quantum dots are being used for the detection of food pathogens such as Staphylococcusaureus and E.coli. The simple process of hybridization between complementary strands of targeted ss DNA is being use for detection. For this purpose the gene for the SEB/Ent B toxins are being used as the target sequence. Biotinylated complementary probes will be conjugated with streptavidin coated quantum dots. These DNA probes on binding with the target sequence will show a 20-fold increase in fluorescence compared to conventional dyes and hence very low number of target sequence in sample solution can be traced. iii) Fluorescent Nano-probes for targeted monitoring Cancer is still extremely difficult to treat, so effective diagnosis strategies in the early stages of cancer are critical. In this respect, imaging can become an indispensable tool in cancer clinical trials and medical practice. In vivo fluorescence imaging of tumors may offer a possibility for the direct bio-imaging of tumors for precise diagnosis of cancer and monitoring of the treatment process. In situ fluorescent bio- imaging is also of great significance for visualizing the expression and activity of particular molecules, cells, and biological processes that influence the behaviour of
  • 20. 20 tumors and/or their responsiveness to therapeutic drugs. In this connection, fluorescent gold Nano clusters will be synthesized and tagged with marker proteins/aptamers for in-vivo self-bio-imaging. Protein markers like p53 antibody/aptamers bio conjugated with fluorescent gold nanoclusters will be targeted for site specific response studies. The vast majority of all agents used to directly kill cancer cells (ionizing radiation, most chemotherapeutic agents and some targeted therapies) work through either directly or indirectly generating reactive oxygen species that block key steps in the cell cycle. The question thus arises whether most, programmed cell death caused by anti-cancer therapies is also ROS induced. The “two-face” character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti- tumorigenic species. In this context, it is essential to know the role of ROS, the levels at which they can bring about cellular damage and apoptosis and/or help cancer cells maintain their phenotype. For in-vitro detection of ROS, a variety of electrochemical, spectroscopic, chemiluminescent, and fluorescent methods have been developed. Among them, the fluorescence detection method has distinctive advantages in terms of high sensitivity and experimental convenience. For example, previously commercialized fluorescent probes such as 20,70- dichlorodihydrofluorescein (DCFH) and 2-[6-(40-amino)phenoxy-3H-xanthen-3-on-9- yl] benzoic acid (APF) are widely used for the optical detection of intracellular ROS. However, these ROS fluorescent probes exhibit several limitations such as light- induced auto-oxidation and insufficient ROS sensitivity. Therefore, the development of an environmentally stable, species selective, and extremely sensitive fluorescent probe is necessary for the quantitative analysis of intracellular ROS in biological systems. In particular, present work will be aimed at developing a situ intracellular ROS/anti-cancer drug fluorescent probe that could provide real-time physiological information within live cells responding to various external stimuli. iv) Aptamer based biosensing platforms Aptamer based ultrasensitive biosensing systems were developed for vitamin B12, Theophylline, Bisphenol A and p53. Present work was based on interaction of aptamer with gold nanoparticles and differential binding of aptamer in presence and absence of analytes. Currently, as a part of Indo-Spain project, we are working on generation of aptamer for marine toxins and aflatoxins and its detection at food samples at sensitive levels. 2. Protein/ biomolecule stabilization: There is no biomolecules on the earth, which remain forever. To stabilize the biomolecules are extremely difficult task, which is very essential for biosensor development. Attempts were made and are being continued to stabilize biomolecules
  • 21. 21 for operational and thermal stability by using protein based stabilizing agents (PBSA) and other stabilizers. This study is very much essential to reduce the cost of analysis, and repeated biosensor use. Stabilization of biomolecules is also an important factor governing the enzymatic biotransformations on an industrial scale. My group came out with important breakthrough in stabilizing biomolecules such as enzymes and antibodies extreme conditions. We have several patents and publications in these regards. 3. Biosensor for Vitamin B12 Analysis: Methods for the detection of Vitamin B12 remain still questionable due to its low sensitivity and complex chemical structure. In the present work, a simple, faster and sensitive technique based on Immuno-chemiluminescence (CL) is being developed to detect vitamin B12at very sensitive level (ppt). 4. Optical principle based detection system: During my biosensors research during 20 years I have worked in core areas of optics including light scattering, absorbance, surface plasmon resonance, atomic force microscopy (cantilever optical system), refraction, reflection, fluorescence and luminescence (Bio and chemiluminescence) for biosensor development. I find chemiluminescence system based biosensors are more sensitive to detect any analyte at very low concentration. 10.Food Biosensor research at CFTRI: Realizing the importance of biosensor research for food analysis early 90’s, now my lab on biosensor has been recognized nationally and internationally. During the last 10-15 years, I have handled several projects on Biosensor research, which were funded byCFTRI, DST, DBT, Indo-Swiss and Indo-Swedish agencies. Currently I am working on the development of biosensors for food, environment (water) and fermentation monitoring. Biosensors are being developed in my group, based on enzymes, antibodies, tissues, cells etc. as biological recognition elements with optical or amperometric detector systems as physical transducers. Biochemical signal processing for the biosensors including, signal detection, transduction, amplification and processing are being done using microprocessors and microcomputer. 1. Biosensors for pesticide monitoring in Food and Environmental samples: It must be mentioned that a highly sensitive immuno-sensor system was developed for the detection of ethyl and methyl parathions, 2,4D and atrazine at Picograms
  • 22. 22 concentration (ppt) based on the immuno-chemiluminescence principle. Antibodies against pesticides were raised in Chicken (IgY) and rabbit (IgG). An economical IgY was produced for highly sensitive detection system based on immuno- chemiluminescence biosensor. No existing system available, which can detect pesticides at ppt concentrations. The high sensitivities of pesticides detection achieved in the project show promise of excellent applications of our immunosensor for field application. International Scientific collaboration in Biotechnology funded this project under Indo-Swiss collaboration (SDC-DBT). International monitoring committee (JAC) of this project appreciated the progress of the project and recommended for industrial collaboration. In this connection we are now interfacing with the Industries (M/s Bigtech, Bangalore) for technology transfer through collaborative project, which was submitted to DBT under Small Business innovation research Initiative (SBIRI). Significant work has been done in terms of establishing the concept of detection of pesticides based on chemiluminescence (CL) wherein the required sensitivity at sub- nanogram level could be attained. 2. Biosensors for organophosphorous pesticides based on enzymes: A variety of pesticides and herbicides have been extensively used in agricultural practices to increase productivity, leading to pesticide residues in soil, water and food. These contaminants create serious health hazards to human population. Following biosensor systems were developed for the detection of pesticides. i) Acetyl Choline Esterase ( AChE ) inhibition based biosensor: AchE based biosensor system was developed for monitoring of OP pesticide. Electrode was polarised at +410mV and signals were correlated with OP pesticide concentrations. While biosensors based on AchE inhibition have been known for monitoring of OP, pesticides, in food and water samples. However strong inhibition of the enzyme is a major drawback in practical application of the biosensor, this can be at least partially overcome by reactivation of the enzyme for repeated use. In our laboratory study on enzyme reactivation by oximes was explored. Two oximes viz., 1,1’-trimethylene bis 4 – formylpyridinium bromide dioxime (TMB-4) and pyridine 2- aldoxime methiodide (2-PAM) were compared for the reactivation of the immobilized
  • 23. 23 AChE. TMB-4 was found to be a more efficient reactivator under repeated use, retaining more than 60% of initial activity. ii) Detection of OP pesticides using ascorbic acid oxidase: A laboratory biosensor has been constructed at CFTRI, Mysore for paraoxon with a sensitivity of 0.5 ppm. This sensitivity is not quite adequate for practical applications and efforts are in progress to improve the biosensor performance. Considerable research has been carried out at CFTRI; Mysore on the development of single and multi-enzyme based amperometric biosensors for organophosphorous(OP) pesticides detection. It is known that organophosphates exhibit their pesticide power through a strong inhibition of acetylcholine esterase (AChE) activity. This inhibition principle has been used to develop a biosensor for detection of OP pesticides. iii) Acid phosphatase inhibition-based detection. An amperometry-based biosensor has also been developed to analyse the OP pesticide using the dual enzyme system consists of acid phosphatase and glucose oxidase (GOD). Using the above system, an amperometric biosensor consisting of a potato layer rich in acid phosphatase and on immobilized GOD membrane, when operated in conjunction with a Clark type electrode, detected the pesticide. A notable advantage of this biosensor is that the inhibition of acid phosphatase by the pesticide is reversible and thereby eliminates the serious problem of enzyme inactivation. 3. Construction of a prototype biosensor instrument for glucose and sucrose analysis for Food Industry application: A prototype biosensor instrument has been constructed, and has undergone tests and troubleshooting in the laboratory for glucose and sucrose analyses. With a view to commercialisation of the instrument collaboration was established with an instrument manufacturing company. Later it was also been field tested in the sugar factories and confectionery industries. 4. Construction of a Lactate Monoxigenase (LMO) enzyme electrode:
  • 24. 24 A batch type L-lactate biosensor for analysis in the concentration range 50-800 mg/dl has been constructed at CFTRI, Mysore and the technology has been transferred to industry (M/s Solid State Electronics, Pune). This features an enhanced operating life of 60 days for enzymes sensing element of the biosensor, which is covered by patent (2159/DEL/98). This biosensor can be used for L-lactate detection in fruit pulp, fermented samples and dairy products. 5. On-line Monitoring of fermentation process using biosensor: A biosensor with Flow Injection Analysis (FIA) system (Fig. 3), useful for continuous monitoring and control of food and fermentation processes was developedOn-line data acquisition and real time control of Food and Fermentation processes is a difficult task and limits the use of a batch type of biosensor. Through FIA system it was possible todetect Glucose and L-lactate subsequently and details of the process is given in figure 3. 6. Biosensor for Ascorbic acid analysis: Work has been carried out at CFTRI, Mysore on the development of a tissue based biosensor for L-ascorbic acid analysis in food and pharmaceutical samples. An immobilized Ascorbic acid oxidase enzyme was used fordetection of ascorbic acid oxidase obtained from cucumber peels. We found that Ascorbic acid oxidase was suitable enzyme for the development of several biosensor systems for detection of pesticides (Pl. see Annexure I, section 2, ii), Vitamin C (as above) and Copper ions (see below). 7. Detection of Copper ions by biosensor: An ascorbic acid oxidase based system was used for the detection of Cu ions. This enzyme contains Cu++ in its active site. Based on its folding and unfolding (Biomolecular phenomenon) activity a biosensor was constructed. It was able to detect Cu ions in water sample. 8. Tea Biosensor: India is exporting a large quantity of black tea all over the world. Tea polyphenols play a crucial role in determining quality of black and green tea. Major quality attributes such as colour and astringency directly linked with polyphenol contents. Therefore, it is necessary to know quantity of Polyphenols in tea. Also, tea polyphenols are gaining importance due to their strong antioxidant properties for nutrition and health. In this context in our lab, we have successfully developed an enzyme based amperometric biosensor (Fig
  • 25. 25 4) for the determination of total polyphenol content in tea infusions. Both in lab and industry trials were satisfactory for tea polyphenols detection and tea biosensor technology is going to be transferred to M/s Ti Industries Calcutta (MoU signed). Food Microbiology and Fermentation Technology: 1979 to 2000: 1. Microbial Production of Glucose Isomerase enzyme for high Fructose Syrup (Large scale trial) : In this project Streptomyces fradie culture was cultivated in 10 to 200L capacity fermentors for the production of Glucose Isomerase which was very important enzyme for production of High Fructose Syrup (HFS) for beverages industries. This enzyme was isolated and immobilised for the production of HFS. A process was developed. 2. Microbial production of rennet on solid state and submerged fermentation: Rennet enzyme is very important enzyme for cheese making and in early 80’s this enzyme was obtained through slaughtering the calf, keeping this in view a process for production, extraction and purification of microbial rennet for vegetarian cheese using Mucormuhei and Rhizopus was developed using solid state fermentations. Cheese made out of this rennet was very suitable. Several papers on this aspect were published. 3. Studies on the engineering aspects of solid state fermentation ( SSF): Bioengineering and microbiological studies on the growth of microorganisms and production of many food enzymes were done using SSF. Several papers were published and our contribution on SSF through this project was unique. 4. Cultivation of mammalian cells in fermentation for Human growth hormones and hybridoma cells ( MIT, USA ). 5. Microbial production of Single cell oil in submerged fermentation: Rhodotorulagracilis(Rg) was used to produce single cell oil. It was observed that Rg could able to accumulate oil 75-80% intracellularly. Now it is an important area for biofuel. 6. Cultivation of microorganisms and production of lactic acid by fermentation. Funded by DBT- SIDA: Indo-Swedish collaborative project. 1993-2001:
  • 26. 26 7. Ecofriendlybiodegradable packing material: 1999-2000. Several strains of microorganisms were isolated and biodegradable Biopolymers PHA, PHB, PHV etc were isolated, extracted purified and identified. It was found that Pseudomonas and RhizobacteriumSp. were potent to produce these biopolymers. Research papers published. 2000 –continued: 8. Microbial degradation of Caffeine and polyphenols to produce value added products. 9. Microbial Production of Caffeine degrading enzymes in submerged and solid state fermentation 10. Biotransformation of caffeine to theophylline using whole microbial cell, Enzymes Funded by CFTRI. 11. Immobilization of enzymes/cells for decaffeination of coffee and tea. I ) Biodecaffeination of Tea and coffee: Caffeine when taken in excess exhibits various deleterious effects. It stimulates the central nervous system, shows toxicity when fed in excess and is even mutagenic in vitro. Excessive consumption of caffeine through beverages is associated with a number of health problems like adrenal stimulation, irregular muscular activity, cardiac arrhythmias and increased heart output. Excess caffeine is reported to cause mutation, inhibition of DNA repairs and inhibition of adenosine monophosphodiesterase and during pregnancy causes malformation of fetus and may reduce central nervous system, shows toxicity when fed in excess and is even mutagenic in vitro. It also causes osteoporosis, i.e. decrease in mineral density. Biodecaffeination is defined as the complete removal of caffeine and related methyl xanthines form caffeine-containing materials like coffee, tea, cocoa etc., by the use of enzymes/cells capable of degrading caffeine. We report the development of a biodecaffeination process for coffee and tea using enzymes isolated from Pseudomonas alcaligenes MTCC 5264. The enzymes involved in biodecaffeination were caffeine 1N-Demethylase, 7N-Demethylase, xanthine dehydrogenase, xanthine oxidase, uricase, allantoinase, allantoicase, glyoxylatede-hyrogenase and urease. These enzymes could be stabilized for 90 days under cold storage in the presence of lysozymeand sorbose. Biodecaffeination of green coffee beans (Fig 5 item 7) was carried out using the multienzyme system immobilized in calcium alginate beads ( Fig 5, item 3) and 70% of the caffeine could be completely degraded which was present in the beans and tea leaves. Inhibitory factors like caffeine- polyphenol complexes and polyphenol- protein
  • 27. 27 complexes, which were inhibitory for biodecaffeination were prevented by the use of glycine in the dhool. Biodecafeeianted samples of Tea and coffee were supplied to M/s AVT, Natural products Pvt, Ltd. And company is interested to explore the possibility of biodecaffienated tea and coffee in world market using our technology. This is the first report on the stabilization of enzymes involved in biodecaffeination and their application in the successful development of a biodecaffeination process for coffee and tea. ii) Molecular studies on biodecaffeinating Enzyme- Caffeine Demethylase. Molecular charecterization of decaffeinating enzyme was done. The Decaffeinating enzyme was found to have less than 31% similarity with existing proteins, which indicates that the enzyme is novel. The region of similarity is in the Rieske Fe-S cluster, which is a dioxygenase subunit protein iron-sulfur oxidoreductase ferredoxin electron transport, which has a length of 116aa. iii) Biotransformation of caffeine to Theophylline: Keeping in view the deleterious effects of caffeine and its easy availability, it can be biotransformed to potent therapeuticmolecules as theophylline. The structural resemblance of theophylline to adenine is being made use of to venture into the possibilities of its use as anti viral (HIV), anti cancerous, anti tumourous activity. Production of Theophylline was carried out with an isolated strain of Penicilliumcitrinum MTCC 5215 in a 5-liter fermentor in a designed media. The fermentation parameters for theophylline production were optimised. Under Optimised conditions 80% conversion of caffeine to Theophylline was achieved. The fermentation broth was extracted using ethyl acetate and then acetone precipitated to separate theophylline from the rest of the crude extract. Theophylline was further crystallised using ethyl alcohol and confirmed as theophylline by HPLC, FTIR and NMR. iv) Production of Theaflavin (TF) Theaflavins in tea has a high health significance and medicinal properties. The content of TF in tea is much higher than that of many popular herbal extracts, such as dry standardized extracts of Ginkgo biloba, bilberry, grape seed extract and so on.Theaflavin, and theaflavindigallate induced apoptosis. Theaflavinspresent in black tea possess at least the same antioxidant potencyas catechins present in green tea. Specifically theaflavin-3, 3’- digallate (TF3)has strong antioxidant activity similar to (-)- epigallocatechingallate (EGCG), a major antioxidant in green tea. Crude enzyme was isolated from fungi and immobilized in suitable matrix. Sodium alginate was found to be the best matrix. Production of Theaflavins was carried out with an immobilized enzyme based reactor. Polyphenols extracted from waste tea leaves (fallen at time of pruning having no commercial value) were taken for
  • 28. 28 biotransformation to TF and TR. The parameters for theaflavin production were optimised and a fluidised bed reactor was developed. Under Optimized conditions 60% conversion of Theaflavins from green tea catechins was achieved. The product was purified, spray dried and contained 20% w/w of theaflavins. 12. An enzyme assisted process for the preparation of natural vanilla extract: The major aim of the present study was to prepare vanilla flavor extract from green beans with enzymatic process without going through the elaborate and time consuming conventional curing process (4-6 weeks). We have successfully produced better quality natural vanilla extract using our tea enzyme andvanillin content was found to be three times higher when compared to the control. Also it had higher intensity of vanilla flavor, sweet and floral notes compared to conventionally cured bean extract in the sensory analysis. 14. Cultivation and whole cell immobilization of marine bioluminescent bacteria for environmental monitoring: Highly luminescent and potent strain of bioluminescent bacteria was isolated from marine mussels. These bioluminescent bacterial strains were immobilized using physical entrapment methods and were used for the prescreening/monitoring of heavy metals and pesticides at ppm levels within a period of thirty minutes. 11. Dissertations supervised: a. Ph.D. : 8 Nos 4 Nos. Students submitted Ph.D. Theses 4 Nos. (Working) b. Post Graduate : 65 students 18. Technology / Process / Product development: Technology Transferred and being commercialized: Technology Transferred : 1. Biosensor for L-Lactate:
  • 29. 29 A batch type L-lactate biosensor device for the analysis of L-lactate in food samples within the concentration range of 50-800 mg/dL was constructed at CFTRI, Mysore and the technology has been transferred to industry (M/s Solid State Electronics, Pune). This features an enhanced operating life of 60 days for enzymes sensing element of the biosensor, which is covered by patent (2159/DEL/98). This biosensor can be used for L-lactate detection in fruit pulp, fermented samples and dairy products. 2. Biosensor for Sugars: An amperometric Biosensor system based on enzyme membrane for the detection of Sugars in food, beverages and clinical samples has been of transferred to M/s Innovate Software Solutions Pvt. LTD, 333,18th G main Road, 6th Block, Kormangala, Bangalore. 3. Biosensor for tea quality assessment: Tea Biosensor :Patent No. 653 DEL/ 2009 India is exporting a large quantity of black tea all over the world. Tea polyphenols play a crucial role in determining the quality of black and green tea. Major quality attributes such as colour and astringency are directly linked with polyphenol contents. Therefore, it is necessary to know quantity of Polyphenols in tea. Also, tea polyphenols are gaining importance due to their strong antioxidant properties for nutrition and health. In this context in our lab, we have successfully developed an enzyme based amperometric biosensor for the determination of total polyphenol content in tea infusions. Both in lab and industry trials were satisfactory for tea polyphenols detection and tea biosensor technology is going to be transferred to M/s TiIndustries Calcutta (MoU signed) and M/s Innovate Software Solutions Pvt LTD, 333,18th G main Road, 6th Block, Kormangala, Bangalore (MoU signed). 4. Biosensors for pesticide monitoring in Food and Environmental samples: a) A Rapid Test kit for pesticide analysis based on charge coupled device (Indian Patent Ref. No. 502 NF/2003). b) A Rapid Test kit for pesticide analysis based on charge coupled device International Patent application Ref. No. PCT/IN 03/00446 ( Dated 31st Dec. 2003). It must be mentioned that a highly sensitive Immunobiosensor system was developed for the detection of ethyl and methyl parathions, 2,4-D and atrazine at Pico gram concentration (ppt=parts per trillion) based on the Immuno-chemiluminescence principle. Antibodies against pesticides were raised in Chicken (IgY) and rabbit (IgG). An economical IgY was produced
  • 30. 30 for highly sensitive detection system based on Immuno-chemiluminescence biosensor. No existing system is available, which can detect pesticides at ppt concentrations. International monitoring committee (JAC) of this project appreciated the progress of the project and recommended for industrial collaboration. In this connection we are now interfacing with the Industries (M/s Bigtech, Bangalore) for technology transfer through collaborative project, which was submitted to DBT under Small Business innovation research Initiative (SBIRI). 19. Overseas visits: Sl No. Organization and country Period Purpose 1 Massachusetts Institute of Technology , Cambridge, USA April, 89- April, 90 DBT Long term Associateship 2 University of Maryland Baltimore, USA May, 90- Sep., 90 Continuation of above Associateship 3 University of Lund, Sweden April, 94 - June, 94 Indo-Swedish collaborative project 4 University of Lund, Sweden May, 96 - June, 96 Indo-Swedish collaborative project 5 University of Lund, Sweden Sept, 98 - Nov, 98 Indo-Swedish collaborative project 6 EPFL, IMT, Switzerland Aug., 2001- Oct., 2001 Indo- Swiss collaborative Project 7 EPFL, Switzerland May 10 – 29, 2006 Indo-Swiss collaborative Project 8 Toronto (Canada) to attend 9th Biosensor world Congress at Toronto May, 8-13, 2006 To present work on the Biosensor 9 University of Kalmar, Sweden University of Lund, Sweden 6th - 22nd June 2007 Under our collaborative Indo- Swedish programme 10 University of Malaysia, Perlis 23-31st Aug. 2008 Invited talks at International conference on Smart Materials & sensors held at Penang & at University of Malaysia, Perlis (UniMAP) 11 a) Moscow State University , Moscow. b) Russian Academy of Sciences, Moscow 20-30 Aug. 2009 Part of delegation to Russia and delivered an invited talk 12 i.Visit to University of Hong Kong – Science and Technology ii.Invited talk at International Conference at Shenzhen a) 23-24th Feb, 2011 b) 25-27th Feb 2011 Visit to HKU-ST And
  • 31. 31 International High Technology Forum – Shenzhen Delivered an invited talk