Module 7.2 Lessons 22­23.notebook
1
October 28, 2015
Homework:
• Lesson 23 Problem Set
#1-4, 6, 7
• End of Module 2 Exam
Friday 10/30/15
Module 7.2, Lesson 22-23
Do Now:
Exit Ticket For Lesson 17
Solving Equations
Using Algebra
10/28/15
Module 7.2 Lessons 22­23.notebook
2
October 28, 2015
Exit Ticket Lesson 17
Module 7.2 Lessons 22­23.notebook
3
October 28, 2015
Homework Answers S.118
Module 7.2 Lessons 22­23.notebook
4
October 28, 2015
S.119
Module 7.2 Lessons 22­23.notebook
5
October 28, 2015
Equation Method
S.119
Module 7.2 Lessons 22­23.notebook
6
October 28, 2015
Solve Equation
Does your answer make sense in the context of the problem?
Why?
n + n + 20 + 15 + 10 + 12 = 137
Module 7.2 Lessons 22­23.notebook
7
October 28, 2015
Let x = _____________________________The number of hours swimming each morning
Equation:
S.119
Module 7.2 Lessons 22­23.notebook
8
October 28, 2015
S.120
Module 7.2 Lessons 22­23.notebook
9
October 28, 2015
3. Claire‛s mom found a very good price on a large computer
monitor. She paid $325 for a monitor that was only $65
more than half the original price. What was the original
price?
S.120
Module 7.2 Lessons 22­23.notebook
10
October 28, 2015
5.) Ben‛s family left for vacation after his Dad came home from
work on Friday. The entire trip was 600 mi. Dad was very tired
after working a long day and decided to stop and spend the night in
a hotel after 4 hours of driving. The next morning, Dad drove the
remainder of the trip. If the average speed of the car was 60 miles
per hour, what was the remaining time left to drive on the second
part of the trip? Remember: Distance = rate multiplied by time.
S.120
Module 7.2 Lessons 22­23.notebook
11
October 28, 2015
S.123
Module 7.2 Lessons 22­23.notebook
12
October 28, 2015
S.124
Module 7.2 Lessons 22­23.notebook
13
October 28, 2015
S.125
Module 7.2 Lessons 22­23.notebook
14
October 28, 2015
S.125
Module 7.2 Lessons 22­23.notebook
15
October 28, 2015
S.126
Module 7.2 Lessons 22­23.notebook
16
October 28, 2015
Closing Questions
• What do we mean when we say “solve the equation 6 −8=40"?
• What property allows us to add 8 to both sides?
• What role do inverse operations play in solving this equation,
and how can you model its use with the tape diagram?
Module 7.2 Lessons 22­23.notebook
17
October 28, 2015
S.116

Module 7.2 lessons 22 23