CHAPTER CONTENT
• Maintenanceof Therapeutic drug
concentration by MR per oral dosage form
• Design of peroral modified-release drug
delivery system
• Formulation of modified-release dosage form
• Membrane-controlled drug delivery systems
Ideal dosage regimen
Therapeuticconcentation of drug at the site (s) of action is
attained immediately and is then maintained constant for
the desire duration
therapeutic 'steady-state' plasma concentrations of a drug
by the repetitive administration of conventional peroral
dosage forms
provided dose size frequency of administration are
correct
7.
Conventional per oraldosage form
• Complete dose of drug contained is
immediately released rapidly following
administration
• Available for absorption into the sistemic
circulation
8.
Limitation of conventionalper oral
dosage form
• Drug conc. in plasma and at site(s) of action:
fluctuates over dosing interval → not possible to
maintain constant
• Fluctuation → patient being over – or
undermedicated for periods of time if Cmin
& Cmax
rise or fall, beyond the therapeutic range
• Drug with short biological half-lives → frequent
doses → forgotten doses & overnight no-dose
period → therapeutic inefficiency or failure
9.
Modified-release Dosage Form
•MR will be used to describe peroral dosage forms
that continously release drugs at rates which are
sufficiently controlled to provide periods of
prolonged therapeutic action following each
administration of a single dose
• A variety of terms was used to describe this
system:
– Delayed-release - Extended-release
– Repeat action - Controlled-release
– Prolonged-release - Modified-release
– Sustained-release
10.
• Delayed release🡪 obat tdk segera dilepaskan stlh
diberikan tp stlh beberapa waktu kemudian
(enteric-coated)
• Repeat action 🡪 suatu dosis individual dilepaskan
dg segera stlh pemberian dan dosis kedua/ ketiga
dilepaskan pd interval waktu tertentu
• Prolonged release 🡪 obat tersedia selama periode
absorpsi yg lebih panjang dibandingkan bentuk
konvensional (onset lambat)
• Sustained release 🡪 suatu pelepasan awal obat
cukup memberikan dosis terapi dan kemudian
memberikan pelepasan bertahap dlm periode yg
lama
11.
• Extended release🡪 melepaskan obat dg
lambat shg konsentrasi obat dlm plasma
dipertahankan pd kadar terapetik dlm periode
tertentu (8-12 jam)
• Controlled release 🡪 melepaskan obat pd kec
konstan dan memberikan konsentrasi obat yg
tetap dlm plasma pd setiap waktu
• Modified release 🡪 bentuk sediaan dg
karakter waktu dan tempat pelepasan obatnya
dipilih utk mendapatkan tujuan terapi
Disain MR product
1.Dg segera memberikan konsentrasi obat pada plasma dan tetap konstan pd
interval nilai terapetik (kurva A)
MR products are generally designed to
provide...
2. Mencapai konsentrasi plasma meskipun tdk konstan dan menurun
secara lambat dlm kadar plasma (kurva B)
14.
Metode formulasi MRproduct
• Initial priming dose dapat dilepaskan dengan cepat
– Terpisah dari maintenance dose
– Terletak dipermukaan porous wax atau plastic matrix
• Maintenance dose dilepaskan secara lambat dalam
durasi yang diinginkan → memerlukan barrier baik
secara fisik atau kimia
– Coating
– Embedding of drug in a wax or plastic matrix
– Microencapsulation
– Chemical bindering to ion exchange resin
– Incorporation in an osmotic pump
15.
Kinetic pattern ofdrug release required
for the ideal modified
controlled-release per oral dosage form
16.
Penentuan dosis modified-releaseproduct
• kr = konstanta kec pelepasan
• ka = konstanta kec absorpsi
• ke = konstanta kec eliminasi
• Rate limiting step → kr (kr << ka)
• Idealnya banyaknya obat yg dilepaskan tdk
tergantung konsentrasi obat dlm sediaan
– Zero order
– Laju pelepasan yg konstan
Dosage
form GI tract Blood Urine
kr ka ke
17.
Kecepatan pelepasan ygdiharapkan
• Asumsi farmakokinetika obat mengikuti model 1
kompartemen terbuka
• Utk mempertahankan kadar obat dlm darah konstan
maka jml obat yg dikeluarkan (eliminasi) harus sama
dg pelepasan obat dari sediaan (rate out = rate in)
Rate out = kr = Ct x Ke x Vd
Rate in = W = Di + (kr x h)
– W = total dosis
– Di = initial dose
– h = durasi efek
– Vd = volume distribusi
– Ct = kadar obat dalam darah (MEC – MTC)
– Ke = konstanta kec eliminasi
– Kr = konstanta kec pelepasan obat dari sediaan
18.
Contoh 1
• Buatlahsediaan lepas terkontrol untuk
pemakaian oral obat teofilin! Diketahui
parameter farmakokinetika sbb: Di = 100 mg,
ke = 0,085/jam, Ct = 10 μg/mL, dan Vd = 35 L.
• Hitung berapa dosis total yg diperlukan selama
12 jam! (asumsi F = 100%)
19.
Jawab
1. Rate in= rate out = kr = Ct x ke x Vd =
10μg/mL x 0,085/jam x 35000 mL = 29750
μg/jam
2. W = Di + (kr x h) = 100 000 μg + (29750
μg/jam x 12 jam) = 457000 μg = 457 mg/
tablet
20.
KEUNTUNGAN MR PRODUCT
•Mengurangi fluktuasi kadar obat dalam darah
• Mengurangi frekuensi pemberian
• Meningkatkan kepuasan dan kenyamanan
pasien
• Mengurangi efek samping yang merugikan
• Mengurangi biaya pemeliharaan kesehatan
21.
Keterbatasan MR Product
•Efektifitas pelepasan obat dipengaruhi dan
dibatasi oleh lama waktu tinggal di saluran cerna
• Kemungkinan adanya dose dumping
– sejumlah besar obat dari sediaan yg dilepaskan
dengan cepat
• Sering mempunyai korelasi in vitro-in vivo yang
jelek
• Biaya produksi lebih mahal dibanding sediaan
konvensional
• Tidak dapat digunakan untuk obat dengan dosis
besar (500 mg)
22.
B. DESIGN OFPERORAL MODIFIED RELEASE
DRUG DELIVERY SYSTEMS
Factors influencing design strategy
1. The physiology of the gastrointestinal tract
and drug absorption
2. Physicochemical properties of the drug
3. Choice of the dosage form
4. Drug-release mechanisms
23.
1. The physiologyof the gastrointestinal
tract and drug absorption
• the residence time of a dosage form in the
gastrointestinal tract is influenced by both
stomach emptying time and intestinal transit
time
– • solution and pellets (<2 mm) leave the stomach
rapidly
– • single dose units (>7 mm) can stay in the stomach
for up to 10 hours if the delivery system is taken with a
heavy meal
– • the transit time through the small intestine is
approximately 3 hours
24.
2. Physicochemical propertiesof the
drug
Kandidat zat aktif untuk MR Product
• Solubility (> 1 mg/mL)
• Permeability (> 0,5x 10-6
mm/detik)
• Biological half life antara 2-6 jam
– Tidak terjadi akumulasi dalam tubuh
• Dosis obat yang rendah (125-325 mg) →
keterbatasan ukuran sediaan
• Stabilitas yang baik
– Tdk mengalami first pass effect metabolism
– Tdk rusak akibat pengaruh enzim dan cairan saluran
cerna
25.
Biopharmaceutical
Classification System
• highsolubility and high permeability (best case)
• high solubility and low permeability
• low solubility and high permeability
• low solubility and low permeability (worst case)
A drug that is highly soluble at intestinal pH and
absorbed by passive diffusion (i.e. not site-specific
absorption) would probably present the ideal
properties for inclusion in an MR dosage form
26.
• More than90% absorption in vivo may be
expected for compounds with permeability, P,
values > 4 x 10-6
mm s-1
, whereas less than
20% absorption is expected when P is <0.5 x
10-6
mm s-1
27.
3. Choice ofthe dosage form
• Active ingredient
– Single unit system: tablet, coated tablet, matrix tablet, capsule
– Multiple unit system: granule, beads, capsule, microcapsule
• MR dosage form
– Monolithic or matrix system
– Reservoir or membrane-controlled system
– Osmotic pump system
• The selection of the appropriate dosage form
– will need to take account of an acceptable level of variability of
performance
– the influence of GI tract structure and function on the delivery
system, and the release mechanism and release profile of the
dosage form
28.
4. Mekanisme pelepasanobat (1)
The two basic mechanisms controlling drug release
dissolution of the active drug component
🡪diffusion of dissolved or solubilized species
1. Pembasahan bentuk sediaan
Misal: hidrokoloid → mengembang (sweeling)
channeling agent → larut
2. Difusi air ke dalam bentuk sediaan
3. Disolusi obat
4. Difusi zat aktif keluar bentuk sediaan
Keempat proses tersebut tidak saling tergantung
(dpt terjadi secara bersamaan atau berurutan)
29.
4. Mekanisme pelepasanobat (2)
Drug delivery systems can be designed to have either
• Constant release
– ideal MR system
– should provide and maintain constant drug plasma
concentrations 🡪 release drugs at a constant rate 🡪
zero-order release diffusion of the drug or osmosis
• Declining release
– first-order kinetics
– Cannot maintain a constant plasma drug concentration but
can provide sustained release
• Bimodal release
– a dosage form that provides a rapid initial delivery of drug
followed by a slower rate of delivery and then an increased
rate at a later time
30.
C. FORMULATION OF
MODIFIED-RELEASEDOSAGE FORMS
• Components of a modified-release delivery
system
• Monolithic matrix delivery systems
• Membrane-controlled drug delivery systems
• Delivery systems for targeting to specific sites
in the gastrointestinal tract
31.
MODIFIED RELEASE DOSAGEFORM
A. Monolithic or matrix system
B. Reservoir or membrane-controlled system
C. Osmotic pump system
a basic principle that governs all these systems
In a solution, drug diffusion will occur from a region of high
concentration to a region of low concentration
🡪 Water diffuses into the system in an analogous manner
32.
Component of aMR delivery system
• Active drug
• Release-controlling agent(s): matrix former,
membrane former
• Matrix or membran modifier
– Channeling agent for wax matrices
– Wicking agent for hydrophilic matrices
• Solubilizer, pH modifier, density modifier
• Lubricant and glidant
– Biasanya bersifat hidrofob
– Dpt mempengaruhi pelepasan (mg stearat, as stearat)
34.
A. Monolithic matrix
deliverysystem
1. Matrik koloid hidrofilik
– Partikel obat didispersikan dalam suatu matrik yg larut
– Obat dilepaskan ketika matrik terlarut atau
mengembang
– Kec disolusi tergantung pelarutan matrik
2. Matrik lipid atau polimer yg tidak larut
– Partikel obat didispersikan dalam suatu matrik yg tidak
larut
– Obat dilepaskan ketika pelarut masuk ke dalam matrik
dan melarutkan obat
– Ada 2 matrik 🡪 lipid matrix system dan Insoluble
polymer matrix system
35.
1. Lipid matrixsystem
• Zat aktif dicampur dengan eksipien yang bersifat
hidrofobik
• Manufacturing: direct compression, roller
compaction or hot-melt granulation
• Formulasi
– Zat aktif
– Wax matrix former
– Channeling agent
– Solubilizer and pH modifier
– Antiadherent/glidant
– Lubricant
36.
Formulasi Lipid matrixsystem
• Zat aktif
• Matrix former
– Hydrophobic material (padat pada suhu ruangan dan tidak meleleh
pada suhu tubuh)
– Contoh: carnauba wax, microcrystalline wax, cottonseed oil, soya oil
– Jumlah 20-40 %
• Channeling agent
– Larut dalam saluran pencernaan → lepas dari sediaan → terbentuk
matrik yang berpori
– Partikel obat berdifusi keluar melewati pori dlm matrik yg dibentuk oleh
channeling agent
– Contoh: NaCl, gula, polyol (20-30 %)
• Solubilizer & pH modifier
– Utk meningkatkan kelarutan zat aktif
– Misal: PEG, surfaktan, polyol
• Antiadhernt/glidant
– 0,5-1 % colloidal silicon dioxide
– 4-6 % talk
37.
Mekanisme pelepasan zataktif dari
lipid matrix system
1. Air berdifusi ke dalam matriks
2. Pelarutan channeling agent
3. Pelarutan zat aktif
4. Zat aktif yg larut mengisi kapiler/kanal
chaneling agent keluar dari matriks
Kontrol pelepasan obat ditentukan oleh jumlah
dan panjang channeling agent yg terbentuk
38.
2. Insoluble polymermatrix system
• Drug is embedded in an inert polimer which is not
soluble in the gastrointestinal fluids
• Drug release from inert matrices = leaching from
sponge
• Release rate depends on drug molecules in aquous
solution diffusing through a network of capillaries
formed between compacted polymer particles
• Release rate can be modified by changes with:
– The addition of pore forming hydrophilic salt
– Compression force
– The particle size of the insoluble matrix
– Solubility of active compound
• Insoluble polymer matrix: ethylcellulose
39.
Pengaruh eksipien thdpelepasan obat
dari Insoluble polymer matrix system
• Eksipien larut air
– ↑Pembasahan matrik
– ↑ Porositas
• Eksipien tidak larut
– ↓Pembasahan matrik
– ↓Penetrasi medium disolusi
• Ukuran partikel insoluble matrix components
mempengaruhi kec pelepasan
– Partikel besar →struktur matrik lebih terbuka →↗ kec
disolusi
40.
Drug release frominsoluble matrices
a. Obat dlm bentuk larutan dlm matriks → Obat
berdifusi lewat membran dlm bentuk larutan
b. Obat terdispersi padat dlm matriks → setelah
obat terdisolusi maka terdifusi dlm bentuk
larutan
c. Obat dlm bentuk larutan dlm matriks→ difusi
melalui pori matriks (channeling agent)
d. Obat terdispersi padat dlm matriks→ setelah
obat terdisolusi maka difusi terjadi melalui air yg
mengisi pori2 dlm matriks
41.
3.Hydrophilic Colloid matrixsystem
• Obat dicampur dengan water-swellable hyrophilic
polymer
• The system → swelling → gel formation erosion &
dissolution in aqueous media
• Matrik kontak dg air → matrik koloid hidrofilik
mengembang (swelling) → membentuk lapisan yg
bersifat sticky → pengontrol disolusi zat aktif
• Mekanisme pelepasan obat → air masuk ke dalam
sediaan shg melarutkan obat dlm matrik → zat
aktif keluar melalui lapisan koloid hidrofilik
42.
Keuntungan matrik hidrofilik
•Sederhana
• Harga matrik lebih murah
• High drug loading
• Erodible shg secara perlahan2 matrik keluar dari
tubuh
• Mudah diproduksi (cetak langsung, granulasi
basah, roller compaction)
• Profil pelepasan obat dpt mengikuti: zero order,
first order, etc.
43.
Keterbatasan matrik hidrofilik
•Pelepasan obat tergantung pada 2 proses difusi:
penetrasi air melalui hydrated matrix ke dalam
sediaan & difusi obat yg terlarut melalui hydrated
matrix
• Jika lapisan luar matrik mengalami erosi maka
profil pelepasan lebih kompleks
• Problem pada scale-up: konsistensi antar batch
• Untuk zat aktif yang berbeda maka need optimal
rate-controlling polymers
44.
Formulasi Hydrophilic Colloidmatrix
system
• Zat aktif
• Koloid hidrofilik
• Matrix modifier → optional
• Solubilizer and/or pH modifier → optional
• Compression aid
• Lubricant
• Glidant → optional
45.
Koloid hidrofilik
• Matrix-formingagent
• 20-80 % of the mass. Actual amount
– depends on drug & desired release characteristics
• + air → a hydrated gel → sebaiknya tetap
utuh agar dpt mengontrol pelepasan obat
• Contoh: NaCMC, HPMC, alginat, Xanthan gum,
carbopol
46.
Gel modifier
• Untukmemodifikasi karakter difusi lapisan gel
hidrofilik
– Hidrasi koloid hidrofil lebih seragam
– Mempercepat hidrasi koloid hidrofilik
• Misal: gula, polyols, soluble salts
Pelepasan obat dari
matrikkoloid hidrofilik
Matriks dalam medium air
• Air melarutkan obat (water soluble) dipermukaan
untuk dosis awal
• Polimer hidrofilik terhidrasi & membentuk outer
gel layer
• Gel layer berfungsi sbg barrier terhadap masuknya
air dan transfer obat
• Pelepasan obat (soluble) terjadi melalui difusi
melalui lapisan gel
• Pelepasan obat (insoluble) terjadi melalui erosi
49.
B. Membrane-controlled drugdelivery
system
Membrane
• Sebagai pengontrol pelepasan
obat dari sediaan
• Lapisan yg mengendalikan
kecepatan air yg masuk dan
pelepasan obat
• Permeable
– Dpt dilewati air (cairan GI)
– Dpt dilewati oleh obat
• Tidak mengembang
• Tidak mengalami erosi
• Terdapat dipermukaan
sediaan
Drug reservoir
• Tablet atau multiparticulate
pellet yg disalut dg
membran
• Obat sebaiknya tdk berdifusi
dlm bentuk padat,
meskipun membran dpt
dimuati obat utk initial dose
• Air dpt masuk ke sistem →
fase kontinyu → awal difusi
obat & pelepasan
50.
Formula sistem membran
Core(inti)
• Active drug
• Filler or substrate
• (solubilizer)
• Lubricant/glidant
Membran (coating)
• Membran polymer
– Misal : ethyl cellulose, acrylic
copolymers (Eudragit)
• Plasticizer
– Memudahkan pelarutan obat dlm
membran
– Sbg pelentur →↓ kemungkinan
pecahnya membran saat dikempa
– Misal: dibutyl phthalate, citric acid
ester utk ethyl cellulose (10-25%
dari polimer)
• (membrane modifier)
• (colour/opacifier)
51.
1. Single unitsystem (tablet)
• Tablet cetak
• Inti tablet tidak hancur namun dapat
melepaskan obat
• Memungkinkan air dapat berpenetrasi &
melarutkan obat shg terjadi difusi zat aktif
melewati membran
• Bahan pengisi : laktosa, MCC, dektrosa,
sukrosa, polyols (mannitol, sorbitol, xylitol)
• Buffer: surfaktan, polyols, PEG
52.
2. Multiple-unit systems
•Terdapat lebih dari 1 unit individual
– Misal: granul atau pellet yg disalut
• Coated spheroids (pellet dg diameter 1 mm)
• Dimasukkan dalam kapsul keras atau dikempa
dalam bentuk tablet (jarang dilakukan krn bisa
merusak membran)
53.
2. Multiple-unit systems(2)
• Formulasi:
1. Penggunaan pellet yg berisi gula, lalu disalut dg
obat (berada dipermukaan pellet), kemudian
dilapisi membran
2. Formulasi utk small spheroids yg mengandung
obat dengan metode extrusion/spheronization
• Pelepasan obat terjadi dari bagian per bagian
tergantung permeabilitas membran :
– Ketebalan membran
– Jenis material coating
54.
C. Osmotic pumpsystems
• Another form of membrane-controlled release drug
(terdapat hole sebagai pintu keluarnya obat)
• Obat (water soluble) dimasukkan tablet inti
• Tablet inti disalut dengan membran yg bersifat
semipermiable
– Air masuk ke dalam tablet inti melewati membran
– Zat aktif dlm tablet inti terlarut (suspensi/ larutan)
– ↗ tekanan hidrostatik
– Pemompaan larutan obat (atau suspensi) melewati hole
• Kecepatan pelepasan obat ditentukan oleh
– Kecepatan penetrasi air ke dalam tablet inti
– Kecepatan obat keluar melalui hole membran
55.
Formulasi Osmotic pumpsystems
Tablet inti
• Active drug
• Filler
• (viscosity modifier)
• (solubilizer)
• Lubricant/glidant
Coating
• Membran polymer
• Plasticizer
• (membrane modifier)
• (colour/opacifier)
Catatan:
Membran bersifat semipermiable
Harus ada hole dlm membran utk tempat keluarnya obat
Air melarutkan obat dlm tablet inti (jika obat kurang larut maka +
solubilizer)
56.
Delivery systems fortargeting to
specific sites in the gastrointestinal
tract
• Gastric retentive systems
• Colonic delivery systems
57.
Gastric retentive systems
•reduced variability of drug release, local drug
delivery and action
• enhanced bioavailability for those drugs with a
restricted absorption window in the
gastrointestinal tract
58.
Methods to achievegastric retention
• • the addition of passage-delaying agents,
– such as food material, for example triethanolamine myristate, or drugs, for
example propantheline;
• • the use of high-density materials:
– high-density particles (>2.5g/cm3) have prolonged gastric residence times. This
can be achieved by the addition of materials such as barium sulphate
• • modification of the size/shape of delivery system
– by the use of unfolding polymer sheets, swelling hydrogel balloons, or polymer
units that are too large to pass through the pyloric sphincter.
• • bioadhesive systems.
– Systems have been used which will adhere to surfaces such as the mucosa. The
problems when these systems are used for gastrointestinal delivery are that first,
high local concentrations of drug may result, and second, there is a turnover of
mucosa, leading to detachment of the delivery system;
• the use of floating dosage forms.
– These systems resist gastric emptying by floating on the stomach contents. They
should not alter the intrinsic emptying rate of the stomach and their specific
gravity should be less than that of the stomach contents. Systems used are (a)
hydrodynamically balanced systems; (b) carbon dioxide-generating systems; (c)
freeze-dried systems.
59.
Colonic delivery systems
•Applications for these systems include local
delivery for the treatment of inflammatory
diseases, infections, and diarrhoea; and
systemic delivery.
60.
Design principles forthese delivery
systems make use of:
• the specific pH of the colon
– pH-sensitive polymers are used in their
manufacture, e.g. combinations of Eudragit
100-55 (pH 5.5) with Eudragit S (pH 7.0).
– The principle is that drug is released at a specific
pH environment
• small-intestine transit time
– These depend on timed release of the active drug