Math/CE MC Ex.4

                      CE MC Ex.4- Unit 4 Formulae, Polynomials and Algebraic Fractions

Section A

1.   If f (x) = x2 + 1, then f (x–1) =                                            [CE 87]
     A. x2                         B. x2 – 1                   2
                                                          C. x - 2x                D. x2 - 2x + 2.


               1
2.   If f (n) = n(n − 1) , then f (n + 1) – f (n) =                               [CE 90]
               2
     A. f (1)                       B. f (n)               C. 1                    D. n


               ab + 1
3.   If x =           , then b =                                                  [CE 91]
               a−b
          ax − 1                         ax − 1                1 − ax                    1 − ax
     A.                             B.                    C.                      D.
          a+x                            a−x                   a+x                       a−x


                      1                 1
4.   If f (x) = x–      , then f (x)– f   =                                     [CE 91]
                      x                  x
     A. 0                                  2                      1                 1    
                                    B. −                  C. 2 x −              D. 2 − x 
                                           x                      x                  x   

                   1
5.   If a = 1 –        , then b =                                                 [CE 92]
                  1− b
                1                              1                    1                          1
     A. 1 –                         B. 1 −                C. 1 +                  D. − 1 +
               1− a                           1+ a                 1− a                       1+ a


     1 1
6.    + =                                                                         [CE 92]
     a b
          a+b                            1                      2                         1
     A.                             B.                    C.                      D.
           ab                            ab                    a+b                       a+b


              2x − 1
7.   If y =          , then x =                                                   [CE 94]
              x+2
          1 + 3y                         1 + 2y                1 + 2y                    1 − 2y
     A.                             B.                    C.                      D.
             2                            2+ y                  2− y                      2+ y


8.   If f (x) = x2 + 2x, then f (x–1) =                                           [CE 94]
     A. x2                         B. x2 – 1                   2
                                                          C. x + 2x – 1            D. x2 + 4x - 1




                                                      1
Math/CE MC Ex.4

9.   Factorize a2 - 2ab + b2 - a + b.                                                    [CE 94]
     A. (a - b)(a - b -1)                                       C. (a - b)(a + b - 1)
     B. (a - b)(a - b +1)                                       D. (a +b)(a - b +1)


                     x            1
10. If f ( x) =          , then f   f (− x) =                                          [CE 95]
                    1− x          x
              1                                                          1− x                   x
     A. −                            B. –1                      C. −                     D.
              2                                                          1+ x                 1− x2

11. Factorize 2an+1 - 7an - 30an - 1.                                                    [CE 95]
     A. an(a + 6)(2a - 5)                                       C. an-1(a + 6)(2a - 5)
     B. an(a - 6)(2a + 5)                                       D. an-1(a - 6)(2a + 5)


12. If A = 2πr2 + 2πrh, then h =                                                         [CE 96]
    A. A – r                       A                                  A                            A
                                B.                              C.         –r            D. r –
                                          r                          2πr                          2πr

13. Which of the following expressions has/have b - c as a factor?                       [CE 96]
      I.          ab – ac
      II.         a(b – c) – b + c
      III.        a(b – c) – b – c
      A. I only                                                 C. I and III only
      B. I and II only                                          D. I, II and III


14. Find the remainder when x 3 − x 2 + 1 is divided by 2 x + 1 .                        [CE 96]
     A. –11                               5                          7                        9
                                     B.                         C.                       D.
                                          8                          8                        8


          a+x c
15. If        = (c ≠ d ) , then x =                                                      [CE 97]
          b+ x d
             c a                          a −b                       b−a                      ad − bc
     A.       −                      B.                         C.                       D.
             d b                          c−d                        c−d                       c−d


16. If f (x) = 3x2 + bx + 1 and f (x) = f (–x), then f (–3) =                            [CE 97]
     A. –26                          B. 0                       C. 3                     D. 28


           y ( z − 3)
17. If x =            , then z =                                                         [CE 98]
               3z
          3                          −3                               3y                       − 3y
     A.                          B.                             C.                       D.
        3x − y                      3x − y                           3x − y                   3x − y
                                                       2
Math/CE MC Ex.4

18. If ( x + 3) 2 − ( x + 1)( x − 3) ≡ P( x + 1) + Q , find P and Q.                           [CE 98]
     A. P = 2, Q = 4                                              C. P = 4, Q = 8
     B. P = 2, Q = 10                                             D. P = 8, Q = 4

19. Let f ( x) = 2 x 3 − x 2 − 7 x + 6 . It is known that f (−2) = 0 and f (1) = 0 .        [CE 98]
     f (x) can be factorized as
    A. ( x + 1)( x + 2)(2 x − 3)                               C. ( x − 1)( x + 2)(2 x + 3)
    B. ( x + 1)( x − 2)(2 x + 3)                               D. ( x − 1)( x + 2)(2 x − 3)


             1+ b
20. If a =        , then b =                                                                   [CE 99]
             1− b
          a −1                           a −1                          a +1                         a −1
     A.                             B.                            C.                           D.
            2                             2a                           a −1                         a +1


21. If (3x − 1)( x − a ) ≡ 3x 2 + bx − 2 , then                                                [CE 99]
     A. a = 2, b = –1                                             C. a = –2, b = 5
     B. a = 2, b = –7                                             D. a = –2, b = –5

22. Let f ( x) = x 3 − 2 x 2 − 5 x + 6 . It is known that f (1) = 0 .                          [CE 00]
     f (x) can be factorized as
    A. ( x + 1) 2 ( x + 6)                                       C. ( x − 1)( x − 2)( x + 3)
    B. ( x − 1)( x + 1)( x + 6)                                  D. ( x − 1)( x + 2)( x − 3)


23. If 3x 2 + ax + 7 ≡ 3( x − 2) 2 + b , then                                                  [CE 00]
      A. a = –12, b = –5                                          C. a = –4, b = 3
      B. a = –12, b = 7                                           D. a = 0, b = –5

24. Let f ( x) = (2 x − 1)( x + 1) + 2 x + 1 .                                                 [CE 01]
    Find the remainder when f (x) is divided by 2x + 1.
     A. –1                                 1                      C. 0                         D. 1
                                    B. −
                                           2

25. If ( x + 1) 2 + P( x + 1) ≡ x 2 + Q , then                                                 [CE 02]
     A.    P = –2, Q = –1                                         C.   P = 2, Q = –1
     B.    P = –2, Q = 1                                          D.   P = 2, Q = 1




                                                         3
Math/CE MC Ex.4

                                         1
26. If f (x) = 2x2 + kx–1 and f (−2) = f   , then k =        [CE 03]
                                          2
             17
     A. −       .                                             C.    3.
              3
                                                                     31
     B.      –5.                                              D.        .
                                                                     5


27. If f (x) = x3 + 2x2 + k, where k is a constant. If f (–1) = 0, find the remainder when f (x) is divided
    by x–1.                                                                               [CE 03]
     A. –1.                        B.      0.                 C.    2.                        D.      6.


               b −1
28. If a =          , then b =                                                                [CE 03]
               b−2
          2a − 1                        2a − 1                        1                              1
     A.          .                 B.          .              C.         .                    D.        .
           a −1                         a +1                        a −1                           a +1

               y − 2x
29. If x =            , then y =                                                              [CE 04]
                 2y
            2x                           2x                        1 − 2x                          2x − 1
     A.          .                 B.          .              C.          .                   D.          .
          1 − 2x                        2x − 1                       2x                             2x


30. If f (x) = x2 – x + 1, then f (x + 1) – f (x) =                                           [CE 04]
     A. 0.                         B. 2.                      C. 2x.                          D. 4x.


31. If a(2x – x2) + b(2x2 – x) ≡ –5x2 + 4x, then a =                                          [CE 04]
     A. –1.                        B. 1.                      C. –2.                          D. 2.

32. If a = 1 – 2b, then b =                                                                   [CE 04]
          a −1                             a +1                      −1− a                         1− a
     A.        .                   B.           .             C.           .                  D.        .
            2                                2                         2                            2


33. If f (x) = 2x2 – 3x + 4, then f(1) – f(–1) =                                              [CE 05]
     A.      –6.                   B.      –2.                C.    2.                        D. 6.


34. (2x – 3)(x2 + 3x – 2) ≡                                                                   [CE 05]
               3     2                                                   3     2
     A.      2x + 3x + 5x – 6.                                 C.      2x + 3x – 13x – 6.
     B.      2x3 + 3x2 + 5x + 6.                               D.      2x3 + 3x2 – 13x + 6.




                                                       4
Math/CE MC Ex.4

35. If x2 + 2ax + 8 ≡ (x + a)2 + b, then b =                                         [CE 05]
                                                                          2
      A.    8.                                                  C.    a – 8.
      B.    a2 + 8.                                             D.    8 – a2.



Section B


       x−     y
      1−
       x+     y
36.             =                                                                   [CE 90]
       x+     y
    1−
       x−     y
           y−x                          x−y                           x             D. x + y
      A.                           B.                           C.
           x+y                          x+y                           y


37. Let f ( x) = 3 x 3 − 4 x + k . If f ( x) is divisible by x – k,                 [CE 90]
    find the remainder when f ( x) is divisible by x + k.
      A. 2k                                                     C. 0
      B. k                                                      D. –k


      1       1
         +
      x3     y3
38.             =                                                                   [CE 91]
       1     1
         +
       x     y
           1     1                                                    1     2   1
      A.     2
               + 2                                              C.      2
                                                                          −   + 2
           x    y                                                     x     xy y
           1     1   1                                                1     1   1
      B.     2
               +   + 2                                          D.      2
                                                                          −   + 2
           x     xy y                                                 x     xy y


39. If a polynomial f (x) is divisible by x – 1, then f ( x − 1) is divisible by    [CE 92]
      A. x – 2                                                  C. x – 1
      B. x + 2                                                  D. x + 1

40. P(x) is a polynomial. When P(x) is divided by (5 x − 2) , the remainder is R. [CE 94]
    If P (x) is divided by (2 − 5 x) , then the remainder is
      A. R                        B.    –R                            2                  2
                                                                C.      R           D.
                                                                      5                  5




                                                        5
Math/CE MC Ex.4

              y            x
              − 11 −
                              
              x            y
                               
41. Simplify                       .                                                           [CE 95]
                 x y
                  −
                 y x
           x− y                               x− y                    x+ y                            x+ y
     A.                                B. –                      C.                            D. –
           x+ y                               x+ y                    x− y                            x− y


             2    a    b
42. If         ≡    +     , find a and b.                                                      [CE 96]
           x −1 x +1 x −1
            2


     A. a = 2, b = 1                                             C. a = 1, b = –1
     B. a = 1, b = 2                                             D. a = –1, b = 1


43. m and n are multiples of 3 and 4 respectively.                                             [CE 96]
    Which of the following must be true?
      I. mn is a multiple of 12.
          II. The H.C.F. of m and n is even.
          III. The L.C.M. of m and n is even.
     A. I only                                                   C. I and III only
     B. I and II only                                            D. II and III only


44. If 2 x 2 + x + m is divisible by x – 2, then it is also divisible by                       [CE 97]
     A. x + 3                                                    C. 2x + 3
     B. 2x – 3                                                   D. 2x + 5

45. It is given that F ( x) = x 3 − 4 x 2 + ax + b . F(x) is divisible by x – 1.               [CE 99]
     When it is divided by x + 1, the remainder is 12. Find a and b.
     A. a = 5, b = 10                                            C. a = –4, b = 7
     B. a = 1, b = 2                                             D. a = –7, b = 10

46. Let f ( x) = x 3 + 2 x 2 + ax + b . If f (x) is divisible by x + 1 and x – 2,              [CE 01]
     f (x) can be factorized as
     A. ( x − 1)( x + 1)( x − 2)                                 C. ( x − 3)( x + 1)( x − 2)
     B. ( x + 1) ( x − 2)
                   2
                                                                 D. ( x + 3)( x + 1)( x − 2)


            2x
47. 1 −          =                                                                             [CE 02]
              1
           x−
               x
            x−3                           x2 − 3                     x2 + 1                         x2 + 1
      A.                               B. 2                       C. 2                          D. − 2
            x −1                          x −1                       x −1                           x −1
                                                         6
Math/CE MC Ex.4

48. The remainder when x 2 + ax + b is divided by x + 2 is –4.                                [CE 02]
    The remainder when ax 2 + bx + 1 is divided by x – 2 is 9. The value of a is
     A. –3                                B. –1                 C. 1                            D. 3


            27
49. x 3 −      =                                                                          [CE 03]
            x3
            3                  9                                   3             9 
     A.  x +  x 2 − 6 +           .                         C.  x −  x 2 + 6 +      .
            x                  x2                                  x             x2 
            3              9                                       3             9 
     B.  x +  x 2 − 3 +       .                             D.  x −  x 2 + 3 +      .
            x              x2                                      x             x2 


     3 2
       −
      x y
50.        =                                                                              [CE 04]
    4x 9 y
       −
     y   x
               1                                                           −1
     A.             .                                              C.            .
            2x − 3y                                                      2x − 3y
               1                                                           −1
     B.             .                                              D.            .
            2x + 3y                                                      2x + 3y


51. If f (x) = x3 – 7x + 6 is divisible by x2 – 3x + k, then k =                          [CE 04]
     A.     – 2.                                                   C.    –3.
     B.     2                                                      D.    3.

52. Let k be a positive integer. When x2k + 1 + kx + k is divided by x + 1, the remainder is [CE 05]
     A.     –1.                                                    C.    2k – 1.
     B.     1.                                                     D.    2k + 1.

Answers:
1. D                    12.   C                   23.   A          34.   D              45.   D
2. D                    13.   B                   24.   A          35.   D              46.   D
3. A                    14.   B                   25.   A          36.   A              47.   D
4. C                    15.   D                   26.   C          37.   A              48.   D
5. A                    16.   D                   27.   C          38.   D              49.   D
6. A                    17.   D                   28.   A          39.   A              50.   D
7. C                    18.   D                   29.   A          40.   A              51.   B
8. B                    19.   D                   30.   C          41.   A              52.   A
9. A                    20.   D                   31.   B          42.   D
10. D                   21.   C                   32.   D          43.   C
11. D                   22.   D                   33.   A          44.   D

                                                            7   ~ End of Unit 4 MC ~

Mc Ex[1].4 Unit 4 Formulae, Polynomials And Algebraic Fractions

  • 1.
    Math/CE MC Ex.4 CE MC Ex.4- Unit 4 Formulae, Polynomials and Algebraic Fractions Section A 1. If f (x) = x2 + 1, then f (x–1) = [CE 87] A. x2 B. x2 – 1 2 C. x - 2x D. x2 - 2x + 2. 1 2. If f (n) = n(n − 1) , then f (n + 1) – f (n) = [CE 90] 2 A. f (1) B. f (n) C. 1 D. n ab + 1 3. If x = , then b = [CE 91] a−b ax − 1 ax − 1 1 − ax 1 − ax A. B. C. D. a+x a−x a+x a−x 1 1 4. If f (x) = x– , then f (x)– f   = [CE 91] x  x A. 0 2  1 1  B. − C. 2 x −  D. 2 − x  x  x  x  1 5. If a = 1 – , then b = [CE 92] 1− b 1 1 1 1 A. 1 – B. 1 − C. 1 + D. − 1 + 1− a 1+ a 1− a 1+ a 1 1 6. + = [CE 92] a b a+b 1 2 1 A. B. C. D. ab ab a+b a+b 2x − 1 7. If y = , then x = [CE 94] x+2 1 + 3y 1 + 2y 1 + 2y 1 − 2y A. B. C. D. 2 2+ y 2− y 2+ y 8. If f (x) = x2 + 2x, then f (x–1) = [CE 94] A. x2 B. x2 – 1 2 C. x + 2x – 1 D. x2 + 4x - 1 1
  • 2.
    Math/CE MC Ex.4 9. Factorize a2 - 2ab + b2 - a + b. [CE 94] A. (a - b)(a - b -1) C. (a - b)(a + b - 1) B. (a - b)(a - b +1) D. (a +b)(a - b +1) x 1 10. If f ( x) = , then f   f (− x) = [CE 95] 1− x x 1 1− x x A. − B. –1 C. − D. 2 1+ x 1− x2 11. Factorize 2an+1 - 7an - 30an - 1. [CE 95] A. an(a + 6)(2a - 5) C. an-1(a + 6)(2a - 5) B. an(a - 6)(2a + 5) D. an-1(a - 6)(2a + 5) 12. If A = 2πr2 + 2πrh, then h = [CE 96] A. A – r A A A B. C. –r D. r – r 2πr 2πr 13. Which of the following expressions has/have b - c as a factor? [CE 96] I. ab – ac II. a(b – c) – b + c III. a(b – c) – b – c A. I only C. I and III only B. I and II only D. I, II and III 14. Find the remainder when x 3 − x 2 + 1 is divided by 2 x + 1 . [CE 96] A. –11 5 7 9 B. C. D. 8 8 8 a+x c 15. If = (c ≠ d ) , then x = [CE 97] b+ x d c a a −b b−a ad − bc A. − B. C. D. d b c−d c−d c−d 16. If f (x) = 3x2 + bx + 1 and f (x) = f (–x), then f (–3) = [CE 97] A. –26 B. 0 C. 3 D. 28 y ( z − 3) 17. If x = , then z = [CE 98] 3z 3 −3 3y − 3y A. B. C. D. 3x − y 3x − y 3x − y 3x − y 2
  • 3.
    Math/CE MC Ex.4 18.If ( x + 3) 2 − ( x + 1)( x − 3) ≡ P( x + 1) + Q , find P and Q. [CE 98] A. P = 2, Q = 4 C. P = 4, Q = 8 B. P = 2, Q = 10 D. P = 8, Q = 4 19. Let f ( x) = 2 x 3 − x 2 − 7 x + 6 . It is known that f (−2) = 0 and f (1) = 0 . [CE 98] f (x) can be factorized as A. ( x + 1)( x + 2)(2 x − 3) C. ( x − 1)( x + 2)(2 x + 3) B. ( x + 1)( x − 2)(2 x + 3) D. ( x − 1)( x + 2)(2 x − 3) 1+ b 20. If a = , then b = [CE 99] 1− b a −1 a −1 a +1 a −1 A. B. C. D. 2 2a a −1 a +1 21. If (3x − 1)( x − a ) ≡ 3x 2 + bx − 2 , then [CE 99] A. a = 2, b = –1 C. a = –2, b = 5 B. a = 2, b = –7 D. a = –2, b = –5 22. Let f ( x) = x 3 − 2 x 2 − 5 x + 6 . It is known that f (1) = 0 . [CE 00] f (x) can be factorized as A. ( x + 1) 2 ( x + 6) C. ( x − 1)( x − 2)( x + 3) B. ( x − 1)( x + 1)( x + 6) D. ( x − 1)( x + 2)( x − 3) 23. If 3x 2 + ax + 7 ≡ 3( x − 2) 2 + b , then [CE 00] A. a = –12, b = –5 C. a = –4, b = 3 B. a = –12, b = 7 D. a = 0, b = –5 24. Let f ( x) = (2 x − 1)( x + 1) + 2 x + 1 . [CE 01] Find the remainder when f (x) is divided by 2x + 1. A. –1 1 C. 0 D. 1 B. − 2 25. If ( x + 1) 2 + P( x + 1) ≡ x 2 + Q , then [CE 02] A. P = –2, Q = –1 C. P = 2, Q = –1 B. P = –2, Q = 1 D. P = 2, Q = 1 3
  • 4.
    Math/CE MC Ex.4 1 26. If f (x) = 2x2 + kx–1 and f (−2) = f   , then k = [CE 03]  2 17 A. − . C. 3. 3 31 B. –5. D. . 5 27. If f (x) = x3 + 2x2 + k, where k is a constant. If f (–1) = 0, find the remainder when f (x) is divided by x–1. [CE 03] A. –1. B. 0. C. 2. D. 6. b −1 28. If a = , then b = [CE 03] b−2 2a − 1 2a − 1 1 1 A. . B. . C. . D. . a −1 a +1 a −1 a +1 y − 2x 29. If x = , then y = [CE 04] 2y 2x 2x 1 − 2x 2x − 1 A. . B. . C. . D. . 1 − 2x 2x − 1 2x 2x 30. If f (x) = x2 – x + 1, then f (x + 1) – f (x) = [CE 04] A. 0. B. 2. C. 2x. D. 4x. 31. If a(2x – x2) + b(2x2 – x) ≡ –5x2 + 4x, then a = [CE 04] A. –1. B. 1. C. –2. D. 2. 32. If a = 1 – 2b, then b = [CE 04] a −1 a +1 −1− a 1− a A. . B. . C. . D. . 2 2 2 2 33. If f (x) = 2x2 – 3x + 4, then f(1) – f(–1) = [CE 05] A. –6. B. –2. C. 2. D. 6. 34. (2x – 3)(x2 + 3x – 2) ≡ [CE 05] 3 2 3 2 A. 2x + 3x + 5x – 6. C. 2x + 3x – 13x – 6. B. 2x3 + 3x2 + 5x + 6. D. 2x3 + 3x2 – 13x + 6. 4
  • 5.
    Math/CE MC Ex.4 35.If x2 + 2ax + 8 ≡ (x + a)2 + b, then b = [CE 05] 2 A. 8. C. a – 8. B. a2 + 8. D. 8 – a2. Section B x− y 1− x+ y 36. = [CE 90] x+ y 1− x− y y−x x−y x D. x + y A. B. C. x+y x+y y 37. Let f ( x) = 3 x 3 − 4 x + k . If f ( x) is divisible by x – k, [CE 90] find the remainder when f ( x) is divisible by x + k. A. 2k C. 0 B. k D. –k 1 1 + x3 y3 38. = [CE 91] 1 1 + x y 1 1 1 2 1 A. 2 + 2 C. 2 − + 2 x y x xy y 1 1 1 1 1 1 B. 2 + + 2 D. 2 − + 2 x xy y x xy y 39. If a polynomial f (x) is divisible by x – 1, then f ( x − 1) is divisible by [CE 92] A. x – 2 C. x – 1 B. x + 2 D. x + 1 40. P(x) is a polynomial. When P(x) is divided by (5 x − 2) , the remainder is R. [CE 94] If P (x) is divided by (2 − 5 x) , then the remainder is A. R B. –R 2 2 C. R D. 5 5 5
  • 6.
    Math/CE MC Ex.4  y  x  − 11 −    x  y  41. Simplify . [CE 95] x y − y x x− y x− y x+ y x+ y A. B. – C. D. – x+ y x+ y x− y x− y 2 a b 42. If ≡ + , find a and b. [CE 96] x −1 x +1 x −1 2 A. a = 2, b = 1 C. a = 1, b = –1 B. a = 1, b = 2 D. a = –1, b = 1 43. m and n are multiples of 3 and 4 respectively. [CE 96] Which of the following must be true? I. mn is a multiple of 12. II. The H.C.F. of m and n is even. III. The L.C.M. of m and n is even. A. I only C. I and III only B. I and II only D. II and III only 44. If 2 x 2 + x + m is divisible by x – 2, then it is also divisible by [CE 97] A. x + 3 C. 2x + 3 B. 2x – 3 D. 2x + 5 45. It is given that F ( x) = x 3 − 4 x 2 + ax + b . F(x) is divisible by x – 1. [CE 99] When it is divided by x + 1, the remainder is 12. Find a and b. A. a = 5, b = 10 C. a = –4, b = 7 B. a = 1, b = 2 D. a = –7, b = 10 46. Let f ( x) = x 3 + 2 x 2 + ax + b . If f (x) is divisible by x + 1 and x – 2, [CE 01] f (x) can be factorized as A. ( x − 1)( x + 1)( x − 2) C. ( x − 3)( x + 1)( x − 2) B. ( x + 1) ( x − 2) 2 D. ( x + 3)( x + 1)( x − 2) 2x 47. 1 − = [CE 02] 1 x− x x−3 x2 − 3 x2 + 1 x2 + 1 A. B. 2 C. 2 D. − 2 x −1 x −1 x −1 x −1 6
  • 7.
    Math/CE MC Ex.4 48.The remainder when x 2 + ax + b is divided by x + 2 is –4. [CE 02] The remainder when ax 2 + bx + 1 is divided by x – 2 is 9. The value of a is A. –3 B. –1 C. 1 D. 3 27 49. x 3 − = [CE 03] x3  3  9   3  9  A.  x +  x 2 − 6 + . C.  x −  x 2 + 6 + .  x  x2   x  x2   3  9   3  9  B.  x +  x 2 − 3 + . D.  x −  x 2 + 3 + .  x  x2   x  x2  3 2 − x y 50. = [CE 04] 4x 9 y − y x 1 −1 A. . C. . 2x − 3y 2x − 3y 1 −1 B. . D. . 2x + 3y 2x + 3y 51. If f (x) = x3 – 7x + 6 is divisible by x2 – 3x + k, then k = [CE 04] A. – 2. C. –3. B. 2 D. 3. 52. Let k be a positive integer. When x2k + 1 + kx + k is divided by x + 1, the remainder is [CE 05] A. –1. C. 2k – 1. B. 1. D. 2k + 1. Answers: 1. D 12. C 23. A 34. D 45. D 2. D 13. B 24. A 35. D 46. D 3. A 14. B 25. A 36. A 47. D 4. C 15. D 26. C 37. A 48. D 5. A 16. D 27. C 38. D 49. D 6. A 17. D 28. A 39. A 50. D 7. C 18. D 29. A 40. A 51. B 8. B 19. D 30. C 41. A 52. A 9. A 20. D 31. B 42. D 10. D 21. C 32. D 43. C 11. D 22. D 33. A 44. D 7 ~ End of Unit 4 MC ~