SlideShare a Scribd company logo
1 of 1
Download to read offline
Examining the expression of potential cell cycle regulators in the developing
mouse inner ear
Maryam Ebrahimi1, Gillian L. Drury2, Giselle Boukhaled2, Melissa A. Vollrath1, 2
1 Department of Neurology and Neurosurgery and 2 Department of Physiology, McGill University, Montreal, Quebec, Canada!
ABSTRACT!
RESULTS!
RT-­‐PCR	
  confirmed	
  the	
  expression	
  of	
  10	
  candidate	
  genes	
  in	
  mouse	
  utricle	
  at	
  postnatal	
  day	
  7	
  	
  
BACKGROUND!
	
   Nega&ve	
   cell-­‐cycle	
   regulators	
   with	
   ongoing	
   expression	
   in	
   suppor&ng	
   cells	
   prevent	
  
them	
  from	
  dividing	
  and	
  differen&a&ng	
  into	
  hair	
  cells	
  	
  
HYPOTHESIS !
APPROACH!
DISCUSSION AND FUTURE DIRECTIONS!
 Analyzing	
  SHIELD	
  data	
  	
  
Selected	
  10	
  candidate	
  cell-­‐cycle	
  genes	
  with	
  high	
  and	
  persistent	
  expression	
  in	
  utricle	
  
suppor&ng	
  cells	
  at	
  embryonic	
  day	
  16	
  and	
  postnatal	
  days	
  4,7,16	
  
 Confirma&on	
  of	
  SHIELD	
  data	
  by	
  RT-­‐PCR	
  
To	
  date	
  we	
  have	
  confirmed	
  expression	
  of	
  10	
  of	
  these	
  genes	
  
 Localiza&on	
  of	
  candidate	
  genes	
  by	
  in	
  situ	
  hybridiza&on	
  
Here	
  we	
  show	
  RNA	
  localiza&on	
  for	
  genes	
  Cav2,	
  Frk,	
  AnnexA1	
  and	
  Igf-­‐1	
  at	
  embryonic	
  days	
  
13.5,15.5,18.5	
  
In	
  situ	
  hybridizaAon	
  method:	
  	
  
	
  	
  Gene-­‐specific	
  RNA	
  probes	
  labeled	
  using	
  Digoxygenin.	
  	
  
	
  	
  Embryos	
  fixed	
  at	
  different	
  embryonic	
  &me	
  points	
  and	
  frozen	
  in	
  OCT.	
  	
  
	
  	
  16-­‐um	
  sec&ons	
  cut	
  on	
  cryostat.	
  	
  
	
  	
  Candidate	
  gene	
  probes	
  are	
  hybridized	
  to	
  inner	
  ear	
  sec&ons.	
  
	
  	
  Control	
  probes	
  (Atoh1)	
  are	
  hybridized	
  to	
  adjacent	
  sec&ons	
  to	
  visualize	
  hair	
  cell	
  layer.	
  	
  
	
  	
  A[er	
  color	
  development,	
  slides	
  are	
  cover-­‐slipped	
  and	
  visualized	
  under	
  the	
  microscope.	
  
REFERENCES!
Cav2,	
   Frk,	
   AnnexA1	
   and	
   Igf-­‐1	
   are	
   expressed	
   in	
   the	
   inner	
   ear	
   of	
   mice	
   at	
  
embryonic	
  days	
  
Our	
  primary	
  analysis	
  using	
  SHIELD	
  led	
  us	
  to	
  select	
  genes	
  with	
  higher	
  and	
  more	
  
persistent	
   expression	
   in	
   utricular	
   SCs	
   than	
   HCs	
   at	
   postnatal	
   days.	
   Our	
   RT-­‐PCR	
  
results	
  also	
  confirmed	
  the	
  expression	
  of	
  these	
  genes	
  in	
  utricle	
  at	
  postnatal	
  day	
  
7.	
  Our	
  in	
  situ	
  hybridiza&on,	
  from	
  different	
  embryonic	
  &me	
  points	
  localized	
  the	
  
expression	
  of	
  four	
  selected	
  genes	
  more	
  spread	
  in	
  hair	
  cell	
  layer,	
  as	
  compared	
  
with	
  posi&ve	
  control	
  probe(Atoh1).	
  
Next	
  Step	
  
We	
  will	
  use	
  the	
  specific	
  probes	
  for	
  Sox	
  9	
  and	
  P27kip
	
  which	
  have	
  been	
  shown	
  to	
  
be	
  expressed	
  in	
  utricular	
  SCs	
  at	
  embryonic	
  ages	
  7,8
.	
  Using	
  these	
  controls,	
  we	
  can	
  
visualize	
  to	
  what	
  extend	
  our	
  selected	
  genes	
  are	
  expressed	
  in	
  these	
  two	
  cells.	
  	
  
To	
  inves&gate	
  the	
  func&on	
  of	
  the	
  candidate	
  cell-­‐cycle	
  regulator	
  genes	
  we	
  will	
  
knockdown	
  gene	
  expression	
  in	
  cultured	
  mouse	
  utricles	
  using	
  siRNA	
  and	
  assay	
  
for	
  cell	
  prolifera&on.	
  Reentry	
  into	
  the	
  cell	
  cycle	
  will	
  be	
  measured	
  by	
  BrdU	
  uptake	
  
(a	
  standard	
  assay	
  for	
  measuring	
  cell	
  division).	
  	
  
Future	
  direcAons	
  
This	
   experimental	
   approach	
   will	
   allow	
   us	
   to	
   test	
   these	
   and	
   other	
   candidate	
  
nega&ve	
  cell-­‐cycle	
  regulators	
  for	
  their	
  ability	
  to	
  produce	
  hair	
  cell	
  prolifera&on.	
  In	
  
the	
   long	
   term	
   this	
   may	
   iden&fy	
   target	
   genes	
   for	
   developing	
   therapeu&c	
  
strategies	
  for	
  the	
  treatment	
  of	
  hearing	
  loss.	
  	
  	
  
Igf-­‐1	
   and	
   AnnexA1	
   associate	
   with	
   cell	
   prolifera&on	
   of	
   CNS	
   and	
   PNS	
   in	
   different	
  
developmental	
   &me	
   point.5,7	
   Igf-­‐1	
   maintains	
   cell	
   prolifera&on	
   of	
   O&c	
   Vesicle	
   during	
  
development.8	
  AnnexA1	
  Is	
  secreted	
  from	
  cochlear	
  suppor&ng	
  cells	
  a[er	
  hair	
  cell	
  loss.9	
  
AnnexA1	
  associates	
  with	
  Cyclin	
  D	
  to	
  control	
  cell	
  cycle	
  progress	
  in	
  different	
  cell	
  lines.6	
  
1.Groves	
  A.K.	
  The	
  challenge	
  of	
  hair	
  cell	
  regenera&on.	
  Exp	
  Biol	
  Med.	
  2010;	
  235:	
  434-­‐446	
  
2.Lowenheim	
  H,	
  Furness	
  DN,	
  Kil	
  J,	
  Zinn	
  C,	
  Gol&g	
  K,	
  Fero	
  ML,	
  et	
  al.	
  Gene	
  disrup&on	
  of	
  p27Kip1	
  allows	
  cell	
  	
  prolifera&on	
  in	
  the	
  postnatal	
  and	
  
adult	
  organ	
  of	
  Cor&.	
  Proceedings	
  of	
  the	
  Na&onal	
  Academy	
  of	
  Sciences.	
  1999	
  March	
  30,	
  1999;96(7):4084-­‐8.	
  
3.	
  Sage	
  C,	
  Huang	
  M,	
  Karimi	
  K,	
  Gu&errez	
  G,	
  Vollrath	
  MA,	
  Zhang	
  D-­‐S,	
  et	
  al.	
  Prolifera&on	
  of	
  Func&onal	
  Hair	
  Cells	
  in	
  Vivo	
  in	
  the	
  Absence	
  of	
  the	
  
Re&noblastoma	
  Protein.	
  Science.	
  2005	
  February	
  18,	
  2005;307(5712):1114-­‐8.	
  
4.Xie	
  L,	
  Frank	
  PG,	
  Lisan&	
  MP,	
  Sowa	
  G.	
  Endothelial	
  cells	
  isolated	
  from	
  caveolin-­‐2	
  knockout	
  mice	
  display	
  higher	
  prolifera&on	
  rate	
  and	
  cell	
  
cycle	
  progression	
  rela&ve	
  to	
  their	
  wild-­‐type	
  counterparts.	
  2010;	
  298:	
  C693-­‐701	
  
5.Alldrige	
   LC,	
   Bryant	
   CE.	
   Annexin	
   1	
   regulates	
   cell	
   prolifera&on	
   by	
   disrup&on	
   of	
   cell	
   morphology	
   and	
   inhibi&on	
   of	
   cyclin	
   D1	
   expression	
  
through	
  sustained	
  ac&va&on	
  of	
  the	
  ERK1/2	
  MAPK	
  signal.	
  Experimental	
  cell	
  research.	
  2003;290:	
  93-­‐107.	
  
6.Mak	
  ACY,	
  Szeto	
  IYY,	
  Fritzsch	
  B,	
  Cheah	
  KSE.	
  Differen&al	
  and	
  overlapping	
  expression	
  of	
  SOX2	
  and	
  SOX9	
  in	
  inner	
  ear	
  development.	
  Gene	
  Expr	
  
Pajerns.2009;9(6):444-­‐453.	
  
7.Varela-­‐Nieto	
  I,	
  Morales-­‐Garcia	
  JA,	
  Vigil	
  P,	
  Diaz-­‐Casares	
  A,	
  Gorospe	
  I,	
  Sanchez-­‐Galiano	
  S,	
  Canon	
  S,	
  Camarero	
  G,	
  Contreras	
  J,	
  Cediel	
  R,	
  Leon	
  
Y.	
  Trophic	
  effects	
  of	
  insulin-­‐like	
  growth	
  factor-­‐I	
  in	
  the	
  inner	
  ear.	
  Hearing	
  research.2004;196:	
  19-­‐25.	
  	
  
8.	
  Leon	
  Y,	
  Vazquez	
  CS,	
  Vega	
  JA,	
  Mato	
  JM,	
  Giraldez	
  F,	
  Represa	
  J,	
  Varela-­‐Nieto	
  I.	
  Insulin-­‐Like	
  growth	
  factor_I	
  regulates	
  cell	
  prolifera&on	
  in	
  the	
  
developing	
  Inner	
  ear.	
  Endocrinology.	
  1995;136(8):	
  3494-­‐3503	
  .	
  
9.	
   Kalinec	
   F,	
   Webster	
   P,	
   Maricle	
   A,	
   Guerrero	
   D,	
   Chakravar&	
   DN,	
   Chakravar&	
   B,	
   Gellibolian	
   R,	
   Kalinec	
   G.	
   Glucocor&coid-­‐s&mulated,	
  
transcrip&on-­‐independent	
  release	
  of	
  Annexin	
  A1	
  by	
  Cochlear	
  Hensen	
  cells.	
  Bri&sh	
  Journal	
  of	
  Phramacology.2009;	
  158:	
  1820-­‐1834.	
  	
  
10.	
  Yim	
  EK,	
  Siwko	
  S,	
  Lin	
  SY.	
  Exploring	
  Rak	
  tyrosine	
  kinase	
  func&on	
  in	
  breast	
  cancer.	
  Cell	
  cycle.2009;8:	
  2360-­‐2364.	
  
NegaAve	
  regulators	
  of	
  cell	
  cycle	
  prevent	
  supporAng	
  cell	
  division	
  	
  	
  	
  	
  	
  
In	
   the	
   development	
   of	
   the	
  
mammalian	
  inner	
  ear,	
  progenitor	
  
cells	
   exit	
   the	
   cell	
   cycle	
   around	
  
embryonic	
   day	
   13	
   and	
  
differen&ate	
   into	
   hair	
   cells	
   and	
  
suppor&ng	
   cells.	
   Both	
   cell	
   types	
  
remain	
  quiescent	
  a[er	
  birth.	
  The	
  
persistent	
   	
   expression	
   of	
  
nega&ve	
  cell-­‐cycle	
  regulators	
   	
  is	
  
thought	
  	
  	
  
to	
  be	
  responsible	
  for	
  the	
  inability	
  of	
  inner	
  ear	
  suppor&ng	
  cells	
  to	
  proliferate	
  a[er	
  
hair	
  cell	
  death.	
   	
  Knocking	
  out	
  cell-­‐cycle	
  inhibitors	
  such	
  as	
  Re&noblastoma	
  (Rb)	
  
and	
   P27kip1	
   lead	
   to	
   hair	
   cell	
   prolifera&on	
   indica&ng	
   that	
   these	
   genes	
   ac&vely	
  
prevent	
  suppor&ng	
  cell	
  differen&a&on.	
  	
  	
  	
  	
  
Atoh1	
  	
  
(HC	
  control)	
  	
  
In	
  situ	
  hybridizaAon	
  shows	
  Atoh1	
  and	
  Cav2	
  expression	
  in	
  utricular	
  HCs	
  at:	
  
Frk	
  
Sensory epithelia of the mammalian inner ear are composed of hair cells and supporting
cells. These cells originate from common precursors, which exit the cell cycle during late
embryogenesis. Thereafter, hair cells and supporting cells maintain a non-proliferative state.
As a result, hair cell loss in mammals is irreversible. If inner ear organs are to be
regenerated, supporting cells must reenter the cell cycle to produce new hair cells and
supporting cells.
Little is known about genes that maintain the post-mitotic state of inner ear supporting cells.
Previous studies revealed the role of cell cycle inhibitors such as p27kip in regulating the
post-mitotic fate of differentiated supporting cells (Lowenheim et al., 1999).
The purpose of our study was to identify other potential regulators of cell cycle in supporting
cells and determine their expression at different ages. We used the Shared Harvard Inner-
Ear Laboratory data base (SHIELD; shield.hms.harvard.edu) to select 15 candidate genes
following these criteria: 1) an established role in cell cycle regulation in other cell types, 2)
maintained postnatal expression in mouse utricular supporting cells, and 3) not previously
studied in the mouse inner ear.
We used RT-PCR and in situ hybridization to determine the expression of these candidate
genes in inner ear sensory epithelia. Our RT-PCR results, from mouse utricles at postnatal
day 7, (which contained hair cells, supporting cells, and non-sensory cells) confirmed the
expression of all candidate genes. Our in situ hybridization results, which came from mice
between embryonic days 13.5 and 18.5, were mixed. In some cases expression was seen
mainly in supporting cells, as expected based on the SHIELD data and in other cases in hair
cells or non-sensory cells. Further studies are required to test whether these genes play a
role in regulating cell cycle in the mouse developing inner ear. 	
  
In	
  situ	
  hybridizaAon	
  shows	
  Frk,	
  AnnexA1	
  and	
  Igf-­‐1	
  expression	
  in	
  utricular	
  HCs	
  at:	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E13.5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E15.5	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E18.5	
  
Otolithic membrane
Hair cells
Supporting cells
Nerve fiber
AnnexA1	
  	
  
Igf-­‐1	
  
Cav2,	
  Frk,	
  AnnexA1	
  and	
  Igf-­‐I	
  regulate	
  cell	
  proliferaAon	
  during	
  development	
  
Frk	
  is	
  a	
  nucleated	
  tyrosine	
  kinas	
  with	
  regulatory	
  role	
  in	
  mammalian	
  epithelial	
  tumor	
  
cells.	
  10	
  Cave	
  is	
  a	
  member	
  of	
  Caveolae	
  proteins	
  which	
  func&on	
  in	
  lipid	
  ra[.	
  Isolated	
  
endothelial	
   cells	
   from	
   Cav2	
   null	
   mouse	
   lung	
   have	
   shown	
   higher	
   rate	
   of	
   cell	
  
prolifera&on	
  when	
  compared	
  with	
  their	
  normal	
  counterparts.4	
  
These	
  genes	
  have	
  not	
  been	
  previously	
  studied	
  in	
  mouse	
  developing	
  utricle	
  
E13.5 E15.5	
   E18.5	
  
Cav2	
  
Inner	
  ear	
  development	
  in	
  the	
  mouse	
  
100uM

More Related Content

What's hot

Poster-Kelly Berger
Poster-Kelly BergerPoster-Kelly Berger
Poster-Kelly BergerKelly Berger
 
what is Epigenetics and It's Functionality
what is Epigenetics and It's Functionalitywhat is Epigenetics and It's Functionality
what is Epigenetics and It's FunctionalityKashafnaz2
 
Olson_PCSGA2014
Olson_PCSGA2014Olson_PCSGA2014
Olson_PCSGA2014chellis6
 
Genetic engineering2
Genetic engineering2Genetic engineering2
Genetic engineering2scoville
 
Genomic imprinting
Genomic imprintingGenomic imprinting
Genomic imprintingRAJANSAH12
 
Designer Baby talk 10-9-13
Designer Baby talk 10-9-13Designer Baby talk 10-9-13
Designer Baby talk 10-9-13Nikhil B
 
Isolation of an adult blood derived progenitor cell population capable of dif...
Isolation of an adult blood derived progenitor cell population capable of dif...Isolation of an adult blood derived progenitor cell population capable of dif...
Isolation of an adult blood derived progenitor cell population capable of dif...lifextechnologies
 
Gavrilov chicago
Gavrilov chicagoGavrilov chicago
Gavrilov chicagojmrpdc
 
2015 BioMedTracker Pre-ASH Report
2015 BioMedTracker Pre-ASH Report2015 BioMedTracker Pre-ASH Report
2015 BioMedTracker Pre-ASH ReportYujia Sun
 
Epigenetic modifications of proteins
Epigenetic modifications of proteinsEpigenetic modifications of proteins
Epigenetic modifications of proteinsAkshay More
 
Nicole colonfall2012researchproposalv4 final
Nicole colonfall2012researchproposalv4 finalNicole colonfall2012researchproposalv4 final
Nicole colonfall2012researchproposalv4 finalNicole Colon
 
Little changes make a big difference case study
Little changes make a big difference case studyLittle changes make a big difference case study
Little changes make a big difference case studyNadine Abraham
 

What's hot (20)

Genetics Research
Genetics ResearchGenetics Research
Genetics Research
 
Poster-Kelly Berger
Poster-Kelly BergerPoster-Kelly Berger
Poster-Kelly Berger
 
what is Epigenetics and It's Functionality
what is Epigenetics and It's Functionalitywhat is Epigenetics and It's Functionality
what is Epigenetics and It's Functionality
 
Epigenetics
EpigeneticsEpigenetics
Epigenetics
 
Autism Ppt1
Autism Ppt1Autism Ppt1
Autism Ppt1
 
Olson_PCSGA2014
Olson_PCSGA2014Olson_PCSGA2014
Olson_PCSGA2014
 
Genetics project
Genetics projectGenetics project
Genetics project
 
Genetic engineering2
Genetic engineering2Genetic engineering2
Genetic engineering2
 
Genomic imprinting
Genomic imprintingGenomic imprinting
Genomic imprinting
 
Organ cloning
Organ cloningOrgan cloning
Organ cloning
 
Designer Baby talk 10-9-13
Designer Baby talk 10-9-13Designer Baby talk 10-9-13
Designer Baby talk 10-9-13
 
Epigenetics & Gene Control
Epigenetics & Gene ControlEpigenetics & Gene Control
Epigenetics & Gene Control
 
Isolation of an adult blood derived progenitor cell population capable of dif...
Isolation of an adult blood derived progenitor cell population capable of dif...Isolation of an adult blood derived progenitor cell population capable of dif...
Isolation of an adult blood derived progenitor cell population capable of dif...
 
Gavrilov chicago
Gavrilov chicagoGavrilov chicago
Gavrilov chicago
 
2015 BioMedTracker Pre-ASH Report
2015 BioMedTracker Pre-ASH Report2015 BioMedTracker Pre-ASH Report
2015 BioMedTracker Pre-ASH Report
 
Epigenetic modifications of proteins
Epigenetic modifications of proteinsEpigenetic modifications of proteins
Epigenetic modifications of proteins
 
Nicole colonfall2012researchproposalv4 final
Nicole colonfall2012researchproposalv4 finalNicole colonfall2012researchproposalv4 final
Nicole colonfall2012researchproposalv4 final
 
Animal Epigenetics
Animal Epigenetics Animal Epigenetics
Animal Epigenetics
 
Tang2002MD
Tang2002MDTang2002MD
Tang2002MD
 
Little changes make a big difference case study
Little changes make a big difference case studyLittle changes make a big difference case study
Little changes make a big difference case study
 

Viewers also liked

Factors Predicting Health Insurance Satisfaction
Factors Predicting Health Insurance SatisfactionFactors Predicting Health Insurance Satisfaction
Factors Predicting Health Insurance SatisfactionElisa Lenssen
 
BI merkestrategi og design forelesn 2014
BI merkestrategi og design forelesn 2014BI merkestrategi og design forelesn 2014
BI merkestrategi og design forelesn 2014Name Design
 
TRABAJO DE GERENCIA YENNY SHEYFFER
TRABAJO DE GERENCIA YENNY SHEYFFERTRABAJO DE GERENCIA YENNY SHEYFFER
TRABAJO DE GERENCIA YENNY SHEYFFERyennynoyita
 
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...Rondoniadinamica Jornal Eletrônico
 

Viewers also liked (10)

Factors Predicting Health Insurance Satisfaction
Factors Predicting Health Insurance SatisfactionFactors Predicting Health Insurance Satisfaction
Factors Predicting Health Insurance Satisfaction
 
15 07-10 mae-informe-diario
15 07-10 mae-informe-diario15 07-10 mae-informe-diario
15 07-10 mae-informe-diario
 
BI merkestrategi og design forelesn 2014
BI merkestrategi og design forelesn 2014BI merkestrategi og design forelesn 2014
BI merkestrategi og design forelesn 2014
 
Prop list
Prop listProp list
Prop list
 
Kleding bedrijfskleding bedrukken Gemert
Kleding bedrijfskleding bedrukken GemertKleding bedrijfskleding bedrukken Gemert
Kleding bedrijfskleding bedrukken Gemert
 
level 5 leader
level 5 leaderlevel 5 leader
level 5 leader
 
TRABAJO DE GERENCIA YENNY SHEYFFER
TRABAJO DE GERENCIA YENNY SHEYFFERTRABAJO DE GERENCIA YENNY SHEYFFER
TRABAJO DE GERENCIA YENNY SHEYFFER
 
Feliz aniversário mana!
Feliz aniversário mana!Feliz aniversário mana!
Feliz aniversário mana!
 
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...
MPC detecta sobrepreço avaliado em mais de R$ 160 mil no show da banda Cidade...
 
Mecanismos
MecanismosMecanismos
Mecanismos
 

Similar to MBHD 2013 MEposter

LisaMSalvador2016_v3
LisaMSalvador2016_v3LisaMSalvador2016_v3
LisaMSalvador2016_v3Lisa Salvador
 
Honors Capstone Poster
Honors Capstone PosterHonors Capstone Poster
Honors Capstone PosterCorbett Hall
 
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...Loss of photoreceptor potential from retinal progenitor cell cultures, despit...
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...Dr Reaz Vawda, MSc PhD
 
Xiumei Cao's CV2015
Xiumei Cao's CV2015Xiumei Cao's CV2015
Xiumei Cao's CV2015Cao Xiumei
 
Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Katie K. Hsiao
 
Fabrizio 2003 dev biol
Fabrizio 2003 dev biolFabrizio 2003 dev biol
Fabrizio 2003 dev biolJames Fabrizio
 
cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected WilheminaRossi174
 
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...cordbloodsymposium
 
Normal Development of Pituitary and Hypothalamus Utilizing Mouse Model
Normal Development of Pituitary and Hypothalamus Utilizing Mouse ModelNormal Development of Pituitary and Hypothalamus Utilizing Mouse Model
Normal Development of Pituitary and Hypothalamus Utilizing Mouse ModelSteven Mayher
 
education_11-24
education_11-24education_11-24
education_11-24pharmdude
 
Modulation of pluripotency in the porcine embryo and i ps cells (Dec.27,2012)
Modulation of pluripotency in the  porcine embryo and i ps cells (Dec.27,2012) Modulation of pluripotency in the  porcine embryo and i ps cells (Dec.27,2012)
Modulation of pluripotency in the porcine embryo and i ps cells (Dec.27,2012) Ahmad Usama
 
Summer Conference 2016
Summer Conference 2016 Summer Conference 2016
Summer Conference 2016 Nina Ngo
 
s41598-020-71015-9.pdf
s41598-020-71015-9.pdfs41598-020-71015-9.pdf
s41598-020-71015-9.pdfHadgi1
 
The role of the Transcription Factor Engrailed in Neuronal Identity
The role of the Transcription Factor Engrailed in Neuronal IdentityThe role of the Transcription Factor Engrailed in Neuronal Identity
The role of the Transcription Factor Engrailed in Neuronal IdentityNelson Joel
 
Duong_H_2008a
Duong_H_2008aDuong_H_2008a
Duong_H_2008aHao Duong
 

Similar to MBHD 2013 MEposter (20)

LisaMSalvador2016_v3
LisaMSalvador2016_v3LisaMSalvador2016_v3
LisaMSalvador2016_v3
 
Honors Capstone Poster
Honors Capstone PosterHonors Capstone Poster
Honors Capstone Poster
 
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...Loss of photoreceptor potential from retinal progenitor cell cultures, despit...
Loss of photoreceptor potential from retinal progenitor cell cultures, despit...
 
Xiumei Cao's CV2015
Xiumei Cao's CV2015Xiumei Cao's CV2015
Xiumei Cao's CV2015
 
Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014Hsiao-DevNeurobiol2014
Hsiao-DevNeurobiol2014
 
Fabrizio 2003 dev biol
Fabrizio 2003 dev biolFabrizio 2003 dev biol
Fabrizio 2003 dev biol
 
cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected cloning. Second, it is sensitive. Activities canbe detected
cloning. Second, it is sensitive. Activities canbe detected
 
BioPosterPP
BioPosterPPBioPosterPP
BioPosterPP
 
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...
Deriving Mesenchymal Stem Cells from Human Amniotic Fluid – Potential for an ...
 
Poster
PosterPoster
Poster
 
Normal Development of Pituitary and Hypothalamus Utilizing Mouse Model
Normal Development of Pituitary and Hypothalamus Utilizing Mouse ModelNormal Development of Pituitary and Hypothalamus Utilizing Mouse Model
Normal Development of Pituitary and Hypothalamus Utilizing Mouse Model
 
education_11-24
education_11-24education_11-24
education_11-24
 
Modulation of pluripotency in the porcine embryo and i ps cells (Dec.27,2012)
Modulation of pluripotency in the  porcine embryo and i ps cells (Dec.27,2012) Modulation of pluripotency in the  porcine embryo and i ps cells (Dec.27,2012)
Modulation of pluripotency in the porcine embryo and i ps cells (Dec.27,2012)
 
Summer Conference 2016
Summer Conference 2016 Summer Conference 2016
Summer Conference 2016
 
nikolakopoulou et al., 2006b
nikolakopoulou et al., 2006bnikolakopoulou et al., 2006b
nikolakopoulou et al., 2006b
 
2013 a6b1 a7b1 Marta
2013 a6b1 a7b1 Marta2013 a6b1 a7b1 Marta
2013 a6b1 a7b1 Marta
 
Genomic imprinting
Genomic imprintingGenomic imprinting
Genomic imprinting
 
s41598-020-71015-9.pdf
s41598-020-71015-9.pdfs41598-020-71015-9.pdf
s41598-020-71015-9.pdf
 
The role of the Transcription Factor Engrailed in Neuronal Identity
The role of the Transcription Factor Engrailed in Neuronal IdentityThe role of the Transcription Factor Engrailed in Neuronal Identity
The role of the Transcription Factor Engrailed in Neuronal Identity
 
Duong_H_2008a
Duong_H_2008aDuong_H_2008a
Duong_H_2008a
 

MBHD 2013 MEposter

  • 1. Examining the expression of potential cell cycle regulators in the developing mouse inner ear Maryam Ebrahimi1, Gillian L. Drury2, Giselle Boukhaled2, Melissa A. Vollrath1, 2 1 Department of Neurology and Neurosurgery and 2 Department of Physiology, McGill University, Montreal, Quebec, Canada! ABSTRACT! RESULTS! RT-­‐PCR  confirmed  the  expression  of  10  candidate  genes  in  mouse  utricle  at  postnatal  day  7     BACKGROUND!   Nega&ve   cell-­‐cycle   regulators   with   ongoing   expression   in   suppor&ng   cells   prevent   them  from  dividing  and  differen&a&ng  into  hair  cells     HYPOTHESIS ! APPROACH! DISCUSSION AND FUTURE DIRECTIONS!  Analyzing  SHIELD  data     Selected  10  candidate  cell-­‐cycle  genes  with  high  and  persistent  expression  in  utricle   suppor&ng  cells  at  embryonic  day  16  and  postnatal  days  4,7,16    Confirma&on  of  SHIELD  data  by  RT-­‐PCR   To  date  we  have  confirmed  expression  of  10  of  these  genes    Localiza&on  of  candidate  genes  by  in  situ  hybridiza&on   Here  we  show  RNA  localiza&on  for  genes  Cav2,  Frk,  AnnexA1  and  Igf-­‐1  at  embryonic  days   13.5,15.5,18.5   In  situ  hybridizaAon  method:        Gene-­‐specific  RNA  probes  labeled  using  Digoxygenin.        Embryos  fixed  at  different  embryonic  &me  points  and  frozen  in  OCT.        16-­‐um  sec&ons  cut  on  cryostat.        Candidate  gene  probes  are  hybridized  to  inner  ear  sec&ons.      Control  probes  (Atoh1)  are  hybridized  to  adjacent  sec&ons  to  visualize  hair  cell  layer.        A[er  color  development,  slides  are  cover-­‐slipped  and  visualized  under  the  microscope.   REFERENCES! Cav2,   Frk,   AnnexA1   and   Igf-­‐1   are   expressed   in   the   inner   ear   of   mice   at   embryonic  days   Our  primary  analysis  using  SHIELD  led  us  to  select  genes  with  higher  and  more   persistent   expression   in   utricular   SCs   than   HCs   at   postnatal   days.   Our   RT-­‐PCR   results  also  confirmed  the  expression  of  these  genes  in  utricle  at  postnatal  day   7.  Our  in  situ  hybridiza&on,  from  different  embryonic  &me  points  localized  the   expression  of  four  selected  genes  more  spread  in  hair  cell  layer,  as  compared   with  posi&ve  control  probe(Atoh1).   Next  Step   We  will  use  the  specific  probes  for  Sox  9  and  P27kip  which  have  been  shown  to   be  expressed  in  utricular  SCs  at  embryonic  ages  7,8 .  Using  these  controls,  we  can   visualize  to  what  extend  our  selected  genes  are  expressed  in  these  two  cells.     To  inves&gate  the  func&on  of  the  candidate  cell-­‐cycle  regulator  genes  we  will   knockdown  gene  expression  in  cultured  mouse  utricles  using  siRNA  and  assay   for  cell  prolifera&on.  Reentry  into  the  cell  cycle  will  be  measured  by  BrdU  uptake   (a  standard  assay  for  measuring  cell  division).     Future  direcAons   This   experimental   approach   will   allow   us   to   test   these   and   other   candidate   nega&ve  cell-­‐cycle  regulators  for  their  ability  to  produce  hair  cell  prolifera&on.  In   the   long   term   this   may   iden&fy   target   genes   for   developing   therapeu&c   strategies  for  the  treatment  of  hearing  loss.       Igf-­‐1   and   AnnexA1   associate   with   cell   prolifera&on   of   CNS   and   PNS   in   different   developmental   &me   point.5,7   Igf-­‐1   maintains   cell   prolifera&on   of   O&c   Vesicle   during   development.8  AnnexA1  Is  secreted  from  cochlear  suppor&ng  cells  a[er  hair  cell  loss.9   AnnexA1  associates  with  Cyclin  D  to  control  cell  cycle  progress  in  different  cell  lines.6   1.Groves  A.K.  The  challenge  of  hair  cell  regenera&on.  Exp  Biol  Med.  2010;  235:  434-­‐446   2.Lowenheim  H,  Furness  DN,  Kil  J,  Zinn  C,  Gol&g  K,  Fero  ML,  et  al.  Gene  disrup&on  of  p27Kip1  allows  cell    prolifera&on  in  the  postnatal  and   adult  organ  of  Cor&.  Proceedings  of  the  Na&onal  Academy  of  Sciences.  1999  March  30,  1999;96(7):4084-­‐8.   3.  Sage  C,  Huang  M,  Karimi  K,  Gu&errez  G,  Vollrath  MA,  Zhang  D-­‐S,  et  al.  Prolifera&on  of  Func&onal  Hair  Cells  in  Vivo  in  the  Absence  of  the   Re&noblastoma  Protein.  Science.  2005  February  18,  2005;307(5712):1114-­‐8.   4.Xie  L,  Frank  PG,  Lisan&  MP,  Sowa  G.  Endothelial  cells  isolated  from  caveolin-­‐2  knockout  mice  display  higher  prolifera&on  rate  and  cell   cycle  progression  rela&ve  to  their  wild-­‐type  counterparts.  2010;  298:  C693-­‐701   5.Alldrige   LC,   Bryant   CE.   Annexin   1   regulates   cell   prolifera&on   by   disrup&on   of   cell   morphology   and   inhibi&on   of   cyclin   D1   expression   through  sustained  ac&va&on  of  the  ERK1/2  MAPK  signal.  Experimental  cell  research.  2003;290:  93-­‐107.   6.Mak  ACY,  Szeto  IYY,  Fritzsch  B,  Cheah  KSE.  Differen&al  and  overlapping  expression  of  SOX2  and  SOX9  in  inner  ear  development.  Gene  Expr   Pajerns.2009;9(6):444-­‐453.   7.Varela-­‐Nieto  I,  Morales-­‐Garcia  JA,  Vigil  P,  Diaz-­‐Casares  A,  Gorospe  I,  Sanchez-­‐Galiano  S,  Canon  S,  Camarero  G,  Contreras  J,  Cediel  R,  Leon   Y.  Trophic  effects  of  insulin-­‐like  growth  factor-­‐I  in  the  inner  ear.  Hearing  research.2004;196:  19-­‐25.     8.  Leon  Y,  Vazquez  CS,  Vega  JA,  Mato  JM,  Giraldez  F,  Represa  J,  Varela-­‐Nieto  I.  Insulin-­‐Like  growth  factor_I  regulates  cell  prolifera&on  in  the   developing  Inner  ear.  Endocrinology.  1995;136(8):  3494-­‐3503  .   9.   Kalinec   F,   Webster   P,   Maricle   A,   Guerrero   D,   Chakravar&   DN,   Chakravar&   B,   Gellibolian   R,   Kalinec   G.   Glucocor&coid-­‐s&mulated,   transcrip&on-­‐independent  release  of  Annexin  A1  by  Cochlear  Hensen  cells.  Bri&sh  Journal  of  Phramacology.2009;  158:  1820-­‐1834.     10.  Yim  EK,  Siwko  S,  Lin  SY.  Exploring  Rak  tyrosine  kinase  func&on  in  breast  cancer.  Cell  cycle.2009;8:  2360-­‐2364.   NegaAve  regulators  of  cell  cycle  prevent  supporAng  cell  division             In   the   development   of   the   mammalian  inner  ear,  progenitor   cells   exit   the   cell   cycle   around   embryonic   day   13   and   differen&ate   into   hair   cells   and   suppor&ng   cells.   Both   cell   types   remain  quiescent  a[er  birth.  The   persistent     expression   of   nega&ve  cell-­‐cycle  regulators    is   thought       to  be  responsible  for  the  inability  of  inner  ear  suppor&ng  cells  to  proliferate  a[er   hair  cell  death.    Knocking  out  cell-­‐cycle  inhibitors  such  as  Re&noblastoma  (Rb)   and   P27kip1   lead   to   hair   cell   prolifera&on   indica&ng   that   these   genes   ac&vely   prevent  suppor&ng  cell  differen&a&on.           Atoh1     (HC  control)     In  situ  hybridizaAon  shows  Atoh1  and  Cav2  expression  in  utricular  HCs  at:   Frk   Sensory epithelia of the mammalian inner ear are composed of hair cells and supporting cells. These cells originate from common precursors, which exit the cell cycle during late embryogenesis. Thereafter, hair cells and supporting cells maintain a non-proliferative state. As a result, hair cell loss in mammals is irreversible. If inner ear organs are to be regenerated, supporting cells must reenter the cell cycle to produce new hair cells and supporting cells. Little is known about genes that maintain the post-mitotic state of inner ear supporting cells. Previous studies revealed the role of cell cycle inhibitors such as p27kip in regulating the post-mitotic fate of differentiated supporting cells (Lowenheim et al., 1999). The purpose of our study was to identify other potential regulators of cell cycle in supporting cells and determine their expression at different ages. We used the Shared Harvard Inner- Ear Laboratory data base (SHIELD; shield.hms.harvard.edu) to select 15 candidate genes following these criteria: 1) an established role in cell cycle regulation in other cell types, 2) maintained postnatal expression in mouse utricular supporting cells, and 3) not previously studied in the mouse inner ear. We used RT-PCR and in situ hybridization to determine the expression of these candidate genes in inner ear sensory epithelia. Our RT-PCR results, from mouse utricles at postnatal day 7, (which contained hair cells, supporting cells, and non-sensory cells) confirmed the expression of all candidate genes. Our in situ hybridization results, which came from mice between embryonic days 13.5 and 18.5, were mixed. In some cases expression was seen mainly in supporting cells, as expected based on the SHIELD data and in other cases in hair cells or non-sensory cells. Further studies are required to test whether these genes play a role in regulating cell cycle in the mouse developing inner ear.   In  situ  hybridizaAon  shows  Frk,  AnnexA1  and  Igf-­‐1  expression  in  utricular  HCs  at:                                      E13.5                                                              E15.5                          E18.5   Otolithic membrane Hair cells Supporting cells Nerve fiber AnnexA1     Igf-­‐1   Cav2,  Frk,  AnnexA1  and  Igf-­‐I  regulate  cell  proliferaAon  during  development   Frk  is  a  nucleated  tyrosine  kinas  with  regulatory  role  in  mammalian  epithelial  tumor   cells.  10  Cave  is  a  member  of  Caveolae  proteins  which  func&on  in  lipid  ra[.  Isolated   endothelial   cells   from   Cav2   null   mouse   lung   have   shown   higher   rate   of   cell   prolifera&on  when  compared  with  their  normal  counterparts.4   These  genes  have  not  been  previously  studied  in  mouse  developing  utricle   E13.5 E15.5   E18.5   Cav2   Inner  ear  development  in  the  mouse   100uM