This document summarizes a seminar on machine learning using big data. It discusses the history of data storage and traditional databases. It then introduces machine learning and the types of learning, including supervised and unsupervised learning. Specific algorithms for each type are covered such as k-means clustering for unsupervised and naive Bayes for supervised. Case studies on applications like Amazon product recommendations are presented. The document concludes by discussing tools for machine learning and future applications as more connected devices generate extensive data.