SlideShare a Scribd company logo
Prof. Dr. Jan Kirenz
Machine Learning Operations (MLOps)
Usage of Pipelines in the ML Lifecycle with
Tensor Flow Extended (TFX) and Kubeflow
Prof. Dr. Jan Kirenz
HdM Stuttgart
Prof. Dr. Jan Kirenz
80-85% PoC Factory
The Proof of Concept Factory
Most companies...
● … conduct AI experiments and pilots
but achieve a low scaling success
rate
● … have significant under investment,
yielding low returns
Source: Accenture (2019) https://www.accenture.com/us-en/insights/artificial-intelligence/ai-investments
Prof. Dr. Jan Kirenz
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/
Scalable AI
Prof. Dr. Jan Kirenz
ML Project Code
The problem with scaling AI: ML code is only a
fraction of a production-ready ML project code
ML
Code 5-10%
Prof. Dr. Jan Kirenz
Monitoring
Hidden technical debt in machine learning systems
Sculley, D. et al. (2015). Hidden technical debt in machine learning systems. Advances in neural information processing systems, 28, pp. 2503-2511
Data Collection
Configuration
Feature Engineering
Data
Verification
Metadata Management
Model Analysis
Serving
Infra-
structure
Automation
Process Management
Machine Resource
Management
Testing and Debugging
ML
Code
Prof. Dr. Jan Kirenz
Machine learning operations (MLOps)
● ML Engineering culture and practice that
aims at unifying ML System development
(Dev) and ML system operations (Ops)
● Tools and principles to support workflow
standardization and automation through
the ML system lifecycle (e.g. with pipelines)
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Machine learning
lifecycle
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Data splitting
Anomaly
detection
Data
preprocessing
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Evaluate
model
Model Training
& tuning
Select
algorithm
Data splitting
Anomaly
detection
Data
preprocessing
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Retrain
triggers
Evaluate
model
Model Training
& tuning
Monitor model
Select
algorithm
Data splitting
Anomaly
detection
Data
preprocessing
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Retrain
triggers
Evaluate
model
Model Training
& tuning
Monitor model
Select
algorithm
Data splitting
Anomaly
detection
Data
preprocessing
Lifecycle
of an ML System
Plan | Data | Model | Deployment
Common issues which lead to a PoC to production gap
● Lack of reuse and duplication
● Inconsistency (data, code, models)
● Manual and slow transition from PoC to production
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Retrain
triggers
Evaluate
model
Model Training
& tuning
Monitor model
Select
algorithm
Data splitting
Anomaly
detection
Data
preprocessing
Model
management
Model registry
Data and feature
management
Feature store
Pipeline
management
Pipeline orchestration
Metadata
management
Metadata store
Lifecycle
of an ML System
Plan | Data | Model | Deployment
MLOps components
Prof. Dr. Jan Kirenz
What is a pipeline?
● Description of an ML workflow
● A pipeline component is a self-contained
set of user code that performs one step in
the pipeline
● Includes the definition of the configuration
and inputs required to run the pipeline (e.g.
model hyperparameters)
… do this
… than that
Start
...
… the end
The workflow is
also called directed
acyclic graph (DAG)
This is a component
Complete workflow of the ML
system lifecycle
Prof. Dr. Jan Kirenz
Source: Baer & Ngahane (2019)
… do this
… than that
Start
… the end
Prof. Dr. Jan Kirenz
TensorFlow Extended (TFX)
● Google-production-scale machine learning
(ML) platform based on TensorFlow
● Portable to multiple environments (Azure,
AWS, Google Cloud, IBM, ...)
● Python based toolkit; can be used with
notebooks
● Helps you orchestrate your ML process:
Apache Airflow, Apache Beam or Kubeflow
pipelines
Source: TensorFlow (2021)
Prof. Dr. Jan Kirenz
TFX 1.0 (19.05.21)
● Enterprise-grade support
● Security patches and select bug fixes for
up to three years
● Guaranteed API & Artifact backward
compatibility
Source: Google (2021)
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
KerasTuner
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store: ML Metadata (MLMD)
TFX Options for Pipeline
Orchestration
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
KerasTuner
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Data
preprocessing
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
KerasTuner
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
KerasTuner
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Prof. Dr. Jan Kirenz
Tuner
Evaluator
InfraValidator
ExampleGen
StatisticsGen
SchemaGen
Example
Validator
Transform
Trainer
Pusher
HUB / JS / LITE / SERVING
Model Server
KerasTuner
BulkInferrer
Metadata Store (ML Metadata)
TF
Data
Validation
(TFDV)
TFT
TF
TFX Options for Pipeline
Orchestration
TensorFlow
Model Analysis
(TFMA)
TensorFlow Lite is a set of tools that enables on-device
machine learning by helping developers run their models
on mobile, embedded, and IoT devices.
Prof. Dr. Jan Kirenz
Plan
Model
Deployment Data
Identify use
case
Frame
problem
Identify
variables
Define metrics
Business Analyst
Data
Engineer
Software
Developer
Data Scientist
Data ingestion
Analyze &
clean data
Define schema
Feature
engineering
Validate model
Deploy model
Serve model
Retrain model
Evaluate
model
Model Training
& tuning
Monitor model
ExampleGen
Select
algorithm
StatisticsGen
SchemaGen
Example
Validator
Transform
Data splitting
Trainer
Tuner
Evaluator
InfraValidator
Anomaly
detection
Pusher
HUB / JS / LITE / SERVING
Model Server
TF
Data
Validation
(TFDV)
TFT
TF
KerasTuner
TensorFlow
Model Analysis
(TFMA)
BulkInferrer
Data
preprocessing
Metadata Store (ML Metadata)
TFX Options for Pipeline
Orchestration
Production phase:
automate the execution
of the ML pipeline based
on a schedule or certain
triggering conditions.
Development phase: run the ML experiment, instead of
manually executing each step.
Data preparation
phase:
automatically
ingest, validate
and transform
data and provide
features to models
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Pipeline orchestration
Prof. Dr. Jan Kirenz
TFX & Apache Airflow
● Programmatically author, schedule and
monitor workflows with Python code.
● User interface to visualize pipelines
running in production, monitor progress,
and troubleshoot issues.
Prof. Dr. Jan Kirenz
TFX & Apache Beam
● Provides a framework for running batch
and streaming data processing jobs that
run on a variety of runners (Spark, Flink, ...).
● Beam provides an abstraction layer which
enables TFX to run on any supported
runner without code modifications
● TFX only uses the Beam Python API
Prof. Dr. Jan Kirenz
TFX & Kubeflow pipelines
The Kubeflow Pipelines platform consists of:
● An engine for scheduling multi-step ML
workflows (using Kubernetes).
● User interface (UI) for managing and
tracking experiments, jobs, and runs.
● Python SDK for defining and manipulating
pipelines and components.
● Notebooks for interacting with the system
using the SDK
Kubeflow Pipelines is available as a core component of Kubeflow or as
a standalone installation.
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
KubeFlow
Prof. Dr. Jan Kirenz
ML toolkit for Kubernetes
Prof. Dr. Jan Kirenz
Google’s Vertex AI
Launched in May 2021
Prof. Dr. Jan Kirenz
ML Pipelines | wrap-up
Source: TensorFlow (2021)
By using a ML pipeline, you can:
● Automate your ML process, which lets you
regularly retrain, evaluate, and deploy your
model.
● Utilize distributed compute resources for
processing large datasets and workloads.
● Increase the velocity of experimentation by
running a pipeline with different sets of
hyperparameters.
To learn more visit the following tutorials @:
https://kirenz.github.io/
MLOps tutorials on how to:
● Install TF and TFX
● Build your first TFX pipeline
● Install Kubeflow
● Build your first Kubeflow pipeline
Jan Kirenz
www.kirenz.com
Prof. Dr. Jan Kirenz
Backup
Continuous Integration
and Continuous Delivery
pipeline for an ML/AI
project in Microsoft Azure
Prof. Dr. Jan Kirenz
Continuous Integration
and Continuous Delivery
pipeline for an ML/AI
project in Microsoft Azure
Prof. Dr. Jan Kirenz
CI/CD and source code management
Prof. Dr. Jan Kirenz
Cloud based machine learning service
Prof. Dr. Jan Kirenz
Source: Microsoft (2021)https://github.com/Microsoft/MLOpsPython
Prof. Dr. Jan Kirenz
Source: Microsoft (2021) https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/mlops-python
1
2
3
Prof. Dr. Jan Kirenz
https://github.com/Microsoft/MLOpsPython
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
Prof. Dr. Jan Kirenz
End of Demo
Continuous Integration
and Continuous Delivery
pipeline for an ML/AI
project in Microsoft Azure

More Related Content

Similar to Machine learning operations model book mlops

MLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLMLOps - The Assembly Line of ML
MLOps - The Assembly Line of ML
Jordan Birdsell
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
Data Science Milan
 
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
Robert Grossman
 
How to re-use existing system models to generate test cases
How to re-use existing system models to generate test casesHow to re-use existing system models to generate test cases
How to re-use existing system models to generate test cases
TransWare AG
 
AI at Scale in Enterprises
AI at Scale in Enterprises AI at Scale in Enterprises
AI at Scale in Enterprises
Ganesan Narayanasamy
 
Certification Study Group - NLP & Recommendation Systems on GCP Session 5
Certification Study Group - NLP & Recommendation Systems on GCP Session 5Certification Study Group - NLP & Recommendation Systems on GCP Session 5
Certification Study Group - NLP & Recommendation Systems on GCP Session 5
gdgsurrey
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
Databricks
 
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
Codemotion
 
Software Analytics = Sharing Information
Software Analytics = Sharing InformationSoftware Analytics = Sharing Information
Software Analytics = Sharing Information
Thomas Zimmermann
 
Deep learning in manufacturing predicting and preventing manufacturing defect...
Deep learning in manufacturing predicting and preventing manufacturing defect...Deep learning in manufacturing predicting and preventing manufacturing defect...
Deep learning in manufacturing predicting and preventing manufacturing defect...
WMG centre High Value Manufacturing Catapult
 
The Magic Of Application Lifecycle Management In Vs Public
The Magic Of Application Lifecycle Management In Vs PublicThe Magic Of Application Lifecycle Management In Vs Public
The Magic Of Application Lifecycle Management In Vs Public
David Solivan
 
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
PyData
 
Demystifying Cognitive Approaches to Predictive Maintenance Part 1
Demystifying Cognitive Approaches to Predictive Maintenance Part 1Demystifying Cognitive Approaches to Predictive Maintenance Part 1
Demystifying Cognitive Approaches to Predictive Maintenance Part 1
Anita Raj
 
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
BAINIDA
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
eltonrodriguez11
 
Scaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOpsScaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOps
Sri Ambati
 
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
mattdenesuk
 
From Model-based to Model and Simulation-based Systems Architectures
From Model-based to Model and Simulation-based Systems ArchitecturesFrom Model-based to Model and Simulation-based Systems Architectures
From Model-based to Model and Simulation-based Systems Architectures
Obeo
 
How to apply machine learning into your CI/CD pipeline
How to apply machine learning into your CI/CD pipelineHow to apply machine learning into your CI/CD pipeline
How to apply machine learning into your CI/CD pipeline
Alon Weiss
 
Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?
Itai Yaffe
 

Similar to Machine learning operations model book mlops (20)

MLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLMLOps - The Assembly Line of ML
MLOps - The Assembly Line of ML
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
 
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
AnalyticOps: Lessons Learned Moving Machine-Learning Algorithms to Production...
 
How to re-use existing system models to generate test cases
How to re-use existing system models to generate test casesHow to re-use existing system models to generate test cases
How to re-use existing system models to generate test cases
 
AI at Scale in Enterprises
AI at Scale in Enterprises AI at Scale in Enterprises
AI at Scale in Enterprises
 
Certification Study Group - NLP & Recommendation Systems on GCP Session 5
Certification Study Group - NLP & Recommendation Systems on GCP Session 5Certification Study Group - NLP & Recommendation Systems on GCP Session 5
Certification Study Group - NLP & Recommendation Systems on GCP Session 5
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
 
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
Denis Jannot - Towards Data Science Engineering Principles - Codemotion Milan...
 
Software Analytics = Sharing Information
Software Analytics = Sharing InformationSoftware Analytics = Sharing Information
Software Analytics = Sharing Information
 
Deep learning in manufacturing predicting and preventing manufacturing defect...
Deep learning in manufacturing predicting and preventing manufacturing defect...Deep learning in manufacturing predicting and preventing manufacturing defect...
Deep learning in manufacturing predicting and preventing manufacturing defect...
 
The Magic Of Application Lifecycle Management In Vs Public
The Magic Of Application Lifecycle Management In Vs PublicThe Magic Of Application Lifecycle Management In Vs Public
The Magic Of Application Lifecycle Management In Vs Public
 
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...End-to-End Machine learning pipelines for Python driven organizations - Nick ...
End-to-End Machine learning pipelines for Python driven organizations - Nick ...
 
Demystifying Cognitive Approaches to Predictive Maintenance Part 1
Demystifying Cognitive Approaches to Predictive Maintenance Part 1Demystifying Cognitive Approaches to Predictive Maintenance Part 1
Demystifying Cognitive Approaches to Predictive Maintenance Part 1
 
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
R Tool for Visual Studio และการทำงานร่วมกันเป็นทีม โดย เฉลิมวงศ์ วิจิตรปิยะกุ...
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
 
Scaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOpsScaling & Managing Production Deployments with H2O ModelOps
Scaling & Managing Production Deployments with H2O ModelOps
 
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
Big Data, Physics, and the Industrial Internet: How Modeling & Analytics are ...
 
From Model-based to Model and Simulation-based Systems Architectures
From Model-based to Model and Simulation-based Systems ArchitecturesFrom Model-based to Model and Simulation-based Systems Architectures
From Model-based to Model and Simulation-based Systems Architectures
 
How to apply machine learning into your CI/CD pipeline
How to apply machine learning into your CI/CD pipelineHow to apply machine learning into your CI/CD pipeline
How to apply machine learning into your CI/CD pipeline
 
Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?
 

Recently uploaded

Computer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage sComputer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage s
MAQIB18
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
yhkoc
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
axoqas
 
How can I successfully sell my pi coins in Philippines?
How can I successfully sell my pi coins in Philippines?How can I successfully sell my pi coins in Philippines?
How can I successfully sell my pi coins in Philippines?
DOT TECH
 
tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
theahmadsaood
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
ewymefz
 
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
ukgaet
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单
ewymefz
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
nscud
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
axoqas
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
elinavihriala
 
Tabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflowsTabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflows
alex933524
 
Uber Ride Supply Demand Gap Analysis Report
Uber Ride Supply Demand Gap Analysis ReportUber Ride Supply Demand Gap Analysis Report
Uber Ride Supply Demand Gap Analysis Report
SatyamNeelmani2
 
Business update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMIBusiness update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMI
AlejandraGmez176757
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
ArpitMalhotra16
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
vcaxypu
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Boston Institute of Analytics
 
Investigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_CrimesInvestigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_Crimes
StarCompliance.io
 

Recently uploaded (20)

Computer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage sComputer Presentation.pptx ecommerce advantage s
Computer Presentation.pptx ecommerce advantage s
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
 
How can I successfully sell my pi coins in Philippines?
How can I successfully sell my pi coins in Philippines?How can I successfully sell my pi coins in Philippines?
How can I successfully sell my pi coins in Philippines?
 
tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
 
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
 
一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单一比一原版(NYU毕业证)纽约大学毕业证成绩单
一比一原版(NYU毕业证)纽约大学毕业证成绩单
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
2024-05-14 - Tableau User Group - TC24 Hot Topics - Tableau Pulse and Einstei...
 
Tabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflowsTabula.io Cheatsheet: automate your data workflows
Tabula.io Cheatsheet: automate your data workflows
 
Uber Ride Supply Demand Gap Analysis Report
Uber Ride Supply Demand Gap Analysis ReportUber Ride Supply Demand Gap Analysis Report
Uber Ride Supply Demand Gap Analysis Report
 
Business update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMIBusiness update Q1 2024 Lar España Real Estate SOCIMI
Business update Q1 2024 Lar España Real Estate SOCIMI
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
 
Investigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_CrimesInvestigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_Crimes
 

Machine learning operations model book mlops

  • 1. Prof. Dr. Jan Kirenz Machine Learning Operations (MLOps) Usage of Pipelines in the ML Lifecycle with Tensor Flow Extended (TFX) and Kubeflow Prof. Dr. Jan Kirenz HdM Stuttgart
  • 2. Prof. Dr. Jan Kirenz 80-85% PoC Factory The Proof of Concept Factory Most companies... ● … conduct AI experiments and pilots but achieve a low scaling success rate ● … have significant under investment, yielding low returns Source: Accenture (2019) https://www.accenture.com/us-en/insights/artificial-intelligence/ai-investments
  • 3. Prof. Dr. Jan Kirenz https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/ Scalable AI
  • 4. Prof. Dr. Jan Kirenz ML Project Code The problem with scaling AI: ML code is only a fraction of a production-ready ML project code ML Code 5-10%
  • 5. Prof. Dr. Jan Kirenz Monitoring Hidden technical debt in machine learning systems Sculley, D. et al. (2015). Hidden technical debt in machine learning systems. Advances in neural information processing systems, 28, pp. 2503-2511 Data Collection Configuration Feature Engineering Data Verification Metadata Management Model Analysis Serving Infra- structure Automation Process Management Machine Resource Management Testing and Debugging ML Code
  • 6. Prof. Dr. Jan Kirenz Machine learning operations (MLOps) ● ML Engineering culture and practice that aims at unifying ML System development (Dev) and ML system operations (Ops) ● Tools and principles to support workflow standardization and automation through the ML system lifecycle (e.g. with pipelines)
  • 7. Prof. Dr. Jan Kirenz Prof. Dr. Jan Kirenz Machine learning lifecycle
  • 8. Prof. Dr. Jan Kirenz Plan Model Deployment Data Business Analyst Data Engineer Software Developer Data Scientist Lifecycle of an ML System Plan | Data | Model | Deployment
  • 9. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Lifecycle of an ML System Plan | Data | Model | Deployment
  • 10. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Data splitting Anomaly detection Data preprocessing Lifecycle of an ML System Plan | Data | Model | Deployment
  • 11. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Evaluate model Model Training & tuning Select algorithm Data splitting Anomaly detection Data preprocessing Lifecycle of an ML System Plan | Data | Model | Deployment
  • 12. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Retrain triggers Evaluate model Model Training & tuning Monitor model Select algorithm Data splitting Anomaly detection Data preprocessing Lifecycle of an ML System Plan | Data | Model | Deployment
  • 13. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Retrain triggers Evaluate model Model Training & tuning Monitor model Select algorithm Data splitting Anomaly detection Data preprocessing Lifecycle of an ML System Plan | Data | Model | Deployment Common issues which lead to a PoC to production gap ● Lack of reuse and duplication ● Inconsistency (data, code, models) ● Manual and slow transition from PoC to production
  • 14. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Retrain triggers Evaluate model Model Training & tuning Monitor model Select algorithm Data splitting Anomaly detection Data preprocessing Model management Model registry Data and feature management Feature store Pipeline management Pipeline orchestration Metadata management Metadata store Lifecycle of an ML System Plan | Data | Model | Deployment MLOps components
  • 15. Prof. Dr. Jan Kirenz What is a pipeline? ● Description of an ML workflow ● A pipeline component is a self-contained set of user code that performs one step in the pipeline ● Includes the definition of the configuration and inputs required to run the pipeline (e.g. model hyperparameters) … do this … than that Start ... … the end The workflow is also called directed acyclic graph (DAG) This is a component Complete workflow of the ML system lifecycle
  • 16. Prof. Dr. Jan Kirenz Source: Baer & Ngahane (2019) … do this … than that Start … the end
  • 17. Prof. Dr. Jan Kirenz TensorFlow Extended (TFX) ● Google-production-scale machine learning (ML) platform based on TensorFlow ● Portable to multiple environments (Azure, AWS, Google Cloud, IBM, ...) ● Python based toolkit; can be used with notebooks ● Helps you orchestrate your ML process: Apache Airflow, Apache Beam or Kubeflow pipelines Source: TensorFlow (2021)
  • 18. Prof. Dr. Jan Kirenz TFX 1.0 (19.05.21) ● Enterprise-grade support ● Security patches and select bug fixes for up to three years ● Guaranteed API & Artifact backward compatibility Source: Google (2021)
  • 19. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF KerasTuner TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store: ML Metadata (MLMD) TFX Options for Pipeline Orchestration
  • 20. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF KerasTuner TensorFlow Model Analysis (TFMA) BulkInferrer Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration Data preprocessing
  • 21. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF KerasTuner TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration
  • 22. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration
  • 23. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration
  • 24. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF KerasTuner TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration
  • 25. Prof. Dr. Jan Kirenz Tuner Evaluator InfraValidator ExampleGen StatisticsGen SchemaGen Example Validator Transform Trainer Pusher HUB / JS / LITE / SERVING Model Server KerasTuner BulkInferrer Metadata Store (ML Metadata) TF Data Validation (TFDV) TFT TF TFX Options for Pipeline Orchestration TensorFlow Model Analysis (TFMA) TensorFlow Lite is a set of tools that enables on-device machine learning by helping developers run their models on mobile, embedded, and IoT devices.
  • 26. Prof. Dr. Jan Kirenz Plan Model Deployment Data Identify use case Frame problem Identify variables Define metrics Business Analyst Data Engineer Software Developer Data Scientist Data ingestion Analyze & clean data Define schema Feature engineering Validate model Deploy model Serve model Retrain model Evaluate model Model Training & tuning Monitor model ExampleGen Select algorithm StatisticsGen SchemaGen Example Validator Transform Data splitting Trainer Tuner Evaluator InfraValidator Anomaly detection Pusher HUB / JS / LITE / SERVING Model Server TF Data Validation (TFDV) TFT TF KerasTuner TensorFlow Model Analysis (TFMA) BulkInferrer Data preprocessing Metadata Store (ML Metadata) TFX Options for Pipeline Orchestration Production phase: automate the execution of the ML pipeline based on a schedule or certain triggering conditions. Development phase: run the ML experiment, instead of manually executing each step. Data preparation phase: automatically ingest, validate and transform data and provide features to models
  • 27. Prof. Dr. Jan Kirenz Prof. Dr. Jan Kirenz Pipeline orchestration
  • 28. Prof. Dr. Jan Kirenz TFX & Apache Airflow ● Programmatically author, schedule and monitor workflows with Python code. ● User interface to visualize pipelines running in production, monitor progress, and troubleshoot issues.
  • 29. Prof. Dr. Jan Kirenz TFX & Apache Beam ● Provides a framework for running batch and streaming data processing jobs that run on a variety of runners (Spark, Flink, ...). ● Beam provides an abstraction layer which enables TFX to run on any supported runner without code modifications ● TFX only uses the Beam Python API
  • 30. Prof. Dr. Jan Kirenz TFX & Kubeflow pipelines The Kubeflow Pipelines platform consists of: ● An engine for scheduling multi-step ML workflows (using Kubernetes). ● User interface (UI) for managing and tracking experiments, jobs, and runs. ● Python SDK for defining and manipulating pipelines and components. ● Notebooks for interacting with the system using the SDK Kubeflow Pipelines is available as a core component of Kubeflow or as a standalone installation.
  • 31. Prof. Dr. Jan Kirenz
  • 32. Prof. Dr. Jan Kirenz
  • 33. Prof. Dr. Jan Kirenz
  • 34. Prof. Dr. Jan Kirenz KubeFlow
  • 35. Prof. Dr. Jan Kirenz ML toolkit for Kubernetes
  • 36. Prof. Dr. Jan Kirenz Google’s Vertex AI Launched in May 2021
  • 37. Prof. Dr. Jan Kirenz ML Pipelines | wrap-up Source: TensorFlow (2021) By using a ML pipeline, you can: ● Automate your ML process, which lets you regularly retrain, evaluate, and deploy your model. ● Utilize distributed compute resources for processing large datasets and workloads. ● Increase the velocity of experimentation by running a pipeline with different sets of hyperparameters. To learn more visit the following tutorials @: https://kirenz.github.io/ MLOps tutorials on how to: ● Install TF and TFX ● Build your first TFX pipeline ● Install Kubeflow ● Build your first Kubeflow pipeline Jan Kirenz www.kirenz.com
  • 38. Prof. Dr. Jan Kirenz Backup Continuous Integration and Continuous Delivery pipeline for an ML/AI project in Microsoft Azure
  • 39. Prof. Dr. Jan Kirenz Continuous Integration and Continuous Delivery pipeline for an ML/AI project in Microsoft Azure
  • 40. Prof. Dr. Jan Kirenz CI/CD and source code management
  • 41. Prof. Dr. Jan Kirenz Cloud based machine learning service
  • 42. Prof. Dr. Jan Kirenz Source: Microsoft (2021)https://github.com/Microsoft/MLOpsPython
  • 43. Prof. Dr. Jan Kirenz Source: Microsoft (2021) https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/mlops-python 1 2 3
  • 44. Prof. Dr. Jan Kirenz https://github.com/Microsoft/MLOpsPython
  • 45. Prof. Dr. Jan Kirenz
  • 46. Prof. Dr. Jan Kirenz
  • 47. Prof. Dr. Jan Kirenz
  • 48. Prof. Dr. Jan Kirenz
  • 49. Prof. Dr. Jan Kirenz
  • 50. Prof. Dr. Jan Kirenz
  • 51. Prof. Dr. Jan Kirenz
  • 52. Prof. Dr. Jan Kirenz
  • 53. Prof. Dr. Jan Kirenz End of Demo Continuous Integration and Continuous Delivery pipeline for an ML/AI project in Microsoft Azure