SlideShare a Scribd company logo
1 of 2
Download to read offline
M2M, Cellular and Small Cells
Posted by Zahid Ghadialy on Aug 5, 2013 9:47:28 AM
A few questions are being asked recently regarding the impact of M2M on Small Cells.
With a prediction of up to 50 billion devices by 2020-25, this is a very valid question.
While M2M applies to a broad range of devices, there are still people in the industry
who tend to think of M2M devices as small, cheap devices, generally with little or no
mobility, responsible for small amounts of data transfer over long durations. While it is
true that a multitude of M2M devices may fall in this category, it is not necessarily
applicable for all M2M devices. For instance, the car industry is working very tough on
the design and development of various ‘connected car’ initiatives. These connected cars
will require high speed data transfer (e.g. SatNav maps, traffic related information, video
streaming, etc.) over a fast varying channel due to very high mobility. To facilitate and
simplify this analysis an assumption of little or no mobility will be made where device
‘may’ or ‘may not’ require reasonable amount of data at regular time intervals. This
assumption would also be more applicable to scenarios with possible small cells
around. Such devices could be motion sensor based devices like security cameras,
connected meters, any other sensors that monitor real time information, etc. We can
discount M2M devices like those in connected cars from our analysis because they
would most likely rely on macro cellular coverage. Finally, we will consider only ‘open
access’ small cells rather than ‘closed access’ (a.k.a. CSG or ‘Closed Subscriber
Group’) small cells.
There are many factors that need to be considered in the design of an M2M device such
as cost, form factor, power consumption, security, etc.
To keep the cost down while maintaining a small and simple form factor, it may be
sensible to stick with one access technology rather than more. Power consumption is
very low in certain type of technologies like Bluetooth; it is not always practical for large
number of M2M devices. Each of these M2M devices may need a Bluetooth access
point which may not always be feasible. On the personal front, many eHealth M2M
devices use Bluetooth as access technology where the user provides some sort of input
and the M2M device can connect to the Bluetooth on the phone. Generally, most indoor
low mobility M2M devices would rather have wireless coverage which is WiFi or cellular.
A point generally made in favor of WiFi is that it’s cheap but as most people would
already know, ‘there is no such thing as a free lunch’ and there are other issues that
need to be considered along with this. First and foremost being that WiFi coverage area
is limited per access point which may be true in case of cellular small cells also.
However the M2M device can always fall back on the macro cell usage in case if the
small cell becomes unavailable for whatever reason. WiFi makes use of unlicensed
spectrum which is prone to interference and jamming issues. Another issue that needs
consideration is if the WiFi channel is security protected or not. If unsecured, the data
sent by the M2M devices may be visible for others to view unless the M2M devices
encrypt it thereby increasing complexity and maybe cost. Security of the devices may
also be compromised if some kind of vulnerability is detected after the devices are in the
field when using WiFi. With cellular, these issues are much reduced as the SIM
provides the additional layer of security against the potential hackers and also the user
data is not visible for anyone interested in eavesdropping or sniffing. In case of security
protected WiFi devices each of the M2M devices would need to possess the appropriate
security credentials. If the WiFi SSID changes or password is changed then each of
these devices would have to somehow update their credentials. With cellular, the device
relies on SIM for authentication and security and thereby benefits both the network as
well as the device as they both know that the other party is a trusted one.
With WiFi out of consideration, an obvious question would be how small cells could do
the job better than the macro cell? The ground reality is that the macro cells are quite
heavily in use most of the day. There is no longer a ‘peak period’ but the use is
generally distributed evenly during an entire day. The standardization bodies along with
the operators are working on various ways to offload the traffic from the macro cells to
some other form of access networks to make sure there is cell capacity available for
users who cannot be or would rather not offload. Going back to the predictions of 50
Billion devices, there is a limit on how many active users the network can
simultaneously allow on a cell. The restriction can arise because of the ‘air interface’
bottlenecks or even the ‘core network’ overload. The networks are also wary of
‘Signalling Tsunamis’ which are very much possible with a multitude of M2M devices.
Some of the new features, especially in LTE, deal with access barring of M2M devices
to avoid overload. Small cells with a restricted coverage area may be less prone to the
‘overload’ situations in the access or/and the core network. There are also features
intended for small cells that will allow the user plane data to be offloaded while the
signaling data, responsible for security, is still sent through the normal route. The above
mentioned and some additional features are still under development and
standardization process by the 3GPP which will work to the benefit of Small Cells
thereby making them the best solution for certain types of M2M devices that we have
considered in this analysis.
For more discussions and topics around SP Mobility, please visit our Mobility Community:
http://cisco.com/go/mobilitycommunity

More Related Content

More from Cisco Service Provider Mobility

More from Cisco Service Provider Mobility (20)

Unveiling the Monetization Opportunities for Carrier Wi-Fi
Unveiling the Monetization Opportunities for Carrier Wi-FiUnveiling the Monetization Opportunities for Carrier Wi-Fi
Unveiling the Monetization Opportunities for Carrier Wi-Fi
 
Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...
 
Defining the Business Case for Carrier-Grade Wi-Fi
Defining the Business Case for Carrier-Grade Wi-FiDefining the Business Case for Carrier-Grade Wi-Fi
Defining the Business Case for Carrier-Grade Wi-Fi
 
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White PaperSimulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
 
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
 
SP Wi-Fi Monetization Thought Leadership
SP Wi-Fi Monetization Thought LeadershipSP Wi-Fi Monetization Thought Leadership
SP Wi-Fi Monetization Thought Leadership
 
Small Cells in the Enterprise
Small Cells in the EnterpriseSmall Cells in the Enterprise
Small Cells in the Enterprise
 
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
 
IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)
 
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
 
5G: Your Questions Answered
5G: Your Questions Answered5G: Your Questions Answered
5G: Your Questions Answered
 
Data Center Migration and Network Bandwidth Assessments with Cisco MATE Desig...
Data Center Migration and Network Bandwidth Assessments with Cisco MATE Desig...Data Center Migration and Network Bandwidth Assessments with Cisco MATE Desig...
Data Center Migration and Network Bandwidth Assessments with Cisco MATE Desig...
 
El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica
 
MATE Design (Data Sheet)
MATE Design (Data Sheet)MATE Design (Data Sheet)
MATE Design (Data Sheet)
 
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
 
Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)
 
Next-Generation Knowledge Workers TweetChat – Transcript
Next-Generation Knowledge Workers TweetChat – TranscriptNext-Generation Knowledge Workers TweetChat – Transcript
Next-Generation Knowledge Workers TweetChat – Transcript
 
Small-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market OverviewSmall-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market Overview
 
Evolving Mobile Data Application Services With SDN
Evolving Mobile Data Application Services With SDNEvolving Mobile Data Application Services With SDN
Evolving Mobile Data Application Services With SDN
 
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
 

Recently uploaded

Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
UXDXConf
 

Recently uploaded (20)

Strategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering TeamsStrategic AI Integration in Engineering Teams
Strategic AI Integration in Engineering Teams
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdf
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
Buy Epson EcoTank L3210 Colour Printer Online.pdf
Buy Epson EcoTank L3210 Colour Printer Online.pdfBuy Epson EcoTank L3210 Colour Printer Online.pdf
Buy Epson EcoTank L3210 Colour Printer Online.pdf
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
 
AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
SOQL 201 for Admins & Developers: Slice & Dice Your Org’s Data With Aggregate...
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
THE BEST IPTV in GERMANY for 2024: IPTVreel
THE BEST IPTV in  GERMANY for 2024: IPTVreelTHE BEST IPTV in  GERMANY for 2024: IPTVreel
THE BEST IPTV in GERMANY for 2024: IPTVreel
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 

M2M, Cellular and Small Cells

  • 1. M2M, Cellular and Small Cells Posted by Zahid Ghadialy on Aug 5, 2013 9:47:28 AM A few questions are being asked recently regarding the impact of M2M on Small Cells. With a prediction of up to 50 billion devices by 2020-25, this is a very valid question. While M2M applies to a broad range of devices, there are still people in the industry who tend to think of M2M devices as small, cheap devices, generally with little or no mobility, responsible for small amounts of data transfer over long durations. While it is true that a multitude of M2M devices may fall in this category, it is not necessarily applicable for all M2M devices. For instance, the car industry is working very tough on the design and development of various ‘connected car’ initiatives. These connected cars will require high speed data transfer (e.g. SatNav maps, traffic related information, video streaming, etc.) over a fast varying channel due to very high mobility. To facilitate and simplify this analysis an assumption of little or no mobility will be made where device ‘may’ or ‘may not’ require reasonable amount of data at regular time intervals. This assumption would also be more applicable to scenarios with possible small cells around. Such devices could be motion sensor based devices like security cameras, connected meters, any other sensors that monitor real time information, etc. We can discount M2M devices like those in connected cars from our analysis because they would most likely rely on macro cellular coverage. Finally, we will consider only ‘open access’ small cells rather than ‘closed access’ (a.k.a. CSG or ‘Closed Subscriber Group’) small cells. There are many factors that need to be considered in the design of an M2M device such as cost, form factor, power consumption, security, etc. To keep the cost down while maintaining a small and simple form factor, it may be sensible to stick with one access technology rather than more. Power consumption is very low in certain type of technologies like Bluetooth; it is not always practical for large number of M2M devices. Each of these M2M devices may need a Bluetooth access point which may not always be feasible. On the personal front, many eHealth M2M devices use Bluetooth as access technology where the user provides some sort of input and the M2M device can connect to the Bluetooth on the phone. Generally, most indoor low mobility M2M devices would rather have wireless coverage which is WiFi or cellular. A point generally made in favor of WiFi is that it’s cheap but as most people would already know, ‘there is no such thing as a free lunch’ and there are other issues that need to be considered along with this. First and foremost being that WiFi coverage area is limited per access point which may be true in case of cellular small cells also. However the M2M device can always fall back on the macro cell usage in case if the small cell becomes unavailable for whatever reason. WiFi makes use of unlicensed spectrum which is prone to interference and jamming issues. Another issue that needs consideration is if the WiFi channel is security protected or not. If unsecured, the data sent by the M2M devices may be visible for others to view unless the M2M devices encrypt it thereby increasing complexity and maybe cost. Security of the devices may also be compromised if some kind of vulnerability is detected after the devices are in the
  • 2. field when using WiFi. With cellular, these issues are much reduced as the SIM provides the additional layer of security against the potential hackers and also the user data is not visible for anyone interested in eavesdropping or sniffing. In case of security protected WiFi devices each of the M2M devices would need to possess the appropriate security credentials. If the WiFi SSID changes or password is changed then each of these devices would have to somehow update their credentials. With cellular, the device relies on SIM for authentication and security and thereby benefits both the network as well as the device as they both know that the other party is a trusted one. With WiFi out of consideration, an obvious question would be how small cells could do the job better than the macro cell? The ground reality is that the macro cells are quite heavily in use most of the day. There is no longer a ‘peak period’ but the use is generally distributed evenly during an entire day. The standardization bodies along with the operators are working on various ways to offload the traffic from the macro cells to some other form of access networks to make sure there is cell capacity available for users who cannot be or would rather not offload. Going back to the predictions of 50 Billion devices, there is a limit on how many active users the network can simultaneously allow on a cell. The restriction can arise because of the ‘air interface’ bottlenecks or even the ‘core network’ overload. The networks are also wary of ‘Signalling Tsunamis’ which are very much possible with a multitude of M2M devices. Some of the new features, especially in LTE, deal with access barring of M2M devices to avoid overload. Small cells with a restricted coverage area may be less prone to the ‘overload’ situations in the access or/and the core network. There are also features intended for small cells that will allow the user plane data to be offloaded while the signaling data, responsible for security, is still sent through the normal route. The above mentioned and some additional features are still under development and standardization process by the 3GPP which will work to the benefit of Small Cells thereby making them the best solution for certain types of M2M devices that we have considered in this analysis. For more discussions and topics around SP Mobility, please visit our Mobility Community: http://cisco.com/go/mobilitycommunity