SlideShare a Scribd company logo
LDOW2012	
  
                                                   Lyon,	
  16	
  April	
  


Linked Data Access 

Goes Mobile"
Context-Aware Authorization for Graph Stores!




                               SELECT … !
                               WHERE {…}!


Luca	
  Costabello,	
  Serena	
  Villata	
  	
  
Nicolas	
  Delaforge,	
  Fabien	
  Gandon	
  
Key Features"
Background!
WAC, [Abel et al, ISWC2007], [Finin et al.,SACMAT2008],[Flouris et al., FIS2010],
[Sacco and Passant, LDOW2011], [Toninelli et al, ISWC2006]!



              Semantic Web                                             Pluggable to
              languages only"                                          any RDF store!
              > No new Policy languages!                               > SPARQL 1.1!


             Granularity from                                         Mobile context in
             triples to whole graphs!                                 the loop!
              > Named Graphs!                                         > Context Awareness!
                          [Carroll	
  et	
  al,	
  WWW2005]	
               [Schilit	
  and	
  Theimer,	
  94]	
  	
  
                                                     RDF	
  1.1	
                                 [Dey,	
  01]	
  


                                                                                                                    2	
  
How it Works – Initial Setup"

●  Named Graph Partitioning!
   !




●  Access Policy Definition!
  !S4AC & PRISSMA Vocabularies!

                                  3	
  
Sample Access Policy"
                        Protected resource




                            Conditions
                            to verify




                                             4	
  
How it Works"
1.  Query Contextualization ! !!



    INSERT DATA { !          SELECT … !   U

                     +	
  
    GRAPH :ctx1{!            WHERE {…}!   P

    [!
    !
    !
     U     P
          ,!        ]!
               ,! , …!
                                          :ctx1!
    }}!



                                                   5	
  
How it Works"
2.  Access Policy Evaluation!
  ASK {?context !
            a prissma:Context; !
            prissma:environment ?env.!
       ?env prissma:currentPOI ?poi. !
       ?poi prissma:radius "500";!
            foaf:based_near ?p. !
                                         =	
  
                                             "false"     	
  
       ?p geo:lat "43.615811";!
          geo:long "7.068532".} !
  BINDINGS ?context {(:ctx1)}!
                                           U
                                           P     6	
  
How it Works"
3.  Query Execution on Accessible Named
  Graphs!

                           :ng1 !         :ng2 !

            SELECT … !                    :ng3 !
            WHERE {…}!

            SELECT …!
            FROM :ng2,:ng3!
            FROM NAMED :ng2,:ng3!
            WHERE {…}!
                                           7	
  
Response Time Evaluation"
            RDF	
  store	
  and	
  SPARQL	
  1.1.	
  engine:	
  Corese-­‐KGRAM	
  with	
  Berlin	
  SPARQL	
  Benchmark	
  Dataset	
  3.1	
  

• Dataset size still predominant!

                                                             • More context updates, !
                                                               more consumers"
                                                                 à Slower!


• Small fraction granted"
    à Faster!
Future Work"

                                            Privacy"
                         	
                          	
                         	
  
                         	
                          	
                         	
  
                         	
                          	
                         	
  
                         	
                          	
                         	
  
           Context data                                           User-centered
         trustworthiness"                                          evaluation"

Luca	
  Costabello	
  |	
  Serena	
  Villata	
  	
  |	
  Nicolas	
  Delaforge	
  |	
  Fabien	
  Gandon	
  
@lukostaz "          "          @serena_villata @ndelaforge"                "          @fabien_gandon"


tinyurl.com/shi3ld

More Related Content

Similar to Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores

Introduction to NoSQL and Couchbase
Introduction to NoSQL and CouchbaseIntroduction to NoSQL and Couchbase
Introduction to NoSQL and Couchbase
Dipti Borkar
 
Web services based workflows to deal with 3D data
Web services based workflows to deal with 3D dataWeb services based workflows to deal with 3D data
Web services based workflows to deal with 3D data
Jose Enrique Ruiz
 
ApacheCon NA 2013 VFASTR
ApacheCon NA 2013 VFASTRApacheCon NA 2013 VFASTR
ApacheCon NA 2013 VFASTR
LucaCinquini
 
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
Dipti Borkar
 
Transition from relational to NoSQL Philly DAMA Day
Transition from relational to NoSQL Philly DAMA DayTransition from relational to NoSQL Philly DAMA Day
Transition from relational to NoSQL Philly DAMA Day
Dipti Borkar
 
CSC 8101 Non Relational Databases
CSC 8101 Non Relational DatabasesCSC 8101 Non Relational Databases
CSC 8101 Non Relational Databases
sjwoodman
 
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
Databricks
 
The Right Data for the Right Job
The Right Data for the Right JobThe Right Data for the Right Job
The Right Data for the Right Job
Emily Curtin
 
Go simple-fast-elastic-with-couchbase-server-borkar
Go simple-fast-elastic-with-couchbase-server-borkarGo simple-fast-elastic-with-couchbase-server-borkar
Go simple-fast-elastic-with-couchbase-server-borkar
Dipti Borkar
 
Leaving the Ivory Tower: Research in the Real World
Leaving the Ivory Tower: Research in the Real WorldLeaving the Ivory Tower: Research in the Real World
Leaving the Ivory Tower: Research in the Real World
ArmonDadgar
 
Polyglot Graph Databases using OCL as pivot
Polyglot Graph Databases using OCL as pivotPolyglot Graph Databases using OCL as pivot
Polyglot Graph Databases using OCL as pivot
Graph-TA
 
Introduction to Galaxy and RNA-Seq
Introduction to Galaxy and RNA-SeqIntroduction to Galaxy and RNA-Seq
Introduction to Galaxy and RNA-Seq
Enis Afgan
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic Technologies
Peter Haase
 
Spark: The Good, the Bad, and the Ugly
Spark: The Good, the Bad, and the UglySpark: The Good, the Bad, and the Ugly
Spark: The Good, the Bad, and the Ugly
Sarah Guido
 
Wf4Ever: Workflow Preservation
Wf4Ever: Workflow PreservationWf4Ever: Workflow Preservation
Wf4Ever: Workflow Preservation
Jose Enrique Ruiz
 
Real time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
Real time data processing with spark & cassandra @ NoSQLMatters 2015 ParisReal time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
Real time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
Duyhai Doan
 
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
NoSQLmatters
 
A View on eScience
A View on eScienceA View on eScience
A View on eScience
Charles Severance
 
STI Summit 2011 - Mlr-sm
STI Summit 2011 - Mlr-smSTI Summit 2011 - Mlr-sm
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
Calvin Tan
 

Similar to Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores (20)

Introduction to NoSQL and Couchbase
Introduction to NoSQL and CouchbaseIntroduction to NoSQL and Couchbase
Introduction to NoSQL and Couchbase
 
Web services based workflows to deal with 3D data
Web services based workflows to deal with 3D dataWeb services based workflows to deal with 3D data
Web services based workflows to deal with 3D data
 
ApacheCon NA 2013 VFASTR
ApacheCon NA 2013 VFASTRApacheCon NA 2013 VFASTR
ApacheCon NA 2013 VFASTR
 
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
Navigating the Transition from relational to NoSQL - CloudCon Expo 2012
 
Transition from relational to NoSQL Philly DAMA Day
Transition from relational to NoSQL Philly DAMA DayTransition from relational to NoSQL Philly DAMA Day
Transition from relational to NoSQL Philly DAMA Day
 
CSC 8101 Non Relational Databases
CSC 8101 Non Relational DatabasesCSC 8101 Non Relational Databases
CSC 8101 Non Relational Databases
 
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
Microservices and Teraflops: Effortlessly Scaling Data Science with PyWren wi...
 
The Right Data for the Right Job
The Right Data for the Right JobThe Right Data for the Right Job
The Right Data for the Right Job
 
Go simple-fast-elastic-with-couchbase-server-borkar
Go simple-fast-elastic-with-couchbase-server-borkarGo simple-fast-elastic-with-couchbase-server-borkar
Go simple-fast-elastic-with-couchbase-server-borkar
 
Leaving the Ivory Tower: Research in the Real World
Leaving the Ivory Tower: Research in the Real WorldLeaving the Ivory Tower: Research in the Real World
Leaving the Ivory Tower: Research in the Real World
 
Polyglot Graph Databases using OCL as pivot
Polyglot Graph Databases using OCL as pivotPolyglot Graph Databases using OCL as pivot
Polyglot Graph Databases using OCL as pivot
 
Introduction to Galaxy and RNA-Seq
Introduction to Galaxy and RNA-SeqIntroduction to Galaxy and RNA-Seq
Introduction to Galaxy and RNA-Seq
 
On demand access to Big Data through Semantic Technologies
 On demand access to Big Data through Semantic Technologies On demand access to Big Data through Semantic Technologies
On demand access to Big Data through Semantic Technologies
 
Spark: The Good, the Bad, and the Ugly
Spark: The Good, the Bad, and the UglySpark: The Good, the Bad, and the Ugly
Spark: The Good, the Bad, and the Ugly
 
Wf4Ever: Workflow Preservation
Wf4Ever: Workflow PreservationWf4Ever: Workflow Preservation
Wf4Ever: Workflow Preservation
 
Real time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
Real time data processing with spark & cassandra @ NoSQLMatters 2015 ParisReal time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
Real time data processing with spark & cassandra @ NoSQLMatters 2015 Paris
 
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
DuyHai DOAN - Real time analytics with Cassandra and Spark - NoSQL matters Pa...
 
A View on eScience
A View on eScienceA View on eScience
A View on eScience
 
STI Summit 2011 - Mlr-sm
STI Summit 2011 - Mlr-smSTI Summit 2011 - Mlr-sm
STI Summit 2011 - Mlr-sm
 
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
Why Node, Express and Postgres - presented 23 Feb 15, Talkjs, Microsoft Audit...
 

More from Luca Costabello

Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph EmbeddingsMachine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Luca Costabello
 
Traffic Analytics for Linked Data Publishers
Traffic Analytics for  Linked Data PublishersTraffic Analytics for  Linked Data Publishers
Traffic Analytics for Linked Data Publishers
Luca Costabello
 
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
Luca Costabello
 
Access Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked DataAccess Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked Data
Luca Costabello
 
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA,Towards Mobile Adaptive Presentation of the Web of DataPRISSMA,Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data
Luca Costabello
 
Time Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog GenerationTime Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog Generation
Luca Costabello
 

More from Luca Costabello (6)

Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph EmbeddingsMachine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
 
Traffic Analytics for Linked Data Publishers
Traffic Analytics for  Linked Data PublishersTraffic Analytics for  Linked Data Publishers
Traffic Analytics for Linked Data Publishers
 
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data...
 
Access Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked DataAccess Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked Data
 
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA,Towards Mobile Adaptive Presentation of the Web of DataPRISSMA,Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data
 
Time Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog GenerationTime Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog Generation
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
Neo4j
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
TIPNGVN2
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
名前 です男
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 

Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores

  • 1. LDOW2012   Lyon,  16  April   Linked Data Access 
 Goes Mobile" Context-Aware Authorization for Graph Stores! SELECT … ! WHERE {…}! Luca  Costabello,  Serena  Villata     Nicolas  Delaforge,  Fabien  Gandon  
  • 2. Key Features" Background! WAC, [Abel et al, ISWC2007], [Finin et al.,SACMAT2008],[Flouris et al., FIS2010], [Sacco and Passant, LDOW2011], [Toninelli et al, ISWC2006]! Semantic Web Pluggable to languages only" any RDF store! > No new Policy languages! > SPARQL 1.1! Granularity from Mobile context in triples to whole graphs! the loop! > Named Graphs! > Context Awareness! [Carroll  et  al,  WWW2005]   [Schilit  and  Theimer,  94]     RDF  1.1   [Dey,  01]   2  
  • 3. How it Works – Initial Setup" ●  Named Graph Partitioning! ! ●  Access Policy Definition! !S4AC & PRISSMA Vocabularies! 3  
  • 4. Sample Access Policy" Protected resource Conditions to verify 4  
  • 5. How it Works" 1.  Query Contextualization ! !! INSERT DATA { ! SELECT … ! U +   GRAPH :ctx1{! WHERE {…}! P [! ! ! U P ,! ]! ,! , …! :ctx1! }}! 5  
  • 6. How it Works" 2.  Access Policy Evaluation! ASK {?context ! a prissma:Context; ! prissma:environment ?env.! ?env prissma:currentPOI ?poi. ! ?poi prissma:radius "500";! foaf:based_near ?p. ! =   "false"   ?p geo:lat "43.615811";! geo:long "7.068532".} ! BINDINGS ?context {(:ctx1)}! U P 6  
  • 7. How it Works" 3.  Query Execution on Accessible Named Graphs! :ng1 ! :ng2 ! SELECT … ! :ng3 ! WHERE {…}! SELECT …! FROM :ng2,:ng3! FROM NAMED :ng2,:ng3! WHERE {…}! 7  
  • 8. Response Time Evaluation" RDF  store  and  SPARQL  1.1.  engine:  Corese-­‐KGRAM  with  Berlin  SPARQL  Benchmark  Dataset  3.1   • Dataset size still predominant! • More context updates, ! more consumers" à Slower! • Small fraction granted" à Faster!
  • 9. Future Work" Privacy"                         Context data User-centered trustworthiness" evaluation" Luca  Costabello  |  Serena  Villata    |  Nicolas  Delaforge  |  Fabien  Gandon   @lukostaz " " @serena_villata @ndelaforge" " @fabien_gandon" tinyurl.com/shi3ld