Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile

Luca Costabello
Luca CostabelloPostdoctoral Researcher at Fujitsu Ireland
Error-Tolerant RDF Subgraph
Matching for Adaptive Presentation
of Linked Data on Mobile
Luca Costabello
2
Mobile Guide
 Museum Triplestore
“Is it optimized for my tablet?”
“Does it highlight practical
information when I am on my way?”
“Does it have a visually-impaired mode?”
Example: An RDF-based Mobile Guide for Museums
3
How to enable context-aware adaptation
for Linked Data consumption?
Research Challenges
1.  Model context-aware presentation metadata?
2.  Select proper presentation metadata at runtime?
“Context” as in [Dey 2001]
4
Modeling Presentation Metadata
1
Selecting Presentation Metadata
with Error-Tolerant Matching
2
Evaluation
3
Conclusions
4
5
Modeling Presentation Metadata
1
Selecting Presentation Metadata
with Error-Tolerant Matching
2
Evaluation
3
Conclusions
4
6
NAC
Laakko
Chen
Zhang
Chamaleon
Butter
Paternò
MIMOSA
CAMB
Adipat
COIN
CSSMedia
Queries
PRISSMA
(OurSystem)
Linked Data
support
 ✓
Context-awareness
 ✓ ✓
 ✓ ✓ ✓ ✓ ✓
 ✓
Standard Languages
 ✓ ✓ ✓ ✓ ✓
 ✓
 ✓
Runtime adaptation
 ✓ ✓
 ✓
 ✓
Multimodality
 ✓
 
Client-side only

(for privacy preservation)
 ✓ ✓
 ✓
 ✓
 ✓
Evaluation
 ✓ ✓ ✓ ✓
 ✓
Adaptive Presentation Frameworks for the Web
7
Presentation Frameworks for the Semantic Web
Haystack
Noadster
Surrogates
Declarative
approach
 ✓
 ✓
Domain
Independence
 ✓
 ✓
 ✓
Standard Languages
 ✓
 ✓
Context Awareness
Automatic
stylesheets
Evaluation
Distribution
Multimodality
 ✓
Xenon
Tal4Rdf
LESS
Hidethe
Stack
LDVM
✓
 ✓
 ✓
 ✓
 ✓
✓
 ✓
 ✓
✓
 ✓
 ✓
✓
✓
Fresnel
✓
✓
✓
✓
PRISSMA
(OurSystem)
✓
✓
✓
✓
✓
✓
Fresnel [Pietriga et al. 2006]
8
Illustration from [Pietriga et al. 2006]
Content formatting
and additional
content"
Content selection
and ordering"
Styling instructions
for fonts, colors, and
borders"
Presentation Metadata Vocabulary and Rendering Engine for RDF
9
Our Contribution: Extending Fresnel with PRISSMA*
Context
PRISSMA Prism
Context
Description
PRISSMA Context
*Presentation of Resources for Interoperable Semantic and Shareable Mobile Adaptability
Extending Fresnel with PRISSMA
10
Context
fresnel:Lens
fresnel:Format
fresnel:group
fresnel:group
Environment
environment
Device
device
User
user
ns.inria.fr/prissma
fresnel:Group
fresnel:purpose
Fresnel
PRISSMA (Our Contribution)
Contextfresnel:Purpose
Prismfresnel:Group
owl:equivalentClass
fresnel:purpose
owl:equivalentClass
11
Example
A Prism for showing and styling titles and
authors of paintings metadata accessed from
inside the museum.
12
:paintingPrism a prissma:Prism, fresnel:Group ;!
fresnel:stylesheetLink <style.css> ;!
fresnel:purpose :atTheMuseum .!
!
:paintinglens a fresnel:Lens;!
fresnel:group :PaintingPrism ;!
fresnel:classLensDomain art:Painting ;!
fresnel:showProperties (dc:title!
dcn:author) .!
!
:depictionFormat a fresnel:Format ;!
fresnel:group :paintingPrism ;!
fresnel:propertyFormatDomain dc:title ;!
fresnel:valueStyle ”title"^^fresnel:styleClass .!
!
:atTheMuseum a prissma:Context ;!
prissma:environment :museumEnv .!
!
:museumEnv a prissma:Environment ;!
prissma:poi :museumGeo .!
!
:museumGeo geo:lat "48.86034" ;!
geo:long "2.337599" ;!
prissma:radius ”200" .!
Lens
Format
Context
prissma:environment
2.337599
48.86034
200
:museumGeo
geo:lat
geo:long
prissma:radius
prissma:poi
prissma:Environment
prissma:Context
:atTheMuseum
:museumEnv
A Prism for showing and styling titles and authors of
paintings metadata accessed from inside the museum.
Example:
Examples

PRISSMA Browser for Android
13
Smartphone, user walking
in museum town.
Tablet, user at home.
github.com/lukostaz/prissma-browser/
14
Modeling Presentation Metadata
1
Selecting Presentation Metadata
with Error-Tolerant Matching
2
Evaluation
3
Conclusions
4
Selecting Presentation Metadata 
15
:smartphoneMoving
:tabletAtHome
:maleVisitorAtTheMuseum
:actualContext
16
Ambiguity
 Incompleteness
Selecting Presentation Metadata is tricky
Sensor Noise
2.32434
48.843453
:poi
geo:lat
geo:long
10
prissma:radius
2.337599
48.86034 5
:poi
geo:lat
geo:long
prissma:radius
:user1
"computers"
foaf:interest
:user1
"computer science"
foaf:interest
:user1
:Karl :Anita
prissma:nearbyEntity
:John
:user1
:Karl :Anita
prissma:nearbyEntity
Prism
Actual
Need Error-tolerant matching
17
Error-tolerant matching for RDF Graphs
iSPARQL
Silk
Zou
RDF-specific
 ✓
 ✓
 ✓
Data Heterogeneity
Client-side Execution

(for privacy preservation)
Incremental index updates
✓
Selective matching cache
PRISSMA
✓
✓
✓
✓
Messmer
✓
Our Contribution: Adapting Messmer
to RDF and Mobile Context
Optimal error-tolerant subgraph isomorphisms based on graph edit distance.

18
• Atomic element might be
a graph: Context Units
•  Core Context Classes
•  Entities
•  Literals
•  Geo
•  Time
• Customized Cost Functions
•  Strings (Monge-Elkan)
•  Geographic (Haversine distance + Decay)
•  Temporal (Interval Inclusion + Decay)
•  Missing nodes
2.32434
48.843453
:poi
geo:lat
geo:long
10
prissma:radius
Our Extensions:
[Messmer et al. 98]
Prism Selection - Step 1: Decomposition
(i.e. Index Building)
19
prissma:environment
2.337599
48.86034
200
:museumGeo
geo:lat
geo:long
prissma:radius
prissma:poi
prissma:Environment
prissma:Context
:atTheMuseum
:museumEnv
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{3,1,2,{prissma:poi}}
{4,0,3,{prissma:environment}}
:atTheMuseum
Context Units
Prism Selection – Step 2: Online Search Algorithm!
1  foreach context unit S in D do!
2  compute_subgraph_isomorphisms(S,GI)!
3  !
4  while C(fcheapest)< T { !
5  if S1 is Prism then!
6  R.add(S1)!
7  !
8  foreach child of S1 do!
9  fchild= combine(fS1,fS2)!
10  }!
11  return R!
20
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{3,1,2,{prissma:poi}}
{4,0,3,{prissma:environment}}
:atTheMuseum
prissma:environment
2.32434
48.843453
:actualPOI
geo:lat
geo:long
prissma:poi
:ActualCtx
:actualEnv
10
prissma:radius
C=0! C=0.34! C=0!
1. Compute context units
isomorphisms costs
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{3,1,2,{prissma:poi}}
{4,0,3,{prissma:environment}}
:atTheMuseum
Prism Selection: Search Algorithm!
1  foreach context unit S in D do!
2  compute_subgraph_isomorphisms(S,GI)!
3  !
4  while C(fcheapest)< T { !
5  if S1 is Prism then!
6  R.add(S1)!
7  !
8  foreach child of S1 do!
9  fchild= combine(fS1,fS2)!
10  }!
11  return R!
21
prissma:environment
2.32434
48.843453
:actualPOI
geo:lat
geo:long
prissma:poi
:ActualCtx
:actualEnv
10
prissma:radius
C=0! C=0.34! C=0!
C=0.17!
C=0.09!
T=0.6!
✓
✓
 ✓
✓
✓
2. Combine costs
C < T --> Match!
22
Modeling Presentation Metadata
1
Selecting Presentation Metadata with
Error-Tolerant Matching
2
Evaluation
3
Conclusions
4
Evaluation: Memory Consumption
23
0
50
100
150
200
250
300
0.1
 0.3
 0.5
 0.7
 0.9
DecompositionItems
Percentage of common context units
Total decomposition Items
Context Units (decomposition)
Context Units (raw prisms)
0
5
10
15
20
25
0.1
 0.3
 0.5
 0.7
 0.9
Memory[KB]
Percentage of common context units
PRISSMA decomposition 
 Jena Models
Evaluation: Response Time
24
If prisms are completely different
 if prisms are highly
similar
→
25
Modeling Presentation Metadata
1
Selecting Presentation Metadata with
Error-Tolerant Matching
2
Evaluation
3
Conclusions
4
26
Limitations and Future Work
Prisms Distribution: 

Linked Presentation Metadata.
Modeling Presentation Metadata
1
Selecting Presentation Metadata
with Error-Tolerant Matching
2
Evaluation
3
 User acceptability evaluation
campaign.
Machine learning to optimize cost
functions parameterization.
Beyond Fresnel: support for other
presentation engines
Thanks.
wimmics.inria.fr/projects/prissma
@lukostaz
1 of 26

Recommended

From Ontology to Wiki: Automating Generation of Semantic Wiki Interfaces from... by
From Ontology to Wiki: Automating Generation of Semantic Wiki Interfaces from...From Ontology to Wiki: Automating Generation of Semantic Wiki Interfaces from...
From Ontology to Wiki: Automating Generation of Semantic Wiki Interfaces from...Open University in the Netherlands
864 views29 slides
Graph Based Pattern Recognition by
Graph Based Pattern RecognitionGraph Based Pattern Recognition
Graph Based Pattern RecognitionNicola Strisciuglio
4.4K views19 slides
Recognition as Graph Matching by
  Recognition as Graph Matching  Recognition as Graph Matching
Recognition as Graph MatchingVishakha Agarwal
2.7K views28 slides
Context-Aware Access Control and Presentation of Linked Data by
Context-Aware Access Control and Presentation of Linked DataContext-Aware Access Control and Presentation of Linked Data
Context-Aware Access Control and Presentation of Linked DataLuca Costabello
7.8K views52 slides
Minko - Targeting Flash/Stage3D with C++ and GLSL by
Minko - Targeting Flash/Stage3D with C++ and GLSLMinko - Targeting Flash/Stage3D with C++ and GLSL
Minko - Targeting Flash/Stage3D with C++ and GLSLMinko3D
3.1K views68 slides
Sparklis exploration et interrogation de points d'accès sparql par interactio... by
Sparklis exploration et interrogation de points d'accès sparql par interactio...Sparklis exploration et interrogation de points d'accès sparql par interactio...
Sparklis exploration et interrogation de points d'accès sparql par interactio...SemWebPro
759 views14 slides

More Related Content

Similar to Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile

FAIR Projector Builder by
FAIR Projector BuilderFAIR Projector Builder
FAIR Projector BuilderMark Wilkinson
513 views35 slides
Real-time Semantic Web with Twitter Annotations by
Real-time Semantic Web with Twitter AnnotationsReal-time Semantic Web with Twitter Annotations
Real-time Semantic Web with Twitter AnnotationsJoshua Shinavier
5.7K views20 slides
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016 by
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016MLconf
1.4K views42 slides
Atlanta MLconf Machine Learning Conference 09-23-2016 by
Atlanta MLconf Machine Learning Conference 09-23-2016Atlanta MLconf Machine Learning Conference 09-23-2016
Atlanta MLconf Machine Learning Conference 09-23-2016Chris Fregly
1.1K views42 slides
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015 by
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015Mark Wilkinson
628 views121 slides
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab... by
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...Franck Michel
256 views31 slides

Similar to Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile(20)

Real-time Semantic Web with Twitter Annotations by Joshua Shinavier
Real-time Semantic Web with Twitter AnnotationsReal-time Semantic Web with Twitter Annotations
Real-time Semantic Web with Twitter Annotations
Joshua Shinavier5.7K views
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016 by MLconf
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016
Chris Fregly, Research Scientist, PipelineIO at MLconf ATL 2016
MLconf1.4K views
Atlanta MLconf Machine Learning Conference 09-23-2016 by Chris Fregly
Atlanta MLconf Machine Learning Conference 09-23-2016Atlanta MLconf Machine Learning Conference 09-23-2016
Atlanta MLconf Machine Learning Conference 09-23-2016
Chris Fregly1.1K views
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015 by Mark Wilkinson
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015
Data FAIRport Prototype & Demo - Presentation to Elsevier, Jul 10, 2015
Mark Wilkinson628 views
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab... by Franck Michel
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...
Franck Michel256 views
JGrass and uDig, chronicles of a lovestory by Andrea Antonello
JGrass and uDig, chronicles of a lovestoryJGrass and uDig, chronicles of a lovestory
JGrass and uDig, chronicles of a lovestory
Andrea Antonello740 views
The nature.com ontologies portal: nature.com/ontologies by Tony Hammond
The nature.com ontologies portal: nature.com/ontologiesThe nature.com ontologies portal: nature.com/ontologies
The nature.com ontologies portal: nature.com/ontologies
Tony Hammond141 views
Bootstrap Custom Image Classification using Transfer Learning by Danielle Dea... by Wee Hyong Tok
Bootstrap Custom Image Classification using Transfer Learning by Danielle Dea...Bootstrap Custom Image Classification using Transfer Learning by Danielle Dea...
Bootstrap Custom Image Classification using Transfer Learning by Danielle Dea...
Wee Hyong Tok509 views
#DHNord2019 : Pour un regard à 360 degrés des corpus visuels : pratiques de m... by Antoine Courtin
#DHNord2019 : Pour un regard à 360 degrés des corpus visuels : pratiques de m...#DHNord2019 : Pour un regard à 360 degrés des corpus visuels : pratiques de m...
#DHNord2019 : Pour un regard à 360 degrés des corpus visuels : pratiques de m...
Antoine Courtin681 views
bridging formal semantics and social semantics on the web by Fabien Gandon
bridging formal semantics and social semantics on the webbridging formal semantics and social semantics on the web
bridging formal semantics and social semantics on the web
Fabien Gandon3.6K views
Unlocking the Semantics of Multimedia Presentations in the Web with the Multi... by Carsten Saathoff
Unlocking the Semantics of Multimedia Presentations in the Web with the Multi...Unlocking the Semantics of Multimedia Presentations in the Web with the Multi...
Unlocking the Semantics of Multimedia Presentations in the Web with the Multi...
Carsten Saathoff665 views
ResearchSpace Platform in Use by Barry Norton
ResearchSpace Platform in UseResearchSpace Platform in Use
ResearchSpace Platform in Use
Barry Norton1.2K views
The SPARQL Anything project by Enrico Daga
The SPARQL Anything projectThe SPARQL Anything project
The SPARQL Anything project
Enrico Daga211 views
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... by Vladimir Alexiev, PhD, PMP
 Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
How to enhance your DSpace repository: use cases for DSpace-CRIS, DSpace-RDM,... by 4Science
How to enhance your DSpace repository: use cases for DSpace-CRIS, DSpace-RDM,...How to enhance your DSpace repository: use cases for DSpace-CRIS, DSpace-RDM,...
How to enhance your DSpace repository: use cases for DSpace-CRIS, DSpace-RDM,...
4Science1.1K views
Framester and WFD by Aldo Gangemi
Framester and WFD Framester and WFD
Framester and WFD
Aldo Gangemi623 views

More from Luca Costabello

Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings by
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph EmbeddingsMachine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph EmbeddingsLuca Costabello
643 views24 slides
Traffic Analytics for Linked Data Publishers by
Traffic Analytics for  Linked Data PublishersTraffic Analytics for  Linked Data Publishers
Traffic Analytics for Linked Data PublishersLuca Costabello
684 views26 slides
Access Control for HTTP Operations on Linked Data by
Access Control for HTTP Operations on Linked DataAccess Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked DataLuca Costabello
1.8K views31 slides
Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores by
Linked Data Access Goes Mobile: Context Aware Authorization for Graph StoresLinked Data Access Goes Mobile: Context Aware Authorization for Graph Stores
Linked Data Access Goes Mobile: Context Aware Authorization for Graph StoresLuca Costabello
1.2K views9 slides
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data by
PRISSMA,Towards Mobile Adaptive Presentation of the Web of DataPRISSMA,Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA, Towards Mobile Adaptive Presentation of the Web of DataLuca Costabello
1.2K views7 slides
Time Based Cluster Analysis for Automatic Blog Generation by
Time Based Cluster Analysis for Automatic Blog GenerationTime Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog GenerationLuca Costabello
2.2K views14 slides

More from Luca Costabello(6)

Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings by Luca Costabello
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph EmbeddingsMachine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Machine Learning on Knowledge Graphs: a Quick Tour of Knowledge Graph Embeddings
Luca Costabello643 views
Traffic Analytics for Linked Data Publishers by Luca Costabello
Traffic Analytics for  Linked Data PublishersTraffic Analytics for  Linked Data Publishers
Traffic Analytics for Linked Data Publishers
Luca Costabello684 views
Access Control for HTTP Operations on Linked Data by Luca Costabello
Access Control for HTTP Operations on Linked DataAccess Control for HTTP Operations on Linked Data
Access Control for HTTP Operations on Linked Data
Luca Costabello1.8K views
Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores by Luca Costabello
Linked Data Access Goes Mobile: Context Aware Authorization for Graph StoresLinked Data Access Goes Mobile: Context Aware Authorization for Graph Stores
Linked Data Access Goes Mobile: Context Aware Authorization for Graph Stores
Luca Costabello1.2K views
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data by Luca Costabello
PRISSMA,Towards Mobile Adaptive Presentation of the Web of DataPRISSMA,Towards Mobile Adaptive Presentation of the Web of Data
PRISSMA, Towards Mobile Adaptive Presentation of the Web of Data
Luca Costabello1.2K views
Time Based Cluster Analysis for Automatic Blog Generation by Luca Costabello
Time Based Cluster Analysis for Automatic Blog GenerationTime Based Cluster Analysis for Automatic Blog Generation
Time Based Cluster Analysis for Automatic Blog Generation
Luca Costabello2.2K views

Recently uploaded

STPI OctaNE CoE Brochure.pdf by
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdfmadhurjyapb
13 views1 slide
20231123_Camunda Meetup Vienna.pdf by
20231123_Camunda Meetup Vienna.pdf20231123_Camunda Meetup Vienna.pdf
20231123_Camunda Meetup Vienna.pdfPhactum Softwareentwicklung GmbH
33 views73 slides
Scaling Knowledge Graph Architectures with AI by
Scaling Knowledge Graph Architectures with AIScaling Knowledge Graph Architectures with AI
Scaling Knowledge Graph Architectures with AIEnterprise Knowledge
28 views15 slides
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensorssugiuralab
19 views15 slides
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...Bernd Ruecker
33 views69 slides
Mini-Track: Challenges to Network Automation Adoption by
Mini-Track: Challenges to Network Automation AdoptionMini-Track: Challenges to Network Automation Adoption
Mini-Track: Challenges to Network Automation AdoptionNetwork Automation Forum
12 views27 slides

Recently uploaded(20)

STPI OctaNE CoE Brochure.pdf by madhurjyapb
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdf
madhurjyapb13 views
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab19 views
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker33 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson66 views
AMAZON PRODUCT RESEARCH.pdf by JerikkLaureta
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta19 views
Transcript: The Details of Description Techniques tips and tangents on altern... by BookNet Canada
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...
BookNet Canada135 views
Five Things You SHOULD Know About Postman by Postman
Five Things You SHOULD Know About PostmanFive Things You SHOULD Know About Postman
Five Things You SHOULD Know About Postman
Postman30 views
Empathic Computing: Delivering the Potential of the Metaverse by Mark Billinghurst
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
Mark Billinghurst476 views
Case Study Copenhagen Energy and Business Central.pdf by Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana16 views
SAP Automation Using Bar Code and FIORI.pdf by Virendra Rai, PMP
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdf
Piloting & Scaling Successfully With Microsoft Viva by Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
Special_edition_innovator_2023.pdf by WillDavies22
Special_edition_innovator_2023.pdfSpecial_edition_innovator_2023.pdf
Special_edition_innovator_2023.pdf
WillDavies2217 views

Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile

  • 1. Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked Data on Mobile Luca Costabello
  • 2. 2 Mobile Guide Museum Triplestore “Is it optimized for my tablet?” “Does it highlight practical information when I am on my way?” “Does it have a visually-impaired mode?” Example: An RDF-based Mobile Guide for Museums
  • 3. 3 How to enable context-aware adaptation for Linked Data consumption? Research Challenges 1.  Model context-aware presentation metadata? 2.  Select proper presentation metadata at runtime? “Context” as in [Dey 2001]
  • 4. 4 Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 Conclusions 4
  • 5. 5 Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 Conclusions 4
  • 6. 6 NAC Laakko Chen Zhang Chamaleon Butter Paternò MIMOSA CAMB Adipat COIN CSSMedia Queries PRISSMA (OurSystem) Linked Data support ✓ Context-awareness ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Standard Languages ✓ ✓ ✓ ✓ ✓ ✓ ✓ Runtime adaptation ✓ ✓ ✓ ✓ Multimodality ✓ Client-side only
 (for privacy preservation) ✓ ✓ ✓ ✓ ✓ Evaluation ✓ ✓ ✓ ✓ ✓ Adaptive Presentation Frameworks for the Web
  • 7. 7 Presentation Frameworks for the Semantic Web Haystack Noadster Surrogates Declarative approach ✓ ✓ Domain Independence ✓ ✓ ✓ Standard Languages ✓ ✓ Context Awareness Automatic stylesheets Evaluation Distribution Multimodality ✓ Xenon Tal4Rdf LESS Hidethe Stack LDVM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Fresnel ✓ ✓ ✓ ✓ PRISSMA (OurSystem) ✓ ✓ ✓ ✓ ✓ ✓
  • 8. Fresnel [Pietriga et al. 2006] 8 Illustration from [Pietriga et al. 2006] Content formatting and additional content" Content selection and ordering" Styling instructions for fonts, colors, and borders" Presentation Metadata Vocabulary and Rendering Engine for RDF
  • 9. 9 Our Contribution: Extending Fresnel with PRISSMA* Context PRISSMA Prism Context Description PRISSMA Context *Presentation of Resources for Interoperable Semantic and Shareable Mobile Adaptability
  • 10. Extending Fresnel with PRISSMA 10 Context fresnel:Lens fresnel:Format fresnel:group fresnel:group Environment environment Device device User user ns.inria.fr/prissma fresnel:Group fresnel:purpose Fresnel PRISSMA (Our Contribution) Contextfresnel:Purpose Prismfresnel:Group owl:equivalentClass fresnel:purpose owl:equivalentClass
  • 11. 11 Example A Prism for showing and styling titles and authors of paintings metadata accessed from inside the museum.
  • 12. 12 :paintingPrism a prissma:Prism, fresnel:Group ;! fresnel:stylesheetLink <style.css> ;! fresnel:purpose :atTheMuseum .! ! :paintinglens a fresnel:Lens;! fresnel:group :PaintingPrism ;! fresnel:classLensDomain art:Painting ;! fresnel:showProperties (dc:title! dcn:author) .! ! :depictionFormat a fresnel:Format ;! fresnel:group :paintingPrism ;! fresnel:propertyFormatDomain dc:title ;! fresnel:valueStyle ”title"^^fresnel:styleClass .! ! :atTheMuseum a prissma:Context ;! prissma:environment :museumEnv .! ! :museumEnv a prissma:Environment ;! prissma:poi :museumGeo .! ! :museumGeo geo:lat "48.86034" ;! geo:long "2.337599" ;! prissma:radius ”200" .! Lens Format Context prissma:environment 2.337599 48.86034 200 :museumGeo geo:lat geo:long prissma:radius prissma:poi prissma:Environment prissma:Context :atTheMuseum :museumEnv A Prism for showing and styling titles and authors of paintings metadata accessed from inside the museum. Example:
  • 13. Examples
 PRISSMA Browser for Android 13 Smartphone, user walking in museum town. Tablet, user at home. github.com/lukostaz/prissma-browser/
  • 14. 14 Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 Conclusions 4
  • 15. Selecting Presentation Metadata 15 :smartphoneMoving :tabletAtHome :maleVisitorAtTheMuseum :actualContext
  • 16. 16 Ambiguity Incompleteness Selecting Presentation Metadata is tricky Sensor Noise 2.32434 48.843453 :poi geo:lat geo:long 10 prissma:radius 2.337599 48.86034 5 :poi geo:lat geo:long prissma:radius :user1 "computers" foaf:interest :user1 "computer science" foaf:interest :user1 :Karl :Anita prissma:nearbyEntity :John :user1 :Karl :Anita prissma:nearbyEntity Prism Actual Need Error-tolerant matching
  • 17. 17 Error-tolerant matching for RDF Graphs iSPARQL Silk Zou RDF-specific ✓ ✓ ✓ Data Heterogeneity Client-side Execution
 (for privacy preservation) Incremental index updates ✓ Selective matching cache PRISSMA ✓ ✓ ✓ ✓ Messmer ✓
  • 18. Our Contribution: Adapting Messmer to RDF and Mobile Context Optimal error-tolerant subgraph isomorphisms based on graph edit distance. 18 • Atomic element might be a graph: Context Units •  Core Context Classes •  Entities •  Literals •  Geo •  Time • Customized Cost Functions •  Strings (Monge-Elkan) •  Geographic (Haversine distance + Decay) •  Temporal (Interval Inclusion + Decay) •  Missing nodes 2.32434 48.843453 :poi geo:lat geo:long 10 prissma:radius Our Extensions: [Messmer et al. 98]
  • 19. Prism Selection - Step 1: Decomposition (i.e. Index Building) 19 prissma:environment 2.337599 48.86034 200 :museumGeo geo:lat geo:long prissma:radius prissma:poi prissma:Environment prissma:Context :atTheMuseum :museumEnv prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 {3,1,2,{prissma:poi}} {4,0,3,{prissma:environment}} :atTheMuseum Context Units
  • 20. Prism Selection – Step 2: Online Search Algorithm! 1  foreach context unit S in D do! 2  compute_subgraph_isomorphisms(S,GI)! 3  ! 4  while C(fcheapest)< T { ! 5  if S1 is Prism then! 6  R.add(S1)! 7  ! 8  foreach child of S1 do! 9  fchild= combine(fS1,fS2)! 10  }! 11  return R! 20 prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 {3,1,2,{prissma:poi}} {4,0,3,{prissma:environment}} :atTheMuseum prissma:environment 2.32434 48.843453 :actualPOI geo:lat geo:long prissma:poi :ActualCtx :actualEnv 10 prissma:radius C=0! C=0.34! C=0! 1. Compute context units isomorphisms costs
  • 21. prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 {3,1,2,{prissma:poi}} {4,0,3,{prissma:environment}} :atTheMuseum Prism Selection: Search Algorithm! 1  foreach context unit S in D do! 2  compute_subgraph_isomorphisms(S,GI)! 3  ! 4  while C(fcheapest)< T { ! 5  if S1 is Prism then! 6  R.add(S1)! 7  ! 8  foreach child of S1 do! 9  fchild= combine(fS1,fS2)! 10  }! 11  return R! 21 prissma:environment 2.32434 48.843453 :actualPOI geo:lat geo:long prissma:poi :ActualCtx :actualEnv 10 prissma:radius C=0! C=0.34! C=0! C=0.17! C=0.09! T=0.6! ✓ ✓ ✓ ✓ ✓ 2. Combine costs C < T --> Match!
  • 22. 22 Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 Conclusions 4
  • 23. Evaluation: Memory Consumption 23 0 50 100 150 200 250 300 0.1 0.3 0.5 0.7 0.9 DecompositionItems Percentage of common context units Total decomposition Items Context Units (decomposition) Context Units (raw prisms) 0 5 10 15 20 25 0.1 0.3 0.5 0.7 0.9 Memory[KB] Percentage of common context units PRISSMA decomposition Jena Models
  • 24. Evaluation: Response Time 24 If prisms are completely different if prisms are highly similar →
  • 25. 25 Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 Conclusions 4
  • 26. 26 Limitations and Future Work Prisms Distribution: 
 Linked Presentation Metadata. Modeling Presentation Metadata 1 Selecting Presentation Metadata with Error-Tolerant Matching 2 Evaluation 3 User acceptability evaluation campaign. Machine learning to optimize cost functions parameterization. Beyond Fresnel: support for other presentation engines Thanks. wimmics.inria.fr/projects/prissma @lukostaz