Harmonic and Fibonacci
Sequence
Review!
What is an arithmetic sequence?
Give examples of an arithmetic sequence.
Harmonic Sequence
A sequence whose reciprocals of terms form an
arithmetic sequence.
Examples!
1
2
,
1
4
,
1
6
,
1
8
, …
−
2
3
, −
2
7
, −
2
11
, −
2
15
, …
5
7
,
1
2
,
5
13
,
5
16
, …
4
9
,
1
3
,
4
15
,
2
9
, …
nth term of a Harmonic Sequence
𝑎𝑛 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟
𝑎1 + 𝑛 − 1 𝑑
Find the 10th term!
1.
2
3
,
2
7
,
2
11
,
2
15
, …
2.
5
7
,
1
2
,
5
13
,
5
16
, …
Determine whether the given sequence is
harmonic or not then solve for the 8th term.
1.
1
5
,
1
10
,
1
15
,
1
20
, …
2.
3
8
,
1
4
,
3
16
,
3
20
, …
3.
7
9
,
7
15
,
1
3
,
7
26
, …
How do you describe harmony?
1
5
,
1
10
,
1
15
,
1
20
, …
RESPECT for HUMAN DIGNITY.
Our individual differences(different denominators)
will lead to harmonious relationship for as long as
we respect each other.
Will you change your personality for a
harmonious relationship?
7
9
,
7
15
,
1
3
,
7
26
, …
We are all different, and these differences should
not hinder us in attaining harmony. Change if you
can change and if there should be changed.
Romans 14:19
Let us therefore follow after the things which
make for peace, and things wherewith one may
edify another
Fibonacci Sequence
A sequence whose 𝑎1 = 𝑎2 = 1 and the next terms
are obtained by adding the two preceding terms.
1,1,2,3,5,8, …
There is only one Fibonacci Sequence
Fibonacci – Like Sequence
Sequence that follow the same pattern as the
original Fibonacci Sequence.
2,2,4,6,10, …
3,3,6,9,15, …
10,10,20,30,50, …
nth term of a Fibonacci Sequence
There is no other way in finding the nth term of a
Fibonacci or Fibonacci – like sequence than listing
and adding the preceding terms manually.
Determine whether the following
statements are TRUE or FALSE.
1. The 3rd term of a Fibonacci or any Fibonacci –
like sequence is always twice the first term.
2. The 5th term of a Fibonacci or any Fibonacci –
like sequence is divisible by 5.
3. The 6th term of a Fibonacci – like sequence with
1st term 4 is 32.
4. The sum of the first 5 terms of a Fibonacci
sequence is 12.
Drill
Determine whether the following is harmonic or
not then find 𝑎9.
1.
1
7
,
1
13
,
1
19
,
1
25
, …
2.
4
19
,
1
5
,
4
21
,
2
11
, …
3.
6
5
,
2
3
,
6
13
,
6
17
, …
Drill
Find the 8th term of the following Fibonacci – like
sequence if:
1. The 2nd term is 5.
2. The 3rd term is 8.
3. The 1st term is 7.

Lesson 6 - Harmonic and Fibonacci Sequence.pptx

  • 1.
  • 2.
    Review! What is anarithmetic sequence? Give examples of an arithmetic sequence.
  • 3.
    Harmonic Sequence A sequencewhose reciprocals of terms form an arithmetic sequence.
  • 4.
    Examples! 1 2 , 1 4 , 1 6 , 1 8 , … − 2 3 , − 2 7 ,− 2 11 , − 2 15 , … 5 7 , 1 2 , 5 13 , 5 16 , … 4 9 , 1 3 , 4 15 , 2 9 , …
  • 5.
    nth term ofa Harmonic Sequence 𝑎𝑛 = 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 𝑎1 + 𝑛 − 1 𝑑 Find the 10th term! 1. 2 3 , 2 7 , 2 11 , 2 15 , … 2. 5 7 , 1 2 , 5 13 , 5 16 , …
  • 6.
    Determine whether thegiven sequence is harmonic or not then solve for the 8th term. 1. 1 5 , 1 10 , 1 15 , 1 20 , … 2. 3 8 , 1 4 , 3 16 , 3 20 , … 3. 7 9 , 7 15 , 1 3 , 7 26 , …
  • 7.
    How do youdescribe harmony? 1 5 , 1 10 , 1 15 , 1 20 , … RESPECT for HUMAN DIGNITY. Our individual differences(different denominators) will lead to harmonious relationship for as long as we respect each other.
  • 8.
    Will you changeyour personality for a harmonious relationship? 7 9 , 7 15 , 1 3 , 7 26 , … We are all different, and these differences should not hinder us in attaining harmony. Change if you can change and if there should be changed.
  • 9.
    Romans 14:19 Let ustherefore follow after the things which make for peace, and things wherewith one may edify another
  • 10.
    Fibonacci Sequence A sequencewhose 𝑎1 = 𝑎2 = 1 and the next terms are obtained by adding the two preceding terms. 1,1,2,3,5,8, … There is only one Fibonacci Sequence
  • 11.
    Fibonacci – LikeSequence Sequence that follow the same pattern as the original Fibonacci Sequence. 2,2,4,6,10, … 3,3,6,9,15, … 10,10,20,30,50, …
  • 12.
    nth term ofa Fibonacci Sequence There is no other way in finding the nth term of a Fibonacci or Fibonacci – like sequence than listing and adding the preceding terms manually.
  • 13.
    Determine whether thefollowing statements are TRUE or FALSE. 1. The 3rd term of a Fibonacci or any Fibonacci – like sequence is always twice the first term. 2. The 5th term of a Fibonacci or any Fibonacci – like sequence is divisible by 5. 3. The 6th term of a Fibonacci – like sequence with 1st term 4 is 32. 4. The sum of the first 5 terms of a Fibonacci sequence is 12.
  • 14.
    Drill Determine whether thefollowing is harmonic or not then find 𝑎9. 1. 1 7 , 1 13 , 1 19 , 1 25 , … 2. 4 19 , 1 5 , 4 21 , 2 11 , … 3. 6 5 , 2 3 , 6 13 , 6 17 , …
  • 15.
    Drill Find the 8thterm of the following Fibonacci – like sequence if: 1. The 2nd term is 5. 2. The 3rd term is 8. 3. The 1st term is 7.