DSI* Dipole
Shear Sonic
Imager
May 1999
2 BTC
Wave Propagation
At Rest Compressional Shear
May 1999
3 BTC
Hard Formation
— Monopole
Wellbore
Head waves
Fluid wave
Omnidirectional source
Formation
Compressional
wave
Shear
wave
Compressional
wave
Shear
wave
Stoneley
wave
May 1999
4 BTC
Fast
Formation —
Monopole
Compressional: 76 sec/ft
Shear: 139 sec/ft
Fluid: 200 sec/ft
Borehole diameter: 10 in.
Time: 1 msec
Source: 12-kHz monopole
Compressional
body wave
Compressional
head waves
Shear head wave
Shear body wave
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0
May 1999
5 BTC
Soft Formation
— Monopole
Wellbore
Head wave
Fluid wave
Omnidirectional source
Formation
Compressional
wave
Shear
wave
Compressional
wave
Stoneley
wave
May 1999
6 BTC
DSI Transducer
Mud Mud
Borehole
Propagation
Displacement
Flexural Wave
Transmitter
May 1999
7 BTC
Slow
Formation—
Monopole
Compressional: 157 sec/ft
Shear: 300 sec/ft
Fluid: 200 sec/ft
Borehole diameter: 12 in.
Time: 2 msec
Source: 12-kHz monopole
Compressional
body wave
Compressional
head wave
Compressional
head wave
Fluid head wave
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0
Fluid modes
Shear head
wave absent
May 1999
8 BTC
Soft Formation
— Dipole
Wellbore
Head wave
Flexural wave
Directional source
Formation
Compressional
wave
Shear
wave
Compressional
wave
Flexural
wave
Shear
wave
May 1999
9 BTC
Slow
Formation—
Dipole
Compressional: 157 sec/ft
Shear: 300 sec/ft
Fluid: 200 sec/ft
Borehole diameter: 12 in.
Time: 2 msec
Source: 12-kHz monopole
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0
Shear body wave
Compressional
body wave
Flexural mode
May 1999
10 BTC
Dipole Waveforms—Fast Formation
Shear Flexural Mode
May 1999
11 BTC
DSI Tool
Cartridge
Receiver section
Isolation
joint
9 ft to
monopole
transmitter
11 ft to
upper dipole
transmitter
11.5 ft to
lower dipole
transmitter
Transmitter section
16.5 ft
3.5 ft
18 ft
13 ft
42 in.
6 in.
Principal tool combinations
• AIT* Array Induction Imager Tool
• ARI* Azimuthal Resistivity Imager tool
• Auxiliary Measurements Sonde
• Compensated Neutron Log
• FMI* Fullbore Formation MicroImager tool
• Gamma Ray
• General Purpose Inclinometry Tool (GPIT)
• IPL* Integrated Porosity Lithology tool
• Phasor* Induction tool
• UBI* Ultrasonic Borehole Imager tool
• USI* UltraSonic Imager tool
May 1999
12 BTC
Tool Operating Modes
• Upper and lower dipole modes
• Crossed dipole mode
• Stoneley mode
• P and S mode
• First motion mode
May 1999
13 BTC
STC Computation
Varying moveout
Varying time
May 1999
14 BTC
STC Contour Plot
ST Plane
(Semblance Contour Plot)
Depth Z
Arrival time
Slowness
STC Dot Log
Comp Shear
Z
Slowness
Depth
May 1999
15 BTC
STC Planes
0.5 to 1.5 kHz 1 to 2 kHz
800
100
0 14,000 0 14,000
Slowness
(sec/ft)
Time (sec) Time (sec)
May 1999
16 BTC
Log Quality
Indicators
Poisson's Ratio
.25 .50
Gamma Ray
Caliper
6 16
0 100
Delta-T Comp.
100 200
Delta-T Shear
0 1. 1. 0
100 500
Dtc Coherence Dts
10200
10250
10300
10350
Slowness Time Plane
Projection
May 1999
17 BTC
Slowness
Bias
Bias After
Filtering
Bias Before
Filtering
Flexural Mode Slowness
Formation Shear Slowness
STC
Filter
Response Filtered
Amplitude
Spectrum
Unfiltered
Amplitude
Spectrum
Noise
Amplitude
Spectrum
Frequency (kHz)
Frequency (kHz)
320
300
1
0.5
0
0 2 4 6 8 10
0 2 4 6 8 10
A
m
p
l
i
t
u
d
e
.
S
l
o
w
n
e
s
s
(
µ
s
/
f
t
)
May 1999
18 BTC
Borehole Compensation
Receiver
Array
Pseudo
Transmitter
Array
Formation
Interval
Measured
May 1999
19 BTC
Borehole Compensation
Receiver
subarrays
Pseudo
transmitter
subarrays
Formation
interval
measured
Common
receiver
position
VP/VS - STC
0 106 psi 4
VP/VS - MPS
0 106 psi 4
RHOB
1.7 (G/C3) psi 2.7
NPHI
60 (PU) 0
SGR
0 (GAPI) 120
1:300 Ft
CALI
12 (IN) 20
DTCO-BHC-STC
500 (US/F) 100
DTCO-BHC-MSP
500 (US/F) 100
DTSM-UDP-CRC-STC
500 (US/F) 100
DTSM-UDP-CRC-MSP
500 (US/F) 100
x700
x650
x600
May 1999
20 BTC
Applications
• Mechanical property analysis
— sanding analysis
— fracture height
— wellbore stability
• Formation evaluation
— gas detection
— fractures
— permeability
• Geophysical interpretation
— synthetic seismograms
— VSP
— AVO
May 1999
21 BTC
Dynamic Elastic Properties
v Poisson’s Ratio
G Shear Modulus
E Young’s Modulus
Kb Bulk Modulus
Cb Bulk Compressibility
(with porosity)
Lateral strain 1/2 (DTS / DTC) 2
– 1
Longitudinal strain (DTS / DTC) 2
– 1
Applied stress
pb
Shear strain
DTS 2
Applied uniaxial stress
Normal strain
2G (1 + v)
Hydrostatic pressure
Volumetric strain
1 4
DTC2 3DTS2
[ ]x a
Volumetric deformation
Hydrostatic pressure
1
Kb
pb
Note: coefficient a = 1.34 x 1010
if pb in g/cm3
and DT in µs/ft.
May 1999
22 BTC
IMPACT
Log
0 p.u. 100
Combined Model
Min. Safe Mud
Weight/Shear
Max. Safe Mud
Weight/Shear
Max. Safe Mud
Weight/Tensile
Mud Weight
Poisson's Ratio
Young's Modulus
Shear Modulus
0 106 psi 10
0 106 psi 5
0 5
Hole Profile
Depth
–25 in. 25
1000
ft
May 1999
23 BTC
Sanding Model Diagram
Pe, Far Field
Pressure
Pp, Pore
Pressure
Far Field
Stresses
Flow
 r = Pw (1—)
y
x
Pw


r
May 1999
24 BTC
vp/vs
versus tc
3.5
3.0
2.5
2.0
1.5
Anthydrite
50 100 150
²tc
May 1999
25 BTC
vp/vs
versus tc
3.0
2.5
2.0
1.5 50 100 150
²tc
vp/vs
Unconsolidated
sediments
Shales
40
35
30
90
80
70
Sxo
60
50
40
Gas
ø
W
e
t
s
a
n
d
s
t
o
n
e
s
Dry
gas
Wet
Dry (or gas sandstones
20
10
Limestone
Anhydrite
Dolomite
Salt
Quartz
May 1999
26 BTC
Fracture
Evaluation
STONELEY WF1
0 (US) 20000
0 (GAPI) 150 0 0.15
Gamma Ray Stoneley Ref. Coef.
2 (IN) 7
Hole Diameter
600
700
800
May 1999
27 BTC
Stoneley
Energy
Gamma Ray Resistivity Density-Neutron
Stoneley
Energy
Differential
Energy
6300
6400
7100
May 1999
28 BTC
Poisson’s Ratio—
0 0.1 0.2 0.3 0.4 0.5
Poisson’s Ratio

=
Vp / Vs 2
- 2
2 Vp / Vs 2
- 2
May 1999
29 BTC
Poisson’s Ratios
Podio et al. (1968) Green River Shale 0.22–0.30
Hamilton (1975) Shallow Marine
Sediments 0.45–0.50
Gregory (1976) Consolidated Sediments
Brine Saturated 0.20–0.30
Gas Saturated 0.20–0.14
Domenico (1976) Synthetic Sandstone
Brine Saturated 0.41
Gas Saturated 0.10
Domenico (1977) Ottawa Sandstone
Brine Saturated 0.40
Gas Saturated 0.10
Poisson’s
Ratios
Sediment
Reference
May 1999
30 BTC
AVO Response
HYDROCARBONS
POROSITY
MATRIX
SHALE
SPECIAL MINERAL
OFFSET ANGLE (DEG)
0 2 4 6 8 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
GRADIENT INTERCEPT PRODUCT NOR POLARITY
2400
2500
2600
2700
4.8
4.5
4.3
4.0
3.8
3.5
3.3
3.0
2.8
2,5
2.3
2.0
1.8
1.5
1.3
1.0
0.8
0.5
0.3
1 1 2
1 5 0 5 0
May 1999
31 BTC
Synthetic
Seismograms
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
2.700
2.800
2.900
3.000
3.100
8000
9000
10000
11000
Compressional Shear
May 1999
32 BTC
DSI Dipole Shear Sonic Imager
• Monopole compressional and
dipole shear measurements
provide sonic data in hard and
soft formations
• Applications
— Mechanical property analysis
— Formation evaluation
— Geophysical applications

Lecture_DSI................................

  • 1.
  • 2.
    May 1999 2 BTC WavePropagation At Rest Compressional Shear
  • 3.
    May 1999 3 BTC HardFormation — Monopole Wellbore Head waves Fluid wave Omnidirectional source Formation Compressional wave Shear wave Compressional wave Shear wave Stoneley wave
  • 4.
    May 1999 4 BTC Fast Formation— Monopole Compressional: 76 sec/ft Shear: 139 sec/ft Fluid: 200 sec/ft Borehole diameter: 10 in. Time: 1 msec Source: 12-kHz monopole Compressional body wave Compressional head waves Shear head wave Shear body wave 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0
  • 5.
    May 1999 5 BTC SoftFormation — Monopole Wellbore Head wave Fluid wave Omnidirectional source Formation Compressional wave Shear wave Compressional wave Stoneley wave
  • 6.
    May 1999 6 BTC DSITransducer Mud Mud Borehole Propagation Displacement Flexural Wave Transmitter
  • 7.
    May 1999 7 BTC Slow Formation— Monopole Compressional:157 sec/ft Shear: 300 sec/ft Fluid: 200 sec/ft Borehole diameter: 12 in. Time: 2 msec Source: 12-kHz monopole Compressional body wave Compressional head wave Compressional head wave Fluid head wave 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 Fluid modes Shear head wave absent
  • 8.
    May 1999 8 BTC SoftFormation — Dipole Wellbore Head wave Flexural wave Directional source Formation Compressional wave Shear wave Compressional wave Flexural wave Shear wave
  • 9.
    May 1999 9 BTC Slow Formation— Dipole Compressional:157 sec/ft Shear: 300 sec/ft Fluid: 200 sec/ft Borehole diameter: 12 in. Time: 2 msec Source: 12-kHz monopole 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 Shear body wave Compressional body wave Flexural mode
  • 10.
    May 1999 10 BTC DipoleWaveforms—Fast Formation Shear Flexural Mode
  • 11.
    May 1999 11 BTC DSITool Cartridge Receiver section Isolation joint 9 ft to monopole transmitter 11 ft to upper dipole transmitter 11.5 ft to lower dipole transmitter Transmitter section 16.5 ft 3.5 ft 18 ft 13 ft 42 in. 6 in. Principal tool combinations • AIT* Array Induction Imager Tool • ARI* Azimuthal Resistivity Imager tool • Auxiliary Measurements Sonde • Compensated Neutron Log • FMI* Fullbore Formation MicroImager tool • Gamma Ray • General Purpose Inclinometry Tool (GPIT) • IPL* Integrated Porosity Lithology tool • Phasor* Induction tool • UBI* Ultrasonic Borehole Imager tool • USI* UltraSonic Imager tool
  • 12.
    May 1999 12 BTC ToolOperating Modes • Upper and lower dipole modes • Crossed dipole mode • Stoneley mode • P and S mode • First motion mode
  • 13.
    May 1999 13 BTC STCComputation Varying moveout Varying time
  • 14.
    May 1999 14 BTC STCContour Plot ST Plane (Semblance Contour Plot) Depth Z Arrival time Slowness STC Dot Log Comp Shear Z Slowness Depth
  • 15.
    May 1999 15 BTC STCPlanes 0.5 to 1.5 kHz 1 to 2 kHz 800 100 0 14,000 0 14,000 Slowness (sec/ft) Time (sec) Time (sec)
  • 16.
    May 1999 16 BTC LogQuality Indicators Poisson's Ratio .25 .50 Gamma Ray Caliper 6 16 0 100 Delta-T Comp. 100 200 Delta-T Shear 0 1. 1. 0 100 500 Dtc Coherence Dts 10200 10250 10300 10350 Slowness Time Plane Projection
  • 17.
    May 1999 17 BTC Slowness Bias BiasAfter Filtering Bias Before Filtering Flexural Mode Slowness Formation Shear Slowness STC Filter Response Filtered Amplitude Spectrum Unfiltered Amplitude Spectrum Noise Amplitude Spectrum Frequency (kHz) Frequency (kHz) 320 300 1 0.5 0 0 2 4 6 8 10 0 2 4 6 8 10 A m p l i t u d e . S l o w n e s s ( µ s / f t )
  • 18.
    May 1999 18 BTC BoreholeCompensation Receiver Array Pseudo Transmitter Array Formation Interval Measured
  • 19.
    May 1999 19 BTC BoreholeCompensation Receiver subarrays Pseudo transmitter subarrays Formation interval measured Common receiver position VP/VS - STC 0 106 psi 4 VP/VS - MPS 0 106 psi 4 RHOB 1.7 (G/C3) psi 2.7 NPHI 60 (PU) 0 SGR 0 (GAPI) 120 1:300 Ft CALI 12 (IN) 20 DTCO-BHC-STC 500 (US/F) 100 DTCO-BHC-MSP 500 (US/F) 100 DTSM-UDP-CRC-STC 500 (US/F) 100 DTSM-UDP-CRC-MSP 500 (US/F) 100 x700 x650 x600
  • 20.
    May 1999 20 BTC Applications •Mechanical property analysis — sanding analysis — fracture height — wellbore stability • Formation evaluation — gas detection — fractures — permeability • Geophysical interpretation — synthetic seismograms — VSP — AVO
  • 21.
    May 1999 21 BTC DynamicElastic Properties v Poisson’s Ratio G Shear Modulus E Young’s Modulus Kb Bulk Modulus Cb Bulk Compressibility (with porosity) Lateral strain 1/2 (DTS / DTC) 2 – 1 Longitudinal strain (DTS / DTC) 2 – 1 Applied stress pb Shear strain DTS 2 Applied uniaxial stress Normal strain 2G (1 + v) Hydrostatic pressure Volumetric strain 1 4 DTC2 3DTS2 [ ]x a Volumetric deformation Hydrostatic pressure 1 Kb pb Note: coefficient a = 1.34 x 1010 if pb in g/cm3 and DT in µs/ft.
  • 22.
    May 1999 22 BTC IMPACT Log 0p.u. 100 Combined Model Min. Safe Mud Weight/Shear Max. Safe Mud Weight/Shear Max. Safe Mud Weight/Tensile Mud Weight Poisson's Ratio Young's Modulus Shear Modulus 0 106 psi 10 0 106 psi 5 0 5 Hole Profile Depth –25 in. 25 1000 ft
  • 23.
    May 1999 23 BTC SandingModel Diagram Pe, Far Field Pressure Pp, Pore Pressure Far Field Stresses Flow  r = Pw (1—) y x Pw   r
  • 24.
    May 1999 24 BTC vp/vs versustc 3.5 3.0 2.5 2.0 1.5 Anthydrite 50 100 150 ²tc
  • 25.
    May 1999 25 BTC vp/vs versustc 3.0 2.5 2.0 1.5 50 100 150 ²tc vp/vs Unconsolidated sediments Shales 40 35 30 90 80 70 Sxo 60 50 40 Gas ø W e t s a n d s t o n e s Dry gas Wet Dry (or gas sandstones 20 10 Limestone Anhydrite Dolomite Salt Quartz
  • 26.
    May 1999 26 BTC Fracture Evaluation STONELEYWF1 0 (US) 20000 0 (GAPI) 150 0 0.15 Gamma Ray Stoneley Ref. Coef. 2 (IN) 7 Hole Diameter 600 700 800
  • 27.
    May 1999 27 BTC Stoneley Energy GammaRay Resistivity Density-Neutron Stoneley Energy Differential Energy 6300 6400 7100
  • 28.
    May 1999 28 BTC Poisson’sRatio— 0 0.1 0.2 0.3 0.4 0.5 Poisson’s Ratio  = Vp / Vs 2 - 2 2 Vp / Vs 2 - 2
  • 29.
    May 1999 29 BTC Poisson’sRatios Podio et al. (1968) Green River Shale 0.22–0.30 Hamilton (1975) Shallow Marine Sediments 0.45–0.50 Gregory (1976) Consolidated Sediments Brine Saturated 0.20–0.30 Gas Saturated 0.20–0.14 Domenico (1976) Synthetic Sandstone Brine Saturated 0.41 Gas Saturated 0.10 Domenico (1977) Ottawa Sandstone Brine Saturated 0.40 Gas Saturated 0.10 Poisson’s Ratios Sediment Reference
  • 30.
    May 1999 30 BTC AVOResponse HYDROCARBONS POROSITY MATRIX SHALE SPECIAL MINERAL OFFSET ANGLE (DEG) 0 2 4 6 8 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 GRADIENT INTERCEPT PRODUCT NOR POLARITY 2400 2500 2600 2700 4.8 4.5 4.3 4.0 3.8 3.5 3.3 3.0 2.8 2,5 2.3 2.0 1.8 1.5 1.3 1.0 0.8 0.5 0.3 1 1 2 1 5 0 5 0
  • 31.
  • 32.
    May 1999 32 BTC DSIDipole Shear Sonic Imager • Monopole compressional and dipole shear measurements provide sonic data in hard and soft formations • Applications — Mechanical property analysis — Formation evaluation — Geophysical applications