SlideShare a Scribd company logo
1 of 48
Planar Kinematics of Rigid Bodies and
Mechanisms
Velocity and Acceleration Analysis
1
Unit Vectors (i j k)
10/16/202
2
3
Rotating Unit Vector
e
e 
 

3/6/2024
4
5
Introduction
• Kinematics of rigid bodies: relations
between time and the positions, velocities,
and accelerations of the particles forming
a rigid body.
• Classification of rigid body motions:
- general motion
- motion about a fixed point
- general plane motion
- rotation about a fixed axis
• curvilinear translation
• rectilinear translation
- translation:
6
Motion of the plate: is it translation or rotation?
Curvilinear translation Rotation
7
Translation
• Consider rigid body in translation:
- direction of any straight line inside the
body is constant,
- all particles forming the body move in
parallel lines.
• For any two particles in the body,
A
B
A
B r
r
r





• Differentiating with respect to time,
A
B
A
A
B
A
B
v
v
r
r
r
r














All particles have the same velocity.
A
B
A
A
B
A
B
a
a
r
r
r
r


















• Differentiating with respect to time again,
All particles have the same acceleration.
8
Rotation About a Fixed Axis: Representative Slab
• Consider the motion of a representative slab in
a plane perpendicular to the axis of rotation.
• Velocity of any point P of the slab,



r
v
r
k
r
v










• Acceleration of any point P of the slab,
r
r
k
r
r
a









2













• Resolving the acceleration into tangential and
normal components,
2
2




r
a
r
a
r
a
r
k
a
n
n
t
t











9
General Plane Motion
A combination of translation & rotation
10
General Plane Motion
Pure translation, followed by rotation about A2 (to move B'1 to B' 2)
Motion of B w.r.t. A is pure rotation, i.e. B draws a circle centered at A
Any plane motion can be represented as a translation of an
arbitrary reference point A and a rotation about A.
11
Absolute and Relative Velocity
A
B
A
B r
k
v
v






 
B A B A
v v v
 
For any two points lying on the same rigid body:
Note: B A
v r

 r = distance from A to B
/
B A B A
v k r

 
Equation can be represented graphically by a velocity diagram
12
Absolute and Relative Velocity
Assuming that the velocity vA of end A is known, determine
the velocity vB of end B and the angular velocity .
The direction of vB and vB/A are known. Complete the velocity diagram.
tan tan
B
B A
A
v
v v
v
 
  
B A B A
v v v
 
Locus for vB
vA
vB/A

vB
Locus
for vB/A
cos
cos cos
B A B A A
B A
v v v
v l
l l l

 
 
 
    
 
 
13
Absolute and Relative Velocity in Plane Motion
• Selecting point B as the reference point and solving for the velocity vA of end A
and the angular velocity  leads to an equivalent velocity triangle.
• vA/B has the same magnitude but opposite sense of vB/A. The sense of the
relative velocity is dependent on the choice of reference point.
• Angular velocity  of the rod in its rotation about B is the same as its rotation
about A. Angular velocity is not dependent on the choice of reference point.
14
Rolling Motion
Consider a circular disc that rolls without slipping on a flat surface

r
s
A1
A2
O1 O2
s r

From geometry:
s = displacement of center
v r r
 
 
15
Sample Problem #1
The crank AB has a constant clockwise angular velocity of
2000 rpm. For the crank position indicated, determine (a) the
angular velocity of the connecting rod BD, and (b) the velocity
of the piston P.
16
B
D
B
D v
v
v





• The velocity is obtained from the crank rotation data.
B
v

    
s
rad
4
.
209
in.
3
s
rad
4
.
209
rev
rad
2
s
60
min
min
rev
2000
























AB
B
AB
AB
v 


• The direction of the absolute velocity is horizontal.
The direction of the relative velocity is
perpendicular to BD.
D
v

B
D
v

Locus for vD
Locus for vD/B
17
• Determine the velocity magnitudes
from the vector triangle drawn to scale.
B
D
D v
v and
B
D
B
D v
v
v





s
in.
9
.
495
s
ft
6
.
43
s
in.
4
.
523



B
D
D
v
v
s
rad
0
.
62
in.
8
s
in.
9
.
495




l
v
l
v
B
D
BD
BD
B
D


18
Instantaneous Center of Rotation
For any body undergoing planar motion, there always exists a
point in the plane of motion at which the velocity is
instantaneously zero (if it were rigidly connected to the body).
This point is called the instantaneous center of
rotation, or C.
It may or may not lie on the body!
If the location of this point can be determined, the velocity
analysis can be simplified because the body appears to rotate
about this point at that instant.
19
Instantaneous Center of Rotation
To locate the C, we use the fact that the velocity of a point on a
body is always perpendicular to the position vector from C to that
point.
If the velocity at two points A and B are
known, C lies at the intersection of the
perpendiculars to the velocity vectors
through A and B .
If the velocity vectors at A and B
are perpendicular to the line AB,
C lies at the intersection of the
line AB with the line joining the
extremities of the velocity
vectors at A and B.
If the velocity vectors are equal & parallel, C is at infinity and the angular
velocity is zero (pure translation)
20
If the velocity vA of a point A on the body and
the angular velocity  of the body are
known, C is located along the line drawn
perpendicular to vA at A, at a distance
r = vA/ from A. Note that the C lies up and
to the right of A since vA must cause a
clockwise angular velocity  about C.
Instantaneous Center of Rotation
21
The velocity of any point on a body undergoing general plane
motion can be determined easily if the instantaneous center
is located.
Since the body seems to rotate about
the IC at any instant, the magnitude of
velocity of any arbitrary point is v =  r,
where r is the radial distance from the IC
to that point. The velocity’s line of action
is perpendicular to its associated radial
line. Note the velocity has a direction
which tends to move the point in a
manner consistent with the angular
rotation direction.
Velocity Analysis using Instantaneous Center
22
Instantaneous Center of Rotation
C lies at the intersection of the
perpendiculars to the velocity
vectors through A and B .


cos
l
v
AC
v A
A


   




tan
cos
sin
A
A
B
v
l
v
l
BC
v



The velocity of any point on the rod can be obtained.
Accelerations cannot be determined using C.
23
Sample Problem #1 using instantaneous center
The crank AB has a constant clockwise angular velocity of
2000 rpm. For the crank position indicated, determine (a) the
angular velocity of the connecting rod BD, and (b) the velocity
of the piston P.
Crank-slider mechanism
24
C is at the intersection of the perpendiculars to the velocities through B and D.
   
B AB BD
B
BD
v AB BC
v
BC
 

 
  
D BD
v CD


25
Absolute and Relative Acceleration
Absolute acceleration of point B: A
B
A
B a
a
a





Relative acceleration includes tangential and normal components:
A
B
a

    2
B A B A
t n
a r a r
 
 
26
Absolute and Relative Acceleration
• Given determine
,
and A
A v
a


.
and


B
a
   t
A
B
n
A
B
A
A
B
A
B
a
a
a
a
a
a











• Vector result depends on sense of and the
relative magnitudes of  n
A
B
A a
a and
A
a

• Must also know angular velocity .
27
Absolute and Relative Acceleration
Draw acceleration diagram to scale:
28
Sample Problem #1 Acceleration Analysis
Crank AG of the engine system has a constant clockwise
angular velocity of 2000 rpm.
For the crank position shown, determine the angular
acceleration of the connecting rod BD and the acceleration
of point D.
29
   n
B
D
t
B
D
B
B
D
B
D a
a
a
a
a
a











  
AB
2
2 2
3
12
2000 rpm 209.4rad s constant
0
ft 209.4rad s 10,962ft s
AB
B AB
a r



  

  
From Sample Problem #1, BD = 62.0 rad/s, b = 13.95o.
30
   n
B
D
t
B
D
B
B
D
B
D a
a
a
a
a
a











Draw acceleration diagram:
       2
2
12
8
2
s
ft
2563
s
rad
0
.
62
ft 

 BD
n
B
D BD
a 
      BD
BD
BD
t
B
D BD
a 

 667
.
0
ft
12
8 


Drawn to scale
31
Sample Problem #2
In the position shown, crank AB has a constant angular velocity
1 = 20 rad/s counterclockwise. Determine the angular
velocities and angular accelerations of the connecting rod BD
and crank DE.
Four-bar mechanism
32
B
D
B
D v
v
v





   k
k DE
BD




s
rad
29
.
11
s
rad
33
.
29 

 

Velocities
1( )
B
v AB


vD
vB
vD/B vB
vD
vD/B
( )
D B BD
v BD


( )
D DE
v DE


Velocity diagram
Shown here not to scale
33
B
D
B
D a
a
a





   k
k DE
BD



 2
2
s
rad
809
s
rad
645 

 

Accelerations
aB
aD/B n
aD/B t aD/E t
aD/E n
Acceleration diagram
aB
  2
( )
D B BD
n
a BD


aD/B n
2
( )
B AB
a AB


aD/E n
aD/E t
  2
( )
D E DE
n
a DE


  ( )
D E DE
t
a DE


Shown here not to scale
Velocity Image
It may also be noted that
the scale factor between the
link BCD and its velocity
image is the rotational
velocity of the link i.e.
3




BD
bd
CD
cd
BC
bc
bcd is similar to BCD
bcd is obtained by
rotating BCD by 90o in the
sense of 3 and scaled by
3
bcd is the velocity
image of link-3 BCD
Motion of a particle inside a moving rigid body-
Coriolis Acceleration
BP
A
B
BP
A
B
V
r
ω
r
ω
V
a
V
r
ω
V
V



 









e1
e2
y
x 2
1 e
e
r 

y
x 
 2
1
BP e
e
V 

3/6/2024
35
Motion of a particle inside a moving rigid body-
Coriolis Acceleration
BP
A
B
BP
A
B
V
r
ω
r
ω
V
a
V
r
ω
V
V



 









BP
BP
2
1
2
1
2
1
2
1
V
ω
r)
(ω
ω
V
ω
y)
e
ω
x
e
(ω
ω
)
y
e
x
(e
ω
y)
e
x
e
(
ω
y)
e
x
(e
dt
d
ω
r
ω



























e1
e2
y
x 2
1 e
e
r 

3/6/2024
36
Motion of a particle inside a moving rigid body-
Coriolis Acceleration
BP
A
B
BP
A
B
V
r
ω
r
ω
V
a
V
r
ω
V
V



 









BP
BP
2
1
2
1
2
1
2
1
V
ω
r)
(ω
ω
V
ω
y)
e
ω
x
e
(ω
ω
)
y
e
x
(e
ω
y)
e
x
e
(
ω
y)
e
x
(e
dt
d
ω
r
ω



























 
BP
BP
BP
2
1
2
1
2
1
2
1
BP
a
V
ω
a
)
y
e
x
(e
ω
)
y
e
x
(e
)
y
e
x
e
(
y
e
x
e
dt
d
V


























BP
BP
A
B a
V
2ω
r)
(ω
ω
r
ω
a
a 







 
e1
e2
3/6/2024
37
Acceleration Vectors
BP
BP
A
B a
V
2ω
r)
(ω
ω
r
ω
a
a 







 
Coriolis
acceleration
VBP
3/6/2024
38
An Example of Coriolis acceleration
3/6/2024
39
Determine the acceleration of the slider.
n
O
A
t
O
A
O
A a
a
a
a 2
2
2
2
2
2



0 0
2
2
2
2
2
2 /
1250
5
.
0
50
. s
m
A
O 



n
A
t
A
c
A
A a
a
a
a
a 2
/
2
/ 3
3
2
3




0
0
2
2
A
A
c 3000m/s
50
30
2
ω
2V 2
3





a
2
2
2
/
3250
3
3
s
m
a
a
a c
A
A 


Inverted QR Mechanism: follow the steps
Oa
an
A
A
O
an
A
2
2
2


(//)
/)
(
(//)
)
(
3
3
3
3
n
A
B
z
t
A
B
n
A
t
A
A
B
A
xy
B a
a
a
a
a
a
a 





0
(//)
/)
(
)
(
4
3
4
3
3
c
B
B
w
t
B
B
xy
B a
a
a 

4
3
4
3 3
2 B
B
c
B
B V
a 

(//)
/)
(
(//)
)
(
3
3
3
3
n
A
B
z
t
A
B
n
A
t
A
A
B
A
xy
B a
a
a
a
a
a
a 





(//)
/)
(
4
/
)
(
4
3
3
3
c
B
B
w
t
B
xy
B a
a
a 

0
Sample Problem #3
B A
C
P
VP2=4m/s
VP4=3.179m/s
4=3.179/0.13937=22.8 rad/s (CW)
V3/4=VP2/P4=2.427m/s (away from B)
an
P3=42/.08=200m/s2
ac
P3/P4=2x2.427x22.8=110.67m/s2=-ac
P4/P3
an
P4=3.1792/0.13937=72.5m/s2
3 4 3 4
3 3 4 4 3 4
(//) (//) ( ,/) (//) (//) ( /)
P P c P P
t n t n c
P P P P P P
a a a a
a a a x a a a y
  
    
at
P4=10.76m/s2
4=10.76/0.13937=77.2 rad/s2
0
c
a
3
n
P
a
Oa
4
n
P
a
4
t
P
a p4 3 4
P P
a
Animation of WhitWorth QR mechanism
Sample Problem #4
Quick Return Mechanism
VA3
V
A
3
/
4
VA4
0v
VB
VC
VCB
A2, A3, A4 are coincident
points on 2, 3 and 4,
respectively.
VA3=*O2A2
4=VA4/O4A4,
VB=4*O4B,
/)
,
(
3
/
(//)
/)
,
(
4
3
4
y
A
A
x
A V
V
V 

VC
(z,/) = VB
(/,/)+VCB
(w,/)
2=100 rad/s, link-2=13 cm., link-4 =35 cm., O2O4=20 cm., link-5=20 cm.
Determine the velocity of slider 6.
s
m
V
ccw
s
rad
s
m
V
B
A
/
4765
.
11
79
.
32
35
.
0
)
(
/
79
.
32
2592
.
0
5
.
8
/
5
.
8
4
4







s
m
V
V
V
V
A
y
A
A
x
A
/
13
3
4
3
4
/)
,
(
3
/
(//)
/)
,
(



/)
,
(
(//)
/)
,
( u
CB
B
z
C V
V
V 
 Vc=9.95m/s

More Related Content

Similar to lec09_part1.pptx PLANAR KINEMATICS OF RIGID BODIES

Dynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityDynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityNikolai Priezjev
 
Mechanics of Machines MET 305
Mechanics of Machines MET 305Mechanics of Machines MET 305
Mechanics of Machines MET 305hotman1991
 
116 coriolis acceleration
116  coriolis acceleration116  coriolis acceleration
116 coriolis accelerationAravind Mohan
 
Lecture16 5
Lecture16 5Lecture16 5
Lecture16 5Aims-IIT
 
TOM (UNIT 1B AND UNIT 2A) PPTS.pptx
TOM (UNIT 1B AND UNIT 2A) PPTS.pptxTOM (UNIT 1B AND UNIT 2A) PPTS.pptx
TOM (UNIT 1B AND UNIT 2A) PPTS.pptxHarshit17591
 
Relative Velocity Method for Velocity and Acceleration analysis
Relative Velocity Method for Velocity and Acceleration analysis Relative Velocity Method for Velocity and Acceleration analysis
Relative Velocity Method for Velocity and Acceleration analysis Rohit Singla
 
Relative velocity method, velocity & acceleration analysis of mechanism
Relative velocity method, velocity & acceleration analysis of mechanismRelative velocity method, velocity & acceleration analysis of mechanism
Relative velocity method, velocity & acceleration analysis of mechanismKESHAV
 
9783319319681 c2-3
9783319319681 c2-39783319319681 c2-3
9783319319681 c2-3g271188
 
Movimiento dependientes y relativo
Movimiento dependientes y relativoMovimiento dependientes y relativo
Movimiento dependientes y relativojosearmandorosasreye
 
Chapter#3 Met 305 2-_velocity_relative
Chapter#3 Met 305 2-_velocity_relativeChapter#3 Met 305 2-_velocity_relative
Chapter#3 Met 305 2-_velocity_relativehotman1991
 
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)MUHAMMAD USMAN SARWAR
 
Velocityofmechasnismbygraphical 130217105814-phpapp02
Velocityofmechasnismbygraphical 130217105814-phpapp02Velocityofmechasnismbygraphical 130217105814-phpapp02
Velocityofmechasnismbygraphical 130217105814-phpapp02MUHAMMAD USMAN SARWAR
 
Step by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedStep by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedProf. S.Rajendiran
 
006 relative motion
006 relative motion006 relative motion
006 relative motionphysics101
 

Similar to lec09_part1.pptx PLANAR KINEMATICS OF RIGID BODIES (20)

8.acceleration analysis
8.acceleration analysis8.acceleration analysis
8.acceleration analysis
 
13675443.ppt
13675443.ppt13675443.ppt
13675443.ppt
 
Dynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocityDynamics Instantaneous center of zero velocity
Dynamics Instantaneous center of zero velocity
 
Mechanics of Machines MET 305
Mechanics of Machines MET 305Mechanics of Machines MET 305
Mechanics of Machines MET 305
 
Module 2.pptx
Module 2.pptxModule 2.pptx
Module 2.pptx
 
116 coriolis acceleration
116  coriolis acceleration116  coriolis acceleration
116 coriolis acceleration
 
Lecture16 5
Lecture16 5Lecture16 5
Lecture16 5
 
TOM (UNIT 1B AND UNIT 2A) PPTS.pptx
TOM (UNIT 1B AND UNIT 2A) PPTS.pptxTOM (UNIT 1B AND UNIT 2A) PPTS.pptx
TOM (UNIT 1B AND UNIT 2A) PPTS.pptx
 
Relative Velocity Method for Velocity and Acceleration analysis
Relative Velocity Method for Velocity and Acceleration analysis Relative Velocity Method for Velocity and Acceleration analysis
Relative Velocity Method for Velocity and Acceleration analysis
 
Relative velocity method, velocity & acceleration analysis of mechanism
Relative velocity method, velocity & acceleration analysis of mechanismRelative velocity method, velocity & acceleration analysis of mechanism
Relative velocity method, velocity & acceleration analysis of mechanism
 
9783319319681 c2-3
9783319319681 c2-39783319319681 c2-3
9783319319681 c2-3
 
Me101 lecture25-sd
Me101 lecture25-sdMe101 lecture25-sd
Me101 lecture25-sd
 
Movimiento dependientes y relativo
Movimiento dependientes y relativoMovimiento dependientes y relativo
Movimiento dependientes y relativo
 
Gear23.ppt
Gear23.pptGear23.ppt
Gear23.ppt
 
Chapter#3 Met 305 2-_velocity_relative
Chapter#3 Met 305 2-_velocity_relativeChapter#3 Met 305 2-_velocity_relative
Chapter#3 Met 305 2-_velocity_relative
 
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
Velocityofmechasnismbygraphical 130217105814-phpapp02 (1)
 
Velocityofmechasnismbygraphical 130217105814-phpapp02
Velocityofmechasnismbygraphical 130217105814-phpapp02Velocityofmechasnismbygraphical 130217105814-phpapp02
Velocityofmechasnismbygraphical 130217105814-phpapp02
 
Step by step Engineering Mechanics updated
Step by step Engineering Mechanics updatedStep by step Engineering Mechanics updated
Step by step Engineering Mechanics updated
 
006 relative motion
006 relative motion006 relative motion
006 relative motion
 
travesing.pdf
travesing.pdftravesing.pdf
travesing.pdf
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 

lec09_part1.pptx PLANAR KINEMATICS OF RIGID BODIES

  • 1. Planar Kinematics of Rigid Bodies and Mechanisms Velocity and Acceleration Analysis 1
  • 2. Unit Vectors (i j k) 10/16/202 2
  • 3. 3
  • 4. Rotating Unit Vector e e     3/6/2024 4
  • 5. 5 Introduction • Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the particles forming a rigid body. • Classification of rigid body motions: - general motion - motion about a fixed point - general plane motion - rotation about a fixed axis • curvilinear translation • rectilinear translation - translation:
  • 6. 6 Motion of the plate: is it translation or rotation? Curvilinear translation Rotation
  • 7. 7 Translation • Consider rigid body in translation: - direction of any straight line inside the body is constant, - all particles forming the body move in parallel lines. • For any two particles in the body, A B A B r r r      • Differentiating with respect to time, A B A A B A B v v r r r r               All particles have the same velocity. A B A A B A B a a r r r r                   • Differentiating with respect to time again, All particles have the same acceleration.
  • 8. 8 Rotation About a Fixed Axis: Representative Slab • Consider the motion of a representative slab in a plane perpendicular to the axis of rotation. • Velocity of any point P of the slab,    r v r k r v           • Acceleration of any point P of the slab, r r k r r a          2              • Resolving the acceleration into tangential and normal components, 2 2     r a r a r a r k a n n t t           
  • 9. 9 General Plane Motion A combination of translation & rotation
  • 10. 10 General Plane Motion Pure translation, followed by rotation about A2 (to move B'1 to B' 2) Motion of B w.r.t. A is pure rotation, i.e. B draws a circle centered at A Any plane motion can be represented as a translation of an arbitrary reference point A and a rotation about A.
  • 11. 11 Absolute and Relative Velocity A B A B r k v v         B A B A v v v   For any two points lying on the same rigid body: Note: B A v r   r = distance from A to B / B A B A v k r    Equation can be represented graphically by a velocity diagram
  • 12. 12 Absolute and Relative Velocity Assuming that the velocity vA of end A is known, determine the velocity vB of end B and the angular velocity . The direction of vB and vB/A are known. Complete the velocity diagram. tan tan B B A A v v v v      B A B A v v v   Locus for vB vA vB/A  vB Locus for vB/A cos cos cos B A B A A B A v v v v l l l l                
  • 13. 13 Absolute and Relative Velocity in Plane Motion • Selecting point B as the reference point and solving for the velocity vA of end A and the angular velocity  leads to an equivalent velocity triangle. • vA/B has the same magnitude but opposite sense of vB/A. The sense of the relative velocity is dependent on the choice of reference point. • Angular velocity  of the rod in its rotation about B is the same as its rotation about A. Angular velocity is not dependent on the choice of reference point.
  • 14. 14 Rolling Motion Consider a circular disc that rolls without slipping on a flat surface  r s A1 A2 O1 O2 s r  From geometry: s = displacement of center v r r    
  • 15. 15 Sample Problem #1 The crank AB has a constant clockwise angular velocity of 2000 rpm. For the crank position indicated, determine (a) the angular velocity of the connecting rod BD, and (b) the velocity of the piston P.
  • 16. 16 B D B D v v v      • The velocity is obtained from the crank rotation data. B v       s rad 4 . 209 in. 3 s rad 4 . 209 rev rad 2 s 60 min min rev 2000                         AB B AB AB v    • The direction of the absolute velocity is horizontal. The direction of the relative velocity is perpendicular to BD. D v  B D v  Locus for vD Locus for vD/B
  • 17. 17 • Determine the velocity magnitudes from the vector triangle drawn to scale. B D D v v and B D B D v v v      s in. 9 . 495 s ft 6 . 43 s in. 4 . 523    B D D v v s rad 0 . 62 in. 8 s in. 9 . 495     l v l v B D BD BD B D  
  • 18. 18 Instantaneous Center of Rotation For any body undergoing planar motion, there always exists a point in the plane of motion at which the velocity is instantaneously zero (if it were rigidly connected to the body). This point is called the instantaneous center of rotation, or C. It may or may not lie on the body! If the location of this point can be determined, the velocity analysis can be simplified because the body appears to rotate about this point at that instant.
  • 19. 19 Instantaneous Center of Rotation To locate the C, we use the fact that the velocity of a point on a body is always perpendicular to the position vector from C to that point. If the velocity at two points A and B are known, C lies at the intersection of the perpendiculars to the velocity vectors through A and B . If the velocity vectors at A and B are perpendicular to the line AB, C lies at the intersection of the line AB with the line joining the extremities of the velocity vectors at A and B. If the velocity vectors are equal & parallel, C is at infinity and the angular velocity is zero (pure translation)
  • 20. 20 If the velocity vA of a point A on the body and the angular velocity  of the body are known, C is located along the line drawn perpendicular to vA at A, at a distance r = vA/ from A. Note that the C lies up and to the right of A since vA must cause a clockwise angular velocity  about C. Instantaneous Center of Rotation
  • 21. 21 The velocity of any point on a body undergoing general plane motion can be determined easily if the instantaneous center is located. Since the body seems to rotate about the IC at any instant, the magnitude of velocity of any arbitrary point is v =  r, where r is the radial distance from the IC to that point. The velocity’s line of action is perpendicular to its associated radial line. Note the velocity has a direction which tends to move the point in a manner consistent with the angular rotation direction. Velocity Analysis using Instantaneous Center
  • 22. 22 Instantaneous Center of Rotation C lies at the intersection of the perpendiculars to the velocity vectors through A and B .   cos l v AC v A A           tan cos sin A A B v l v l BC v    The velocity of any point on the rod can be obtained. Accelerations cannot be determined using C.
  • 23. 23 Sample Problem #1 using instantaneous center The crank AB has a constant clockwise angular velocity of 2000 rpm. For the crank position indicated, determine (a) the angular velocity of the connecting rod BD, and (b) the velocity of the piston P. Crank-slider mechanism
  • 24. 24 C is at the intersection of the perpendiculars to the velocities through B and D.     B AB BD B BD v AB BC v BC         D BD v CD  
  • 25. 25 Absolute and Relative Acceleration Absolute acceleration of point B: A B A B a a a      Relative acceleration includes tangential and normal components: A B a      2 B A B A t n a r a r    
  • 26. 26 Absolute and Relative Acceleration • Given determine , and A A v a   . and   B a    t A B n A B A A B A B a a a a a a            • Vector result depends on sense of and the relative magnitudes of  n A B A a a and A a  • Must also know angular velocity .
  • 27. 27 Absolute and Relative Acceleration Draw acceleration diagram to scale:
  • 28. 28 Sample Problem #1 Acceleration Analysis Crank AG of the engine system has a constant clockwise angular velocity of 2000 rpm. For the crank position shown, determine the angular acceleration of the connecting rod BD and the acceleration of point D.
  • 29. 29    n B D t B D B B D B D a a a a a a               AB 2 2 2 3 12 2000 rpm 209.4rad s constant 0 ft 209.4rad s 10,962ft s AB B AB a r           From Sample Problem #1, BD = 62.0 rad/s, b = 13.95o.
  • 30. 30    n B D t B D B B D B D a a a a a a            Draw acceleration diagram:        2 2 12 8 2 s ft 2563 s rad 0 . 62 ft    BD n B D BD a        BD BD BD t B D BD a    667 . 0 ft 12 8    Drawn to scale
  • 31. 31 Sample Problem #2 In the position shown, crank AB has a constant angular velocity 1 = 20 rad/s counterclockwise. Determine the angular velocities and angular accelerations of the connecting rod BD and crank DE. Four-bar mechanism
  • 32. 32 B D B D v v v         k k DE BD     s rad 29 . 11 s rad 33 . 29      Velocities 1( ) B v AB   vD vB vD/B vB vD vD/B ( ) D B BD v BD   ( ) D DE v DE   Velocity diagram Shown here not to scale
  • 33. 33 B D B D a a a         k k DE BD     2 2 s rad 809 s rad 645      Accelerations aB aD/B n aD/B t aD/E t aD/E n Acceleration diagram aB   2 ( ) D B BD n a BD   aD/B n 2 ( ) B AB a AB   aD/E n aD/E t   2 ( ) D E DE n a DE     ( ) D E DE t a DE   Shown here not to scale
  • 34. Velocity Image It may also be noted that the scale factor between the link BCD and its velocity image is the rotational velocity of the link i.e. 3     BD bd CD cd BC bc bcd is similar to BCD bcd is obtained by rotating BCD by 90o in the sense of 3 and scaled by 3 bcd is the velocity image of link-3 BCD
  • 35. Motion of a particle inside a moving rigid body- Coriolis Acceleration BP A B BP A B V r ω r ω V a V r ω V V               e1 e2 y x 2 1 e e r   y x   2 1 BP e e V   3/6/2024 35
  • 36. Motion of a particle inside a moving rigid body- Coriolis Acceleration BP A B BP A B V r ω r ω V a V r ω V V               BP BP 2 1 2 1 2 1 2 1 V ω r) (ω ω V ω y) e ω x e (ω ω ) y e x (e ω y) e x e ( ω y) e x (e dt d ω r ω                            e1 e2 y x 2 1 e e r   3/6/2024 36
  • 37. Motion of a particle inside a moving rigid body- Coriolis Acceleration BP A B BP A B V r ω r ω V a V r ω V V               BP BP 2 1 2 1 2 1 2 1 V ω r) (ω ω V ω y) e ω x e (ω ω ) y e x (e ω y) e x e ( ω y) e x (e dt d ω r ω                              BP BP BP 2 1 2 1 2 1 2 1 BP a V ω a ) y e x (e ω ) y e x (e ) y e x e ( y e x e dt d V                           BP BP A B a V 2ω r) (ω ω r ω a a           e1 e2 3/6/2024 37
  • 38. Acceleration Vectors BP BP A B a V 2ω r) (ω ω r ω a a           Coriolis acceleration VBP 3/6/2024 38
  • 39. An Example of Coriolis acceleration 3/6/2024 39 Determine the acceleration of the slider. n O A t O A O A a a a a 2 2 2 2 2 2    0 0 2 2 2 2 2 2 / 1250 5 . 0 50 . s m A O     n A t A c A A a a a a a 2 / 2 / 3 3 2 3     0 0 2 2 A A c 3000m/s 50 30 2 ω 2V 2 3      a 2 2 2 / 3250 3 3 s m a a a c A A   
  • 40. Inverted QR Mechanism: follow the steps Oa an A A O an A 2 2 2   (//) /) ( (//) ) ( 3 3 3 3 n A B z t A B n A t A A B A xy B a a a a a a a       0 (//) /) ( ) ( 4 3 4 3 3 c B B w t B B xy B a a a   4 3 4 3 3 2 B B c B B V a  
  • 43. VP2=4m/s VP4=3.179m/s 4=3.179/0.13937=22.8 rad/s (CW) V3/4=VP2/P4=2.427m/s (away from B) an P3=42/.08=200m/s2 ac P3/P4=2x2.427x22.8=110.67m/s2=-ac P4/P3 an P4=3.1792/0.13937=72.5m/s2
  • 44. 3 4 3 4 3 3 4 4 3 4 (//) (//) ( ,/) (//) (//) ( /) P P c P P t n t n c P P P P P P a a a a a a a x a a a y         at P4=10.76m/s2 4=10.76/0.13937=77.2 rad/s2 0 c a 3 n P a Oa 4 n P a 4 t P a p4 3 4 P P a
  • 45. Animation of WhitWorth QR mechanism
  • 46. Sample Problem #4 Quick Return Mechanism VA3 V A 3 / 4 VA4 0v VB VC VCB A2, A3, A4 are coincident points on 2, 3 and 4, respectively. VA3=*O2A2 4=VA4/O4A4, VB=4*O4B, /) , ( 3 / (//) /) , ( 4 3 4 y A A x A V V V   VC (z,/) = VB (/,/)+VCB (w,/)
  • 47. 2=100 rad/s, link-2=13 cm., link-4 =35 cm., O2O4=20 cm., link-5=20 cm. Determine the velocity of slider 6. s m V ccw s rad s m V B A / 4765 . 11 79 . 32 35 . 0 ) ( / 79 . 32 2592 . 0 5 . 8 / 5 . 8 4 4        s m V V V V A y A A x A / 13 3 4 3 4 /) , ( 3 / (//) /) , (   