SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)
e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 3 (Nov. - Dec. 2013), PP 69-75
www.iosrjournals.org
www.iosrjournals.org 69 | Page
Advanced method for reuse of Li-ion batteries and Analysis by new
designed electronic circuit
*
N.El-Said, A.Sakr and A.T.Kassem
Hot Labs. And Waste Management Center, Atomic Energy Authority, P.C. 13759, Cairo, Egypt
Abstract: The development process of the lithium-ion batteries portable combined chemical treatment with
lithium-ion battery, designed electronic in new steps to the process of designing electronic circuit fresh and new
idea also intended to restore the use of the battery again and it is not the injection of cobalt, nickel and other
ions, but the injection of all other battery components, especially lithium and interest for the Battery is the re-
injection of the same components, and was the focus of the research work in the development of chemically-step
process in the new electronic circuit designed and inexpensive materials extracted from the lithium-ion batteries
expired. Was the purpose of this paper is the interest of battery components, which contain substances pole. To
produce a composite-ion was proof of the feasibility of the main objective. To get to the proper voltage and
comparing the effort Original has been done successfully by taking different concentrations and injected in a
mogul’s circuit.
Keywords: Lithium-ion batteries, electronic circuit.spent, cobalt- lithium composite, chemically Treatment
I. Introduction
Since the 1990s, primary lithium and lithium-ion batteries have become the power supply of choice in
many consumers, industrial and military applications due to their advantages in terms of energy density over
other battery technologies. A considerable research effort has been invested in developing inherently safer
chemistries and the development of more effective thermal management systems and protection(1,2)
devices The
aim of this paper is to review the safety characteristics of commercial primary lithium and lithium-ion battery
technologies, focusing on side reactions and thermal behaviours that could compromise safety during operation.
Safety mechanisms and tests that have been designed to evaluate battery performance during normal use and
abuse circumstances are subsequently reviewed in light of experimental evidence available in the open
literature. Hazards associated with primary lithium and lithium-ion cells have materialised not only during use at
the intended application, but also during transport and storage of new and used battery packs; or when end-of-
life batteries undergo treatment for recycling two Recover marketable materials. Within the last two decades the
requirements for batteries as mobile energy sources have constantly increased and have become more and more
to meet the requirements brought by legislation. A number of recent incidents during transport, storage and
recycling operations described in the news accounts have also been reviewed. Although definitive evidence on
the actual mechanism initiating the events is often lacking, incidents can at times be linked to incorrect handling,
storage and packaging practices that may lead to mechanical damage, water ingress, and/or internal or external
short-circuit of charged complex. The trend towards improved mobility in the rapidly developing fields of
portable computer, communication, video and audio technology has strongly pushed the development of
batteries. As supplier of the communications technology industry the battery industry shows an annual double-
digit growth rate (3)
.At the beginning of the 1990s Li-ion batteries have been regarded as the most promising
energy sources for mobile applications. This has been proven true today; for instance, Li-ion batteries have
totally replaced NiCd batteries as well as NiMH batteries in mobile phones as they offer a lot of advantages
compared to other rechargeable battery systems, such as high operating voltage, high specific energy and long
life-time. The widespread and constantly increasing use of Li-ion batteries also leads to an increased battery
scrap generation (in both production as a well as end-of-life), which has to be recycled with regard to
environmental and economical sustainability. Ideally a closed-loop recycling should allow for returning back the
recycling products to the production of new batteries. Li-ion batteries contain high amounts of valuable metals,
such as aluminum, iron, copper, lithium, cobalt, nickel and manganese. Metal is cobalt, which is contained in
the battery electrode material. Hence the cobalt recovery has a strong influence on the economic efficiency of a
suitable battery recycling process. In 2006 the United States and Europe had the highest proportion, 28.4%
respectively 27.2%, of the worldwide Li-ion battery consumption but their proportion of the worldwide Li-ion
battery production was only 0.4% and 2.0%, respectively. More than 90% of Li-ion battery cells were produced
in Japan, South Korea and China. With 40% Japan was the country with the highest Li-ion battery cell
production since the mid-1990s the usage of Li-ion batteries (4)
has strongly increased. Today’s strong market
position of Li-ion batteries is reflected by the sales figures. In 2008 more than 3 billion Li-ion battery cells (5)
were sold. In the EU sales in 2007 were three and a half times higher than in 2002 .Nevertheless the absolute
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 70 | Page
return flow of spent Li-ion batteries is still low and the collection rate in 2007 was only about 3%. On the one
hand this is mainly caused by the long life-time of Li-ion batteries and on the other hand by the end-consumer.
Behavior, who usually dispose of spent batteries for recycling only after several years. In Germany Li-ion
batteries had a market share of more than 50% for the first time in 2008, but here the collection rate of
approximately 9% is comparatively low. In spite of the currently low collection rates forecasts show that sales
figures will continue. Lithium primary batteries have been available on the market for about 25 years, while
lithium-ion secondary batteries or storage batteries have less than 10 years of commercial development(6)
. A
lithium-ion secondary battery comprises a cathode, an anode, organic electrolyte, and a separator. Nowadays,
LiCoO2, LiMn2O4, LiNiO2 or related oxides are used as cathode materials for almost all commercialized
lithium-ion secondary batteries, and these are especially applied for mobile phones, personal computers, video-
cameras, etc. due to themany advantages of lithium-ion secondary batteries, such as: (a) high energy density, (b)
high battery voltage, (c) long charging–discharging cycle and (d) large temperature range(7)
. Since the available
dumping sites for disposal are limited and very costly, effective methods and low costs are the objectives in
separating and recovering the spent lithium-ion secondary batteries (8)
. It will be very interesting to be able to
recycle and regenerate the major metal values of spent batteries, in order to benefit the economy, and at the
same time, reduce environmental pollution. Some hydrometallurgical and hydrometallurgical processes for the
recycling of spent lithium-ion secondary batteries have already been reported or patented (9)
, but most of these
are in the pilot or laboratory testing phase. In addition, using recycled metal value from spent lithium-ion
secondary batteries to prepare LiCoO2, LiMn2O4, LiNiO2 and related oxides electrode materials has been
investigated(10)
, and the current status of the recycling technologies of spent lithium-ion batteries have been
reviewed(11)
by the overall recycling technology consists of both physical and chemical processes. The physical
process, such as dismantling, crushing, sieving, etc. is developed in order to separate the cathode materials from
other substances. The chemical process mainly uses diluted acid to dissolve the cathode material, after which a
solvent extraction, precipitation method, etc. are operated to separate the metal value. It is obvious that this step
depends on the concentration and categories of leaching, the extraction and precipitation of reagents, and it is
necessary to combine several techniques to recover each metal value. The chemical process of the recovery
technology for the spent lithium-ion secondary batteries. Up until now, most of the research works in the
chemical process cannot fulfill the complete separation of each metal value from the cathode materials. Thus, it
is important to develop a simple and environmentally acceptable recycling process to recover as much of the
valuable metals as possible. Experiments of leaching Co, Mn, Ni and Li contained in the cathode material of the
batteries have been conducted on dissolving in acid solution, neutralization, precipitation, oxidation reduction
and filtering, and various separation procedures using different oxidizing reagents, etc. The amount of oxidizing
reagent, temperature, etc.was also investigated in the recovery material process of the mixture.
II. Experimental:
Fig. (1) Schematic diagram of New designed electronic circuit Connected to the Li-ion battery to measure the
electric Potential.
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 71 | Page
Fig (2) new designed electronic circuit connected to the Li-ion battery to Measure the potential.
2.1. Designing electronic cell.
In Fig. (1): Schematic diagram of New designed electronic circuit Connected to the Li-ion battery to measure
the electric Potential.
Fig (2): New designed electronic circuit connected to the Li-ion battery to Measure the potential.
2.2. Synthesized Lithium–iron oxide
Lithium–iron oxide Li–Fe–O was synthesized by solid state reaction between Li2CO3 and Fe2O3. The
sample was characterized by X-ray powder diffraction. The XRD patterns showed well defined reflections
corresponding fig (3) to α-LiFeO2 and the spinel LiFe5O8 in a molar ratio of 9:1. The material was tested as
alternative anode for lithium-ion batteries (12)
.
2.3. Manufacturing of LiFePO4
In the charged state, the lithium atoms are located at the anode, and upon discharged flow through the
electrolyte to the cathode, the reaction occurring at the anode during discharged. Li2CO3, lithium carbonate, is
used to make LiFePO4. The quantity was estimated to 0.23 g Li2CO3 per gram LiFePO4, by stoichiometric
calculation. TPP (tetrakisphenylporphyrin) is electrochemically stable up to 4.9V. The TPP
(tetrakisphenylporphyrin) -containing display improved thermal stability compared with TPP-free electrolytes.
The addition of 3% TPP to the solution of lithium. Fig (3): Shown that XRD patterns of Li–Fe–O based
electrode .Fig (4): Electron micrographl ectrolytes s of cathodes prepared at LiFePO4.
Fig. 3. XRD patterns of Li–Fe–O based electrode
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 72 | Page
Fig (4): Electron micrographs of cathodes prepared at: (a) LiFePO4
2.4. Mechanism of lithium iron oxide:
2 3 2 4 2 4 0.9 0.1 4 2 3 20.5 0.9 0.1 ( ) ( ) 0.5 2 1.6Li CO FeO Mg OH NH HPO LiFe Mg PO CO NH H O      
III. Results and discussion
3.1. Reuse of Li- ion battery by injection:
As the Li-ion battery injected by 10 ml of the prepared solution of LiFePO4 and TPP,
(triphenylphosphate) and measuring the potential. Study different parameters.
3.2. How to calculate battery Run-Injection?
To calculate the time of injection in the battery, it is assumed that we are using battery-consuming and
we did circuit simplified but new in the idea where it came from us this new idea of what we are going through
of the economy is very bad and also to environmental pollutants harmful to our health so we neighborhoods
battery old dumped rubbish and re-used again and was injected the same cathode electrolyte original battery in
them and in certain concentrations and taking the pulse at the beginning of the injection and calculate the
voltage in every step to make sure the high voltage up to the effort required to run and compared the original
effort of the battery and therefore has been the expense of some of the parameters.
3.3-Duration time
3.3.1-Effect of duration time
The effect of duration time on a sheet to give to number of injection, after each hour. Trying to get
times worked in hours and mins, from a given start time to a given finished time. I would like inject after 5, 10,
15, at 60min, or 1hour. In the same time determine the voltage and record. The duration time shown the relation
ship between times injections against voltage in the fig (5) show the duration time increase to increase the
voltage at reached the voltage equal to 2.998v. After 60min the voltage start decreasing gradient at a constant
temperature 250
C.
Fig (5): effect of duration time and voltage
3.4. Effect of pH
3.4.1. Effect of the pH on the ionic transfer between the electrolyte solutions. The effect of the pH on the ionic
transfer of ions of lithium at the interface between the electrolyte solutions (ITIES) was investigated by a simple
analysis method. Fig (6), .Show the relation between the pH against the sensitivity of potential.
-10 0 10 20 30 40 50 60 70 80
0.5
1.0
1.5
2.0
2.5
3.0
Voltage(V)
time (T) min
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 73 | Page
4 5 6 7 8 9 10 11 12 13
0
20
40
60
80
100
Fig.6. Effect of the pH on the potentiometric response of injected Li ion t
Senitivity/(E(V)/dec
pH
3.5. Relationship between the voltage, concentration and duration time
The concentration of lithium iron oxide as electrolyte solution increased with increase the voltage
reached at 2.998V with increase the duration time study at 24 day. The charges start decrease and the voltage
decreasing and reached at zero. Plot 3D graphic between the voltage, concentration and duration time Fig. (7).
Show that the relation between three parameters and the zone represent amount of lithium in suitable injection.
Increasing pH due to increase the sensitivity /E (V) increase and reached at 98%.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 -5.0
-4.5
-4.0
-3.5
-3.01.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
Fig (7).3-D p-lot of X=Li,M,Y E(MV) and Z=T,min
T,MIN
E,(MV)Li,conc.
-0.01 0.00 0.01 0.02 0.03 0.04 0.05
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
25 0C
35 0C
45 0C
55 0C
65 0C
Specificconductivity
Con.Electrolyte mmol-1
Fig.8. Variations of. Temperature of the electrical conductivity for the system LiFeO4
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 74 | Page
0 20 40 60 80 100 120 140 160
1000
1500
2000
2500
3000
3500
4000
Conductivity
Time(min)
Fig(9): Effect of the time and Conductivity for electrolyte Battery
0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Conductivityrate
Molar of electrolyte
Fig(10),. Effect of Molar concentration of electrolyte against Conductivity rate
3.6. General overview of Li-ion battery chemistries
There is also a potential risk of electrolyte. A Li-ion battery consists of a positive electrode (cathode)
and a negative electrode (anode), both of which are the source of the electrochemical reaction. The cathodes are
immersed in an electrolyte medium, which is a solution containing dissociated salts to ensure the ion transfer
between the discharges; the lithium is extracted from the anode and inserted onto the cathode. When the battery
charges, the reverse process occurs. Overcharging will supersaturate the lithium cobalt oxide, leading to the
production of lithium oxide and often to uncontrolled, highly energetic reactions an empirical equation.
3.7. Empirical equation
A A new semi-empirical equation for the dependence of transference numbers upon concentration is
reported. It is a simple equation applicable to many electrolytes of different stoichiometry(13)
over large molality
ranges. The equation for each electrolyte is characterized by four parameters, one of them (Ji) being the
transference number at infinite dilution, another two (D i, L i) lacking physical meaning, and the fourth being an
integer or semi-integer fixed parameter (Pi ---- 1/2, 1, 3/2). For some electrolytes, the last parameter can be
different for cation and anion. An apparent incoherence of the proposed equation has been solved by using
Taylor series and also by non-linear regression analysis followed by smoothing. As a consequence of this, the
equation now reported is of dual application for either the cation or the anion transference numbers. Some
applications of the new equation to obtain hydration and water transfercnce limiting numbers. LiFeO4 as
electrolyte relatively high concentration, the transference number of LiFeO4 recovered by equation [1] using the
Jc and Dc values obtained by the e.m.f, method within 0.0024 over the entire range of concentration up to 1.0
mol kg -l. Similarly for LiCI- (14),
that equation is fulfilled in the range up to 3 mol 1- ~ with a maximum error of
0.0017.
pc
c
e
c
c mL
mD
j
t 


1
………………………………….. (1)
Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit
www.iosrjournals.org 75 | Page
This semi-empirical procedure has been employed many years ago, for instance to extend the application range
of Debye-Hiickel's(15-17)
equation for the variation of activity coefficient with ionic strengthFurthermore, since
in most of the experimental data of transference numbers collected in the concentration is expressed in molality,
we have selected this form to express the concentration. Where m=Electrolyte Molality Jc, De and L c are the
adjustable parameters of this equation and, generally,
0
0
lim ccc
m
tjt 

………………………………………... (2)
t ° being the cation transference number at infinite dilution. Thus, the fit can also be accomplished to Eq. (2) by
setting Jc equal to the value of the limiting transference number according to Eq. (2).empirical formula depends
on temperature on rates reaction. Fig [8]. An exponential dependence on temperature of the rate constant k. In
the equation, A is the pre exponential factor, which is almost independent of temperature (temperature
dependence is slight and can be conveniently ignored). Ea is known as the energy of activation. The logarithmic
form of the Arrhenius equation represents a linear relation.
IV. Conclusions
The results obtained in this work confirmed that the selectivity and the reuse of spent Li-ion battery via
injection the battery by certain chemically compounds give a good result for reusing this type of battery and
analyzed by a new electronic circuit.
References
[1.] Balakrishnan, P.G., Ramesh, R., Prem Kumar, T., J. Power Sources 155(2006) 401–414.
[2.] Hassoun, J., Panero, S., Reale, P., Scrosati, B., J. Adv. Mater (4807–4810) 21(2009).4807–4810.
[3.] P. Bommersbach, M. Chaker, M. Mohamedi, D. Guay, J. Phys. Chem. 12 (2008) 14672-14679.
[4.] F.L.S. Purgato, P. Olivi, J.M. Léger, A.R. de Andrade, G. Tremiliosiilho,E.R. Gonzalez, C. Lamy, K.B. Kokoh, J. Electroanal.
Chem. 628 (2009) 81-92.
[5.] S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Gonzalez, A.S. Aricò, Electrochim. Acta 70 (2012) 255.
[6.] Castillo, S., Ansart, F., Laberty-Robert, C., Portal, J., J. of Power Sources112 (2010) 247–254).
[7.] Nishi, Y., J.of power sources 100(2001)101-106.
[8.] S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Aricò, Electrochim. Acta 70 (2012) 255-265.
[9.] Nan, J., Han, D., Yang, M., Cui, M., J.of the electrochemical Society 101(2006) 153-161.
[10.] Contestable, M., Panero, S., Scrosati, B., J.of Power Sources 65(2001)92-101.
[11.] Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B., J. of Power Sources177(2008) 512–527.
[12.] Pier Paolo Prosini, Maria Carewska, Stefano Loreti, Carla Minarini, Stefano Passerini International Journal of Inorganic Materials
4(2000) 365–370.
[13] R. Dorta-Rodriguez, F. Hermlndez-Luis *, M. Barrera-Niebla .J. Advanced Materials 22(2004)34-41.
[14] R. Wang, J. Jia, H. Li, X. Li, H. Wang, Y. Chang, J. Kang, Z. Lei, Electrochim. Acta 56(2011) 4526-35.
[15] F. Somodi, Z. Peng, A.B. Getsoian, A.T. Bell, J. Phys. Chem. C 115(2011)19084-19094.
[16] Xinghui Wang, Xiuwan Li, Xiaolei Sun, and Deyan He. J. Mater. Chem 21( 2011) 3571-3573.
[17] Jia-Zhao Wang, Chao Zhong and Hua-Kun Liu.J. Chemistry - A European 17 (2011) 661–667.

More Related Content

Viewers also liked

Multiple Constraints Consideration in Power System State Estimation
Multiple Constraints Consideration in Power System State EstimationMultiple Constraints Consideration in Power System State Estimation
Multiple Constraints Consideration in Power System State EstimationIOSR Journals
 
A Survey on Data Mining
A Survey on Data MiningA Survey on Data Mining
A Survey on Data MiningIOSR Journals
 
Hiding Image within Video Clip
Hiding Image within Video ClipHiding Image within Video Clip
Hiding Image within Video ClipIOSR Journals
 
A New Approach to Volunteer Cloud Computing
A New Approach to Volunteer Cloud ComputingA New Approach to Volunteer Cloud Computing
A New Approach to Volunteer Cloud ComputingIOSR Journals
 
Ensuring Privacy in opportunistic Network
Ensuring Privacy in opportunistic NetworkEnsuring Privacy in opportunistic Network
Ensuring Privacy in opportunistic NetworkIOSR Journals
 
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...A novel methodology for maximization of Reactive Reserve using Teaching-Learn...
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...IOSR Journals
 
Web Data mining-A Research area in Web usage mining
Web Data mining-A Research area in Web usage miningWeb Data mining-A Research area in Web usage mining
Web Data mining-A Research area in Web usage miningIOSR Journals
 
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...IOSR Journals
 
Performance Evaluation of Different Data Mining Classification Algorithm and ...
Performance Evaluation of Different Data Mining Classification Algorithm and ...Performance Evaluation of Different Data Mining Classification Algorithm and ...
Performance Evaluation of Different Data Mining Classification Algorithm and ...IOSR Journals
 
Designing the Workflow of a Language Interpretation Device Using Artificial I...
Designing the Workflow of a Language Interpretation Device Using Artificial I...Designing the Workflow of a Language Interpretation Device Using Artificial I...
Designing the Workflow of a Language Interpretation Device Using Artificial I...IOSR Journals
 
Combining Ability for Yield and Yield Components through Diallel Analysis in ...
Combining Ability for Yield and Yield Components through Diallel Analysis in ...Combining Ability for Yield and Yield Components through Diallel Analysis in ...
Combining Ability for Yield and Yield Components through Diallel Analysis in ...IOSR Journals
 
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...IOSR Journals
 
A new approach for user identification in web usage mining preprocessing
A new approach for user identification in web usage mining preprocessingA new approach for user identification in web usage mining preprocessing
A new approach for user identification in web usage mining preprocessingIOSR Journals
 
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...IOSR Journals
 

Viewers also liked (20)

Multiple Constraints Consideration in Power System State Estimation
Multiple Constraints Consideration in Power System State EstimationMultiple Constraints Consideration in Power System State Estimation
Multiple Constraints Consideration in Power System State Estimation
 
A Survey on Data Mining
A Survey on Data MiningA Survey on Data Mining
A Survey on Data Mining
 
Hiding Image within Video Clip
Hiding Image within Video ClipHiding Image within Video Clip
Hiding Image within Video Clip
 
M017147275
M017147275M017147275
M017147275
 
C017161925
C017161925C017161925
C017161925
 
A0420104
A0420104A0420104
A0420104
 
A New Approach to Volunteer Cloud Computing
A New Approach to Volunteer Cloud ComputingA New Approach to Volunteer Cloud Computing
A New Approach to Volunteer Cloud Computing
 
G013115167
G013115167G013115167
G013115167
 
Ensuring Privacy in opportunistic Network
Ensuring Privacy in opportunistic NetworkEnsuring Privacy in opportunistic Network
Ensuring Privacy in opportunistic Network
 
L0126598103
L0126598103L0126598103
L0126598103
 
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...A novel methodology for maximization of Reactive Reserve using Teaching-Learn...
A novel methodology for maximization of Reactive Reserve using Teaching-Learn...
 
Web Data mining-A Research area in Web usage mining
Web Data mining-A Research area in Web usage miningWeb Data mining-A Research area in Web usage mining
Web Data mining-A Research area in Web usage mining
 
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...
Behaviour of laying curve in Babcock-380 brown commercial layers in Kelantan,...
 
Performance Evaluation of Different Data Mining Classification Algorithm and ...
Performance Evaluation of Different Data Mining Classification Algorithm and ...Performance Evaluation of Different Data Mining Classification Algorithm and ...
Performance Evaluation of Different Data Mining Classification Algorithm and ...
 
Designing the Workflow of a Language Interpretation Device Using Artificial I...
Designing the Workflow of a Language Interpretation Device Using Artificial I...Designing the Workflow of a Language Interpretation Device Using Artificial I...
Designing the Workflow of a Language Interpretation Device Using Artificial I...
 
Combining Ability for Yield and Yield Components through Diallel Analysis in ...
Combining Ability for Yield and Yield Components through Diallel Analysis in ...Combining Ability for Yield and Yield Components through Diallel Analysis in ...
Combining Ability for Yield and Yield Components through Diallel Analysis in ...
 
I0154957
I0154957I0154957
I0154957
 
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...
Performance Analysis of Single Quantum Dots and Couple Quantum Dots at Interm...
 
A new approach for user identification in web usage mining preprocessing
A new approach for user identification in web usage mining preprocessingA new approach for user identification in web usage mining preprocessing
A new approach for user identification in web usage mining preprocessing
 
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...
Enhancing a Dynamic user Authentication scheme over Brute Force and Dictionar...
 

Similar to Reuse Li-ion Batteries by Chemical Treatment

Recycling Technology For Spent Lithium-ion batteries
Recycling Technology For Spent Lithium-ion batteriesRecycling Technology For Spent Lithium-ion batteries
Recycling Technology For Spent Lithium-ion batteriesbmeshram
 
Battery white-paper-part-ii
Battery white-paper-part-iiBattery white-paper-part-ii
Battery white-paper-part-iiIntertek CE
 
Critique on two-wheeler electric vehicle batteries
Critique on two-wheeler electric vehicle batteriesCritique on two-wheeler electric vehicle batteries
Critique on two-wheeler electric vehicle batteriesIRJET Journal
 
Battery white-paper-part-i
Battery white-paper-part-iBattery white-paper-part-i
Battery white-paper-part-iIntertek CE
 
A global overview of the geology and economics of lithium production
A global overview of the geology and economics of lithium productionA global overview of the geology and economics of lithium production
A global overview of the geology and economics of lithium productionJohn Sykes
 
Poster on Recycling of spent batteries
Poster on Recycling of spent batteriesPoster on Recycling of spent batteries
Poster on Recycling of spent batteriesbmeshram
 
Nanomaterial Applications in Lithium Batteries - Christian DiCenso
Nanomaterial Applications in Lithium Batteries - Christian DiCensoNanomaterial Applications in Lithium Batteries - Christian DiCenso
Nanomaterial Applications in Lithium Batteries - Christian DiCensoChristian DiCenso
 
Disruptive Battery Technologies
Disruptive Battery Technologies Disruptive Battery Technologies
Disruptive Battery Technologies PreScouter
 
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...iQHub
 
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...Subjective and Comparatively Studied of Batteries on Different Parameters Eff...
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...IRJET Journal
 
Blockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfBlockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfCarlos985448
 
Blockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfBlockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfCarlos985448
 
Manufacturing Process Dependencies and the Performance of Prismatic Large For...
Manufacturing Process Dependencies and the Performance of Prismatic Large For...Manufacturing Process Dependencies and the Performance of Prismatic Large For...
Manufacturing Process Dependencies and the Performance of Prismatic Large For...Antonio Reis
 
Battery technology
Battery technologyBattery technology
Battery technologySwastika Das
 
Rechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery DevelopmentRechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery DevelopmentDESH D YADAV
 
Future Trends - Recycling - Batteries
Future Trends - Recycling - BatteriesFuture Trends - Recycling - Batteries
Future Trends - Recycling - BatteriesBruce LaCour
 
Review of Challenges in Various Electric Vehicle Batteries
Review of Challenges in Various Electric Vehicle BatteriesReview of Challenges in Various Electric Vehicle Batteries
Review of Challenges in Various Electric Vehicle BatteriesIRJET Journal
 
Blockchain review for battery supply chain monitoring and battery trading
Blockchain review for battery supply chain monitoring and battery tradingBlockchain review for battery supply chain monitoring and battery trading
Blockchain review for battery supply chain monitoring and battery tradingCarlos985448
 

Similar to Reuse Li-ion Batteries by Chemical Treatment (20)

Recycling Technology For Spent Lithium-ion batteries
Recycling Technology For Spent Lithium-ion batteriesRecycling Technology For Spent Lithium-ion batteries
Recycling Technology For Spent Lithium-ion batteries
 
Battery white-paper-part-ii
Battery white-paper-part-iiBattery white-paper-part-ii
Battery white-paper-part-ii
 
Critique on two-wheeler electric vehicle batteries
Critique on two-wheeler electric vehicle batteriesCritique on two-wheeler electric vehicle batteries
Critique on two-wheeler electric vehicle batteries
 
Battery white-paper-part-i
Battery white-paper-part-iBattery white-paper-part-i
Battery white-paper-part-i
 
A global overview of the geology and economics of lithium production
A global overview of the geology and economics of lithium productionA global overview of the geology and economics of lithium production
A global overview of the geology and economics of lithium production
 
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
Analytical Study and Comparison of Solid and Liquid Batteries for Electric Ve...
 
Poster on Recycling of spent batteries
Poster on Recycling of spent batteriesPoster on Recycling of spent batteries
Poster on Recycling of spent batteries
 
Nanomaterial Applications in Lithium Batteries - Christian DiCenso
Nanomaterial Applications in Lithium Batteries - Christian DiCensoNanomaterial Applications in Lithium Batteries - Christian DiCenso
Nanomaterial Applications in Lithium Batteries - Christian DiCenso
 
Disruptive Battery Technologies
Disruptive Battery Technologies Disruptive Battery Technologies
Disruptive Battery Technologies
 
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...
PANEL DISCUSSION ON THE STRATEGIES AND CHALLENGES IN REPURPOSING EOL EV BATTE...
 
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...Subjective and Comparatively Studied of Batteries on Different Parameters Eff...
Subjective and Comparatively Studied of Batteries on Different Parameters Eff...
 
Blockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfBlockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdf
 
Blockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdfBlockchain review for battery supply chain monitoring and battery trading.pdf
Blockchain review for battery supply chain monitoring and battery trading.pdf
 
Manufacturing Process Dependencies and the Performance of Prismatic Large For...
Manufacturing Process Dependencies and the Performance of Prismatic Large For...Manufacturing Process Dependencies and the Performance of Prismatic Large For...
Manufacturing Process Dependencies and the Performance of Prismatic Large For...
 
Battery technology
Battery technologyBattery technology
Battery technology
 
Rechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery DevelopmentRechargeable Sodium-ion Battery - The Future of Battery Development
Rechargeable Sodium-ion Battery - The Future of Battery Development
 
Future Trends - Recycling - Batteries
Future Trends - Recycling - BatteriesFuture Trends - Recycling - Batteries
Future Trends - Recycling - Batteries
 
Review of Challenges in Various Electric Vehicle Batteries
Review of Challenges in Various Electric Vehicle BatteriesReview of Challenges in Various Electric Vehicle Batteries
Review of Challenges in Various Electric Vehicle Batteries
 
Blockchain review for battery supply chain monitoring and battery trading
Blockchain review for battery supply chain monitoring and battery tradingBlockchain review for battery supply chain monitoring and battery trading
Blockchain review for battery supply chain monitoring and battery trading
 
Umicore company
Umicore companyUmicore company
Umicore company
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 

Recently uploaded (20)

IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

Reuse Li-ion Batteries by Chemical Treatment

  • 1. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 3 (Nov. - Dec. 2013), PP 69-75 www.iosrjournals.org www.iosrjournals.org 69 | Page Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit * N.El-Said, A.Sakr and A.T.Kassem Hot Labs. And Waste Management Center, Atomic Energy Authority, P.C. 13759, Cairo, Egypt Abstract: The development process of the lithium-ion batteries portable combined chemical treatment with lithium-ion battery, designed electronic in new steps to the process of designing electronic circuit fresh and new idea also intended to restore the use of the battery again and it is not the injection of cobalt, nickel and other ions, but the injection of all other battery components, especially lithium and interest for the Battery is the re- injection of the same components, and was the focus of the research work in the development of chemically-step process in the new electronic circuit designed and inexpensive materials extracted from the lithium-ion batteries expired. Was the purpose of this paper is the interest of battery components, which contain substances pole. To produce a composite-ion was proof of the feasibility of the main objective. To get to the proper voltage and comparing the effort Original has been done successfully by taking different concentrations and injected in a mogul’s circuit. Keywords: Lithium-ion batteries, electronic circuit.spent, cobalt- lithium composite, chemically Treatment I. Introduction Since the 1990s, primary lithium and lithium-ion batteries have become the power supply of choice in many consumers, industrial and military applications due to their advantages in terms of energy density over other battery technologies. A considerable research effort has been invested in developing inherently safer chemistries and the development of more effective thermal management systems and protection(1,2) devices The aim of this paper is to review the safety characteristics of commercial primary lithium and lithium-ion battery technologies, focusing on side reactions and thermal behaviours that could compromise safety during operation. Safety mechanisms and tests that have been designed to evaluate battery performance during normal use and abuse circumstances are subsequently reviewed in light of experimental evidence available in the open literature. Hazards associated with primary lithium and lithium-ion cells have materialised not only during use at the intended application, but also during transport and storage of new and used battery packs; or when end-of- life batteries undergo treatment for recycling two Recover marketable materials. Within the last two decades the requirements for batteries as mobile energy sources have constantly increased and have become more and more to meet the requirements brought by legislation. A number of recent incidents during transport, storage and recycling operations described in the news accounts have also been reviewed. Although definitive evidence on the actual mechanism initiating the events is often lacking, incidents can at times be linked to incorrect handling, storage and packaging practices that may lead to mechanical damage, water ingress, and/or internal or external short-circuit of charged complex. The trend towards improved mobility in the rapidly developing fields of portable computer, communication, video and audio technology has strongly pushed the development of batteries. As supplier of the communications technology industry the battery industry shows an annual double- digit growth rate (3) .At the beginning of the 1990s Li-ion batteries have been regarded as the most promising energy sources for mobile applications. This has been proven true today; for instance, Li-ion batteries have totally replaced NiCd batteries as well as NiMH batteries in mobile phones as they offer a lot of advantages compared to other rechargeable battery systems, such as high operating voltage, high specific energy and long life-time. The widespread and constantly increasing use of Li-ion batteries also leads to an increased battery scrap generation (in both production as a well as end-of-life), which has to be recycled with regard to environmental and economical sustainability. Ideally a closed-loop recycling should allow for returning back the recycling products to the production of new batteries. Li-ion batteries contain high amounts of valuable metals, such as aluminum, iron, copper, lithium, cobalt, nickel and manganese. Metal is cobalt, which is contained in the battery electrode material. Hence the cobalt recovery has a strong influence on the economic efficiency of a suitable battery recycling process. In 2006 the United States and Europe had the highest proportion, 28.4% respectively 27.2%, of the worldwide Li-ion battery consumption but their proportion of the worldwide Li-ion battery production was only 0.4% and 2.0%, respectively. More than 90% of Li-ion battery cells were produced in Japan, South Korea and China. With 40% Japan was the country with the highest Li-ion battery cell production since the mid-1990s the usage of Li-ion batteries (4) has strongly increased. Today’s strong market position of Li-ion batteries is reflected by the sales figures. In 2008 more than 3 billion Li-ion battery cells (5) were sold. In the EU sales in 2007 were three and a half times higher than in 2002 .Nevertheless the absolute
  • 2. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 70 | Page return flow of spent Li-ion batteries is still low and the collection rate in 2007 was only about 3%. On the one hand this is mainly caused by the long life-time of Li-ion batteries and on the other hand by the end-consumer. Behavior, who usually dispose of spent batteries for recycling only after several years. In Germany Li-ion batteries had a market share of more than 50% for the first time in 2008, but here the collection rate of approximately 9% is comparatively low. In spite of the currently low collection rates forecasts show that sales figures will continue. Lithium primary batteries have been available on the market for about 25 years, while lithium-ion secondary batteries or storage batteries have less than 10 years of commercial development(6) . A lithium-ion secondary battery comprises a cathode, an anode, organic electrolyte, and a separator. Nowadays, LiCoO2, LiMn2O4, LiNiO2 or related oxides are used as cathode materials for almost all commercialized lithium-ion secondary batteries, and these are especially applied for mobile phones, personal computers, video- cameras, etc. due to themany advantages of lithium-ion secondary batteries, such as: (a) high energy density, (b) high battery voltage, (c) long charging–discharging cycle and (d) large temperature range(7) . Since the available dumping sites for disposal are limited and very costly, effective methods and low costs are the objectives in separating and recovering the spent lithium-ion secondary batteries (8) . It will be very interesting to be able to recycle and regenerate the major metal values of spent batteries, in order to benefit the economy, and at the same time, reduce environmental pollution. Some hydrometallurgical and hydrometallurgical processes for the recycling of spent lithium-ion secondary batteries have already been reported or patented (9) , but most of these are in the pilot or laboratory testing phase. In addition, using recycled metal value from spent lithium-ion secondary batteries to prepare LiCoO2, LiMn2O4, LiNiO2 and related oxides electrode materials has been investigated(10) , and the current status of the recycling technologies of spent lithium-ion batteries have been reviewed(11) by the overall recycling technology consists of both physical and chemical processes. The physical process, such as dismantling, crushing, sieving, etc. is developed in order to separate the cathode materials from other substances. The chemical process mainly uses diluted acid to dissolve the cathode material, after which a solvent extraction, precipitation method, etc. are operated to separate the metal value. It is obvious that this step depends on the concentration and categories of leaching, the extraction and precipitation of reagents, and it is necessary to combine several techniques to recover each metal value. The chemical process of the recovery technology for the spent lithium-ion secondary batteries. Up until now, most of the research works in the chemical process cannot fulfill the complete separation of each metal value from the cathode materials. Thus, it is important to develop a simple and environmentally acceptable recycling process to recover as much of the valuable metals as possible. Experiments of leaching Co, Mn, Ni and Li contained in the cathode material of the batteries have been conducted on dissolving in acid solution, neutralization, precipitation, oxidation reduction and filtering, and various separation procedures using different oxidizing reagents, etc. The amount of oxidizing reagent, temperature, etc.was also investigated in the recovery material process of the mixture. II. Experimental: Fig. (1) Schematic diagram of New designed electronic circuit Connected to the Li-ion battery to measure the electric Potential.
  • 3. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 71 | Page Fig (2) new designed electronic circuit connected to the Li-ion battery to Measure the potential. 2.1. Designing electronic cell. In Fig. (1): Schematic diagram of New designed electronic circuit Connected to the Li-ion battery to measure the electric Potential. Fig (2): New designed electronic circuit connected to the Li-ion battery to Measure the potential. 2.2. Synthesized Lithium–iron oxide Lithium–iron oxide Li–Fe–O was synthesized by solid state reaction between Li2CO3 and Fe2O3. The sample was characterized by X-ray powder diffraction. The XRD patterns showed well defined reflections corresponding fig (3) to α-LiFeO2 and the spinel LiFe5O8 in a molar ratio of 9:1. The material was tested as alternative anode for lithium-ion batteries (12) . 2.3. Manufacturing of LiFePO4 In the charged state, the lithium atoms are located at the anode, and upon discharged flow through the electrolyte to the cathode, the reaction occurring at the anode during discharged. Li2CO3, lithium carbonate, is used to make LiFePO4. The quantity was estimated to 0.23 g Li2CO3 per gram LiFePO4, by stoichiometric calculation. TPP (tetrakisphenylporphyrin) is electrochemically stable up to 4.9V. The TPP (tetrakisphenylporphyrin) -containing display improved thermal stability compared with TPP-free electrolytes. The addition of 3% TPP to the solution of lithium. Fig (3): Shown that XRD patterns of Li–Fe–O based electrode .Fig (4): Electron micrographl ectrolytes s of cathodes prepared at LiFePO4. Fig. 3. XRD patterns of Li–Fe–O based electrode
  • 4. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 72 | Page Fig (4): Electron micrographs of cathodes prepared at: (a) LiFePO4 2.4. Mechanism of lithium iron oxide: 2 3 2 4 2 4 0.9 0.1 4 2 3 20.5 0.9 0.1 ( ) ( ) 0.5 2 1.6Li CO FeO Mg OH NH HPO LiFe Mg PO CO NH H O       III. Results and discussion 3.1. Reuse of Li- ion battery by injection: As the Li-ion battery injected by 10 ml of the prepared solution of LiFePO4 and TPP, (triphenylphosphate) and measuring the potential. Study different parameters. 3.2. How to calculate battery Run-Injection? To calculate the time of injection in the battery, it is assumed that we are using battery-consuming and we did circuit simplified but new in the idea where it came from us this new idea of what we are going through of the economy is very bad and also to environmental pollutants harmful to our health so we neighborhoods battery old dumped rubbish and re-used again and was injected the same cathode electrolyte original battery in them and in certain concentrations and taking the pulse at the beginning of the injection and calculate the voltage in every step to make sure the high voltage up to the effort required to run and compared the original effort of the battery and therefore has been the expense of some of the parameters. 3.3-Duration time 3.3.1-Effect of duration time The effect of duration time on a sheet to give to number of injection, after each hour. Trying to get times worked in hours and mins, from a given start time to a given finished time. I would like inject after 5, 10, 15, at 60min, or 1hour. In the same time determine the voltage and record. The duration time shown the relation ship between times injections against voltage in the fig (5) show the duration time increase to increase the voltage at reached the voltage equal to 2.998v. After 60min the voltage start decreasing gradient at a constant temperature 250 C. Fig (5): effect of duration time and voltage 3.4. Effect of pH 3.4.1. Effect of the pH on the ionic transfer between the electrolyte solutions. The effect of the pH on the ionic transfer of ions of lithium at the interface between the electrolyte solutions (ITIES) was investigated by a simple analysis method. Fig (6), .Show the relation between the pH against the sensitivity of potential. -10 0 10 20 30 40 50 60 70 80 0.5 1.0 1.5 2.0 2.5 3.0 Voltage(V) time (T) min
  • 5. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 73 | Page 4 5 6 7 8 9 10 11 12 13 0 20 40 60 80 100 Fig.6. Effect of the pH on the potentiometric response of injected Li ion t Senitivity/(E(V)/dec pH 3.5. Relationship between the voltage, concentration and duration time The concentration of lithium iron oxide as electrolyte solution increased with increase the voltage reached at 2.998V with increase the duration time study at 24 day. The charges start decrease and the voltage decreasing and reached at zero. Plot 3D graphic between the voltage, concentration and duration time Fig. (7). Show that the relation between three parameters and the zone represent amount of lithium in suitable injection. Increasing pH due to increase the sensitivity /E (V) increase and reached at 98%. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -5.0 -4.5 -4.0 -3.5 -3.01.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 Fig (7).3-D p-lot of X=Li,M,Y E(MV) and Z=T,min T,MIN E,(MV)Li,conc. -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 25 0C 35 0C 45 0C 55 0C 65 0C Specificconductivity Con.Electrolyte mmol-1 Fig.8. Variations of. Temperature of the electrical conductivity for the system LiFeO4
  • 6. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 74 | Page 0 20 40 60 80 100 120 140 160 1000 1500 2000 2500 3000 3500 4000 Conductivity Time(min) Fig(9): Effect of the time and Conductivity for electrolyte Battery 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Conductivityrate Molar of electrolyte Fig(10),. Effect of Molar concentration of electrolyte against Conductivity rate 3.6. General overview of Li-ion battery chemistries There is also a potential risk of electrolyte. A Li-ion battery consists of a positive electrode (cathode) and a negative electrode (anode), both of which are the source of the electrochemical reaction. The cathodes are immersed in an electrolyte medium, which is a solution containing dissociated salts to ensure the ion transfer between the discharges; the lithium is extracted from the anode and inserted onto the cathode. When the battery charges, the reverse process occurs. Overcharging will supersaturate the lithium cobalt oxide, leading to the production of lithium oxide and often to uncontrolled, highly energetic reactions an empirical equation. 3.7. Empirical equation A A new semi-empirical equation for the dependence of transference numbers upon concentration is reported. It is a simple equation applicable to many electrolytes of different stoichiometry(13) over large molality ranges. The equation for each electrolyte is characterized by four parameters, one of them (Ji) being the transference number at infinite dilution, another two (D i, L i) lacking physical meaning, and the fourth being an integer or semi-integer fixed parameter (Pi ---- 1/2, 1, 3/2). For some electrolytes, the last parameter can be different for cation and anion. An apparent incoherence of the proposed equation has been solved by using Taylor series and also by non-linear regression analysis followed by smoothing. As a consequence of this, the equation now reported is of dual application for either the cation or the anion transference numbers. Some applications of the new equation to obtain hydration and water transfercnce limiting numbers. LiFeO4 as electrolyte relatively high concentration, the transference number of LiFeO4 recovered by equation [1] using the Jc and Dc values obtained by the e.m.f, method within 0.0024 over the entire range of concentration up to 1.0 mol kg -l. Similarly for LiCI- (14), that equation is fulfilled in the range up to 3 mol 1- ~ with a maximum error of 0.0017. pc c e c c mL mD j t    1 ………………………………….. (1)
  • 7. Advanced method for reuse of Li-ion batteries and Analysis by new designed electronic circuit www.iosrjournals.org 75 | Page This semi-empirical procedure has been employed many years ago, for instance to extend the application range of Debye-Hiickel's(15-17) equation for the variation of activity coefficient with ionic strengthFurthermore, since in most of the experimental data of transference numbers collected in the concentration is expressed in molality, we have selected this form to express the concentration. Where m=Electrolyte Molality Jc, De and L c are the adjustable parameters of this equation and, generally, 0 0 lim ccc m tjt   ………………………………………... (2) t ° being the cation transference number at infinite dilution. Thus, the fit can also be accomplished to Eq. (2) by setting Jc equal to the value of the limiting transference number according to Eq. (2).empirical formula depends on temperature on rates reaction. Fig [8]. An exponential dependence on temperature of the rate constant k. In the equation, A is the pre exponential factor, which is almost independent of temperature (temperature dependence is slight and can be conveniently ignored). Ea is known as the energy of activation. The logarithmic form of the Arrhenius equation represents a linear relation. IV. Conclusions The results obtained in this work confirmed that the selectivity and the reuse of spent Li-ion battery via injection the battery by certain chemically compounds give a good result for reusing this type of battery and analyzed by a new electronic circuit. References [1.] Balakrishnan, P.G., Ramesh, R., Prem Kumar, T., J. Power Sources 155(2006) 401–414. [2.] Hassoun, J., Panero, S., Reale, P., Scrosati, B., J. Adv. Mater (4807–4810) 21(2009).4807–4810. [3.] P. Bommersbach, M. Chaker, M. Mohamedi, D. Guay, J. Phys. Chem. 12 (2008) 14672-14679. [4.] F.L.S. Purgato, P. Olivi, J.M. Léger, A.R. de Andrade, G. Tremiliosiilho,E.R. Gonzalez, C. Lamy, K.B. Kokoh, J. Electroanal. Chem. 628 (2009) 81-92. [5.] S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Gonzalez, A.S. Aricò, Electrochim. Acta 70 (2012) 255. [6.] Castillo, S., Ansart, F., Laberty-Robert, C., Portal, J., J. of Power Sources112 (2010) 247–254). [7.] Nishi, Y., J.of power sources 100(2001)101-106. [8.] S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Aricò, Electrochim. Acta 70 (2012) 255-265. [9.] Nan, J., Han, D., Yang, M., Cui, M., J.of the electrochemical Society 101(2006) 153-161. [10.] Contestable, M., Panero, S., Scrosati, B., J.of Power Sources 65(2001)92-101. [11.] Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B., J. of Power Sources177(2008) 512–527. [12.] Pier Paolo Prosini, Maria Carewska, Stefano Loreti, Carla Minarini, Stefano Passerini International Journal of Inorganic Materials 4(2000) 365–370. [13] R. Dorta-Rodriguez, F. Hermlndez-Luis *, M. Barrera-Niebla .J. Advanced Materials 22(2004)34-41. [14] R. Wang, J. Jia, H. Li, X. Li, H. Wang, Y. Chang, J. Kang, Z. Lei, Electrochim. Acta 56(2011) 4526-35. [15] F. Somodi, Z. Peng, A.B. Getsoian, A.T. Bell, J. Phys. Chem. C 115(2011)19084-19094. [16] Xinghui Wang, Xiuwan Li, Xiaolei Sun, and Deyan He. J. Mater. Chem 21( 2011) 3571-3573. [17] Jia-Zhao Wang, Chao Zhong and Hua-Kun Liu.J. Chemistry - A European 17 (2011) 661–667.