빅데이터 기술의 소프트웨어 공학 적용
1. 빅데이터 기술의 활용 사례 - 빅데이터 기술은 이미 많은 적용 사례를 가지고 있고, IoT 기술과 더불어 일상의 기술이 되어 가고 있다 (Pervasive & Invisible Analytics).
2. Spark 플랫폼 - 이전에 Hadoop으로 대표되는 빅데이터의 분산 처리 기술은 계속 발전하고 있고, Spark는 메모리 기반 데이터 처리로 기존 대비 성능을 10~100배 개선하였다. 특히, Spark는 Scala라는 함수형 언어로 구현되었고, 이전에 Java 기반의 빅데이터 처리 코드를 보다 명료하고 Compact하게 구현할 수 있다. 데이터 분석에는 Imperative 언어보다 함수형 언어가 보다 적합하다.
3. 소프트웨어 공학에서의 데이터 분석 사례 - 최근 Software Analytics, Repository Mining 등 데이터 분석 사례들이 있고, 최근 GitHub 이나 StackOverflow 분석과 같은 빅데이터 분석 연구들이 진행되고 있다.
4. Spark를 활용한 Word Count 예
5. Big Data Software Engineering - 큰 데이터 처리 외에도, 실시간 데이터 처리 (Velocity), 다양한 데이터 처리 (Variety) 부분에도 소프트웨어 공학 적용이 필요하다. 또한, Big Data Software를 Engineering하는 부분에도 관심이 필요하다. Big Data 분석 코드 역시 SE의 대상으로 바라보고, Test Driven Dev, Agile Methodology와 같은 개발 방법의 적용을 살펴볼 필요가 있다.
마지막으로, 현재 빅데이터 기술에 대한 진입 장벽은 많이 낮아졌고, 사용 가능한 오픈소스들이 많다. 소프트웨어 공학자라면 빅데이터 분석을 직접 시도해 볼 필요가 있고, 특히, Spark-Scala는 향 후 더욱 발전 확대될 기술이다.