Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Satoshi Kitajima
PPTX, PDF
13,562 views
オープンソースのデータ分析ソフト3製品「RapidMiner」「NYSOL」「Revolution R Enterprise (RRE) ※Rの商用版」のご紹介
東京大学経済学研究科棟3階 第2教室(C会場) 13:00~15:00 2014年度 統計関連学会連合大会 株式会社KSKアナリティクス 北島 聡
Data & Analytics
◦
Read more
20
Save
Share
Embed
Embed presentation
Download
Downloaded 94 times
1
/ 87
2
/ 87
3
/ 87
4
/ 87
5
/ 87
6
/ 87
7
/ 87
8
/ 87
9
/ 87
10
/ 87
11
/ 87
12
/ 87
13
/ 87
14
/ 87
15
/ 87
16
/ 87
17
/ 87
18
/ 87
19
/ 87
20
/ 87
21
/ 87
22
/ 87
23
/ 87
24
/ 87
25
/ 87
26
/ 87
27
/ 87
28
/ 87
29
/ 87
30
/ 87
31
/ 87
32
/ 87
33
/ 87
34
/ 87
35
/ 87
36
/ 87
37
/ 87
38
/ 87
39
/ 87
40
/ 87
41
/ 87
42
/ 87
43
/ 87
44
/ 87
45
/ 87
46
/ 87
47
/ 87
48
/ 87
49
/ 87
50
/ 87
51
/ 87
52
/ 87
53
/ 87
54
/ 87
55
/ 87
56
/ 87
57
/ 87
58
/ 87
59
/ 87
60
/ 87
61
/ 87
62
/ 87
63
/ 87
64
/ 87
65
/ 87
66
/ 87
67
/ 87
68
/ 87
69
/ 87
70
/ 87
71
/ 87
72
/ 87
73
/ 87
74
/ 87
75
/ 87
76
/ 87
77
/ 87
78
/ 87
79
/ 87
80
/ 87
81
/ 87
82
/ 87
83
/ 87
84
/ 87
85
/ 87
86
/ 87
87
/ 87
More Related Content
PPTX
SASより高速なRevolution R Enterprise
by
Satoshi Kitajima
PDF
レボリューションR(RRE)のご紹介
by
Satoshi Kitajima
PDF
【KSKアナリティクス】 NYSOL 使い方 【後編】 オープンデータ 分析 - 頻出パターン の作成・可視化 -
by
KSK Analytics Inc.
PDF
ビッグデータ分析基盤を支えるOSSたち
by
Toru Takahashi
PDF
#TokyoR 39 高速に前処理するNYSOL
by
Satoshi Kitajima
PDF
【KSKアナリティクス】 RapidMiner 紹介 (short)
by
KSK Analytics Inc.
PDF
[data analytics showcase] B11: ビッグデータを高速に検索・分析する「Elasticsearch」~新プラグイン「Graph」...
by
Insight Technology, Inc.
PDF
【KSKアナリティクス】 NYSOL 使い方 データ準備編
by
KSK Analytics Inc.
SASより高速なRevolution R Enterprise
by
Satoshi Kitajima
レボリューションR(RRE)のご紹介
by
Satoshi Kitajima
【KSKアナリティクス】 NYSOL 使い方 【後編】 オープンデータ 分析 - 頻出パターン の作成・可視化 -
by
KSK Analytics Inc.
ビッグデータ分析基盤を支えるOSSたち
by
Toru Takahashi
#TokyoR 39 高速に前処理するNYSOL
by
Satoshi Kitajima
【KSKアナリティクス】 RapidMiner 紹介 (short)
by
KSK Analytics Inc.
[data analytics showcase] B11: ビッグデータを高速に検索・分析する「Elasticsearch」~新プラグイン「Graph」...
by
Insight Technology, Inc.
【KSKアナリティクス】 NYSOL 使い方 データ準備編
by
KSK Analytics Inc.
What's hot
PDF
【KSKアナリティクス】 NYSOL 使い方 顧客数の確認編
by
KSK Analytics Inc.
PDF
データプロダクトを支えるビッグデータ基盤
by
Google Cloud Platform - Japan
PDF
【KSKアナリティクス】会社案内・事例紹介
by
KSK Analytics Inc.
PDF
The Design for Serverless ETL Pipeline (48:9)
by
Shoji Shirotori
PDF
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)
by
Yosuke Katsuki
PPTX
OSSを活用したダッシュボード の紹介
by
BigData Sios
PDF
【KSKアナリティクス】製品・サービス案内
by
KSK Analytics Inc.
PDF
Elasticsaerch Runtime Field
by
Nomura Yuta
PDF
Renewed using elasticsearchonaspnet-core5
by
Shotaro Suzuki
PPTX
Spring Cloud Data Flow で構成される IIJ IoTサービス
by
Kenji Kondo
PDF
20200324 ms open-tech-elastic
by
Koji Kawamura
PDF
SmartNews の Webmining を支えるプラットフォーム
by
SmartNews, Inc.
PDF
Apm enables python app observability
by
Shotaro Suzuki
PDF
Elastic Stackの紹介とOpenStackでの活用事例(Searchlightなど) - OpenStack最新情報セミナー 2016年5月
by
VirtualTech Japan Inc.
PDF
【KSKアナリティクス】 NYSOL 使い方 顧客を男女別に分割編
by
KSK Analytics Inc.
PDF
Learn, build, and scale with elastic - realizing great programming experience...
by
Shotaro Suzuki
PDF
[Cloud OnAir] ケーススタディから学ぶ GCP で行うデータ エンジニアリング 2019年6月6日 放送
by
Google Cloud Platform - Japan
PPTX
オープンデータプラグイン紹介資料
by
Naokazu Nohara
PDF
[db tech showcase OSS 2017] A27: Talend + MariaDB(SpiderEngine)+ TableauでBI基盤...
by
Insight Technology, Inc.
PDF
Building andobservingcloudnativeappliactionusingazure elastic-terraform
by
Shotaro Suzuki
【KSKアナリティクス】 NYSOL 使い方 顧客数の確認編
by
KSK Analytics Inc.
データプロダクトを支えるビッグデータ基盤
by
Google Cloud Platform - Japan
【KSKアナリティクス】会社案内・事例紹介
by
KSK Analytics Inc.
The Design for Serverless ETL Pipeline (48:9)
by
Shoji Shirotori
データ分析基盤、どう作る?システム設計のポイント、教えます - Developers.IO 2019 (20191101)
by
Yosuke Katsuki
OSSを活用したダッシュボード の紹介
by
BigData Sios
【KSKアナリティクス】製品・サービス案内
by
KSK Analytics Inc.
Elasticsaerch Runtime Field
by
Nomura Yuta
Renewed using elasticsearchonaspnet-core5
by
Shotaro Suzuki
Spring Cloud Data Flow で構成される IIJ IoTサービス
by
Kenji Kondo
20200324 ms open-tech-elastic
by
Koji Kawamura
SmartNews の Webmining を支えるプラットフォーム
by
SmartNews, Inc.
Apm enables python app observability
by
Shotaro Suzuki
Elastic Stackの紹介とOpenStackでの活用事例(Searchlightなど) - OpenStack最新情報セミナー 2016年5月
by
VirtualTech Japan Inc.
【KSKアナリティクス】 NYSOL 使い方 顧客を男女別に分割編
by
KSK Analytics Inc.
Learn, build, and scale with elastic - realizing great programming experience...
by
Shotaro Suzuki
[Cloud OnAir] ケーススタディから学ぶ GCP で行うデータ エンジニアリング 2019年6月6日 放送
by
Google Cloud Platform - Japan
オープンデータプラグイン紹介資料
by
Naokazu Nohara
[db tech showcase OSS 2017] A27: Talend + MariaDB(SpiderEngine)+ TableauでBI基盤...
by
Insight Technology, Inc.
Building andobservingcloudnativeappliactionusingazure elastic-terraform
by
Shotaro Suzuki
Viewers also liked
PDF
RapidMinerのインストール【Windows 7】
by
Satoshi Kitajima
PDF
RapidMinerのインストール【CentOS 6.5】
by
Satoshi Kitajima
PDF
RapidMinerのインストール【Ubuntu 14.04 LTS】
by
Satoshi Kitajima
PDF
RapidMinerのインストール【Mac OSX Mavericks】
by
Satoshi Kitajima
PDF
RapidMinerのご紹介(ラピッドマイナーの5つの重要ポイント)2013年12月
by
ossanalytics
PPTX
データサイエンティスト必見!M-1グランプリ
by
Satoshi Kitajima
PPTX
【NYSOL】ビッグデータをシンプル・高速に!日本発の大規模データ解析用OSS
by
NYSOL
PDF
エクセルで統計分析 統計プログラムHADについて
by
Hiroshi Shimizu
PDF
ビッグデータ処理データベースの全体像と使い分け
by
Recruit Technologies
PDF
バンディットアルゴリズム入門と実践
by
智之 村上
PDF
決定木学習
by
Mitsuo Shimohata
PDF
リクルート式 自然言語処理技術の適応事例紹介
by
Recruit Technologies
PDF
今日から使える! みんなのクラスタリング超入門
by
toilet_lunch
PDF
機会学習ハッカソン:ランダムフォレスト
by
Teppei Baba
PDF
ロジスティック回帰の考え方・使い方 - TokyoR #33
by
horihorio
PDF
一般向けのDeep Learning
by
Preferred Networks
PDF
トピックモデルを用いた 潜在ファッション嗜好の推定
by
Takashi Kaneda
PDF
パターン認識 第10章 決定木
by
Miyoshi Yuya
PPTX
SVMについて
by
mknh1122
PDF
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
by
Naoki Yanai
RapidMinerのインストール【Windows 7】
by
Satoshi Kitajima
RapidMinerのインストール【CentOS 6.5】
by
Satoshi Kitajima
RapidMinerのインストール【Ubuntu 14.04 LTS】
by
Satoshi Kitajima
RapidMinerのインストール【Mac OSX Mavericks】
by
Satoshi Kitajima
RapidMinerのご紹介(ラピッドマイナーの5つの重要ポイント)2013年12月
by
ossanalytics
データサイエンティスト必見!M-1グランプリ
by
Satoshi Kitajima
【NYSOL】ビッグデータをシンプル・高速に!日本発の大規模データ解析用OSS
by
NYSOL
エクセルで統計分析 統計プログラムHADについて
by
Hiroshi Shimizu
ビッグデータ処理データベースの全体像と使い分け
by
Recruit Technologies
バンディットアルゴリズム入門と実践
by
智之 村上
決定木学習
by
Mitsuo Shimohata
リクルート式 自然言語処理技術の適応事例紹介
by
Recruit Technologies
今日から使える! みんなのクラスタリング超入門
by
toilet_lunch
機会学習ハッカソン:ランダムフォレスト
by
Teppei Baba
ロジスティック回帰の考え方・使い方 - TokyoR #33
by
horihorio
一般向けのDeep Learning
by
Preferred Networks
トピックモデルを用いた 潜在ファッション嗜好の推定
by
Takashi Kaneda
パターン認識 第10章 決定木
by
Miyoshi Yuya
SVMについて
by
mknh1122
はじめてでもわかるベイズ分類器 -基礎からMahout実装まで-
by
Naoki Yanai
Similar to オープンソースのデータ分析ソフト3製品「RapidMiner」「NYSOL」「Revolution R Enterprise (RRE) ※Rの商用版」のご紹介
PDF
R言語で始めよう、データサイエンス(ハンズオン勉強会) 〜機会学習・データビジュアライゼーション事始め〜
by
Yasuyuki Sugai
PDF
20160121 データサイエンティスト協会 木曜セミナー #5
by
Koichiro Sasaki
PPTX
ビジネスに役立つデータ分析
by
Issei Kurahashi
PDF
Dat011 hd insight_+_spark_+_r_を活用した
by
Tech Summit 2016
PDF
財布にやさしいRを使ったデータマイニング
by
Ryoji Yanashima
PDF
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
by
Koichiro Sasaki
PDF
Rにおける大規模データ解析(第10回TokyoWebMining)
by
Shintaro Fukushima
PDF
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
by
Dell TechCenter Japan
PDF
おしゃスタ@リクルート
by
Issei Kurahashi
PPTX
全部Excelだけで実現しようとして後悔するデータ分析 2nd Edition
by
__john_smith__
PPTX
20210907 Qlik Tech Talk Snowflake with Qlik Best Practices
by
QlikPresalesJapan
PDF
20140625 rでのデータ分析(仮) for_tokyor
by
Takashi Kitano
PDF
おしゃスタat銀座
by
Issei Kurahashi
PDF
第3回Japan rパネルディスカッション
by
Yohei Sato
PDF
tut_pfi_2012
by
Preferred Networks
PDF
Japan.r 2データベース
by
sleipnir002
PDF
ビジネスマネージャとデータ分析
by
TOSHI STATS Co.,Ltd.
PPTX
企業等に蓄積されたデータを分析するための処理機能の提案
by
Toshiyuki Shimono
PPTX
stapy_028_talk1
by
Takeshi Akutsu
PPTX
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
by
オラクルエンジニア通信
R言語で始めよう、データサイエンス(ハンズオン勉強会) 〜機会学習・データビジュアライゼーション事始め〜
by
Yasuyuki Sugai
20160121 データサイエンティスト協会 木曜セミナー #5
by
Koichiro Sasaki
ビジネスに役立つデータ分析
by
Issei Kurahashi
Dat011 hd insight_+_spark_+_r_を活用した
by
Tech Summit 2016
財布にやさしいRを使ったデータマイニング
by
Ryoji Yanashima
20160220 MSのビッグデータ分析基盤 - データマイニング+WEB@東京
by
Koichiro Sasaki
Rにおける大規模データ解析(第10回TokyoWebMining)
by
Shintaro Fukushima
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
by
Dell TechCenter Japan
おしゃスタ@リクルート
by
Issei Kurahashi
全部Excelだけで実現しようとして後悔するデータ分析 2nd Edition
by
__john_smith__
20210907 Qlik Tech Talk Snowflake with Qlik Best Practices
by
QlikPresalesJapan
20140625 rでのデータ分析(仮) for_tokyor
by
Takashi Kitano
おしゃスタat銀座
by
Issei Kurahashi
第3回Japan rパネルディスカッション
by
Yohei Sato
tut_pfi_2012
by
Preferred Networks
Japan.r 2データベース
by
sleipnir002
ビジネスマネージャとデータ分析
by
TOSHI STATS Co.,Ltd.
企業等に蓄積されたデータを分析するための処理機能の提案
by
Toshiyuki Shimono
stapy_028_talk1
by
Takeshi Akutsu
Oracle Data Minerハンズオンセミナー170927:①Oracle 機械学習概要
by
オラクルエンジニア通信
オープンソースのデータ分析ソフト3製品「RapidMiner」「NYSOL」「Revolution R Enterprise (RRE) ※Rの商用版」のご紹介
1.
オープンソース データ分析ソフト3製品 2014年度統計関連学会連合大会@
東京大学 株式会社KSKアナリティクス 北島聡 (2014年9月14日〜16日) (データマイニング・機械学習)
2.
本日の資料はにアップしております。 よろしければ検索サイトで以下のキーワードなどを入力してご覧ください。 統計関連学会連合大会オープンソース検索
3.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
4.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html 2014年6月、世界で最も有名な データマイニング系情報サイト
「kdnuggets.com」が調査 © KSK Analytics Inc., RapidMiner Japan Partner
5.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html 過去1年、実際の分析プロジェクトで 活用した分析ソフトはなんですか?
© KSK Analytics Inc., RapidMiner Japan Partner
6.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
7.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
8.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html 世界で最も使われている RapidMiner
をご紹介 © KSK Analytics Inc., RapidMiner Japan Partner
9.
無料で利用することが出来るため、 ビジネス・アカデミックを問わず強力に支援 ©
KSK Analytics Inc., RapidMiner Japan Partner
10.
© KSK Analytics
Inc., RapidMiner Japan Partner 豊富な分析アルゴリ ズムに加え、モデル 評価やデータ加工 (ETL)など幅広い機 能を保有
11.
他のオープンソースも活用できるため、 さらに幅広いアルゴリズムで分析可能 パッケージ数5,800以上
最先端アルゴリズムも多い 追加モデル数、約100個 これらはRapidMinerでエクステンション(無料)を インストールして頂くことでご利用できます © KSK Analytics Inc., RapidMiner Japan Partner RapidMinerの画面
12.
© KSK Analytics
Inc., RapidMiner Japan Partner エクステンション(無料) は、リコメンデーションや、 時系列分析、Webマイ ニングなどにも対応
13.
分かりやすい操作画面(GUI) データ分析が初めての方・学生の方にも 分析の楽しさを伝えることができます
© KSK Analytics Inc., RapidMiner Japan Partner
14.
強力なビジュアライゼーション データから視覚的に関連性や 仮説を発見できます
© KSK Analytics Inc., RapidMiner Japan Partner
15.
高度な分析もノンプログラミングで簡単操作 プログラムと 向き合う時間
Data と 向き合う時間< © KSK Analytics Inc., RapidMiner Japan Partner
16.
• 分かりやすい操作画面(GUI)でデータ分 析が初めての学生にも簡単にデータ分析
の楽しさを伝えることができます <デモ> • 強力なビジュアライゼーションで、データか ら早期に関連性や仮説などを発見すること が出来実ま際にすその操作画面とビジュアライゼーション、 ノンプログラミングでできる分析をご覧ください
17.
RapidMiner Studio 6のご利用は、以下のWebページから、必要箇所に入
力してください。ダウンロードURLとログイン用のユーザー名とパスワードが メールで届きます。無料でご利用頂けます(期間の制限はありません)
18.
RapidMiner Studio 6のご利用は、以下のWebページから、必要箇所に入
力してください。ダウンロードURLとログイン用のユーザー名とパスワードが メールで届きます。無料でご利用頂けます(期間の制限はありません) http://www.rapidminer.jp/downloa d/software/
19.
RapidMinerのトレーニング 商品名RapidMinerによるデータマイニングトレーニング (ベーシック&
アドバンスド) 対象者ビジネスユーザー、データサイエンスチーム 形式お客さま指定日(2日間、あるいは4日間) ※オンサイト(講師派遣)コース こんな方に オススメ RapidMinerの使い方・機能について素早く理解したい RapidMinerを使用した予測モデルの作成や評価を行いたい RapidMinerを使用した高度な予測分析手法を学びたい RapidMinerで相関ルール作成やマーケットバスケット分析を行いたい RapidMinerで顧客のセグメンテーション、クラスター分析を行いたい 価格基本料金15万円+ 受講者数× 5万円(ベーシックコース) 基本料金15万円+ 受講者数× 5万円(アドバンスドコース) 定員1名~5名まで ※RapidMinerの無料版のご利用を検討されている方にもオススメのトレーニングです ※オープンコース 2014年11月12日(水)ー13日(木) 、12月17日(水)ー18日(木) 料金はオンサイトコースに比べお得です!(ベーシックコース:14万円/1名) 詳細はこちらまで:http://www.rapidminer.jp/service/training/ © KSK Analytics Inc.
21.
Rは素晴らしい! しかし、Rユーザーが 口をそろえて言うのが・・・
© KSK Analytics Inc., Revolution Analytics Japan Partner
22.
重い © KSK
Analytics Inc., Revolution Analytics Japan Partner
23.
かなり必死 重い ©
KSK Analytics Inc., Revolution Analytics Japan Partner
24.
実行速度が重い 大規模データが重い ・・・というか扱えない
© KSK Analytics Inc., Revolution Analytics Japan Partner
25.
Rユーザーの多くはドクターストップ(限界)もよく知っている © KSK
Analytics Inc., Revolution Analytics Japan Partner
26.
一方、世の中のデータ量は・・・ © KSK
Analytics Inc., Revolution Analytics Japan Partner
27.
http://www.datacenterjournal.com/it/birth-death-big-data/ © KSK
Analytics Inc., Revolution Analytics Japan Partner
28.
http://www.datacenterjournal.com/it/birth-death-big-data/ © KSK
Analytics Inc., Revolution Analytics Japan Partner
29.
ひたすら増えていく・・・ © KSK
Analytics Inc., Revolution Analytics Japan Partner
30.
ひたすら増えていく・・・ 2010年の体重が123kgだとすれば、 2020年には4000kg(4トン)になる
© KSK Analytics Inc., Revolution Analytics Japan Partner
31.
分析者や分析業務も増えてきたのに・・・ © KSK
Analytics Inc., Revolution Analytics Japan Partner
32.
分析に革命が起こる
33.
大規模データを高速に実行できる レボリューションRをご紹介 <-
+ 革命
34.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
35.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
36.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル オープンソースRはデータ件数が25万件で約80秒 データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
37.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
38.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル レボリューションRはデータ件数が500万件で10秒以下 データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
39.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル レボリューションRはデータ件数が500万件で10秒以下 データ件数 時間(秒) © KSK Analytics Inc., Revolution Analytics Japan Partner
40.
R vs レボリューションR(ScaleR)のパフォーマンス比較
※GLM:一般化線形モデル レボリューションRはデータ件数が500万件で10秒以下 データ件数 時間(秒) しかも、メモリ8GBの普通のノートPCで © KSK Analytics Inc., Revolution Analytics Japan Partner
41.
Rユーザーであれば移行はスムーズ オープンソースRの記載例 レボリューションRの記載例
42.
Hadoop vs サーバー1台
分析したいデータ量が100GBだとすると・・・ © KSK Analytics Inc., Revolution Analytics Japan Partner サーバー1台(8コア) Hadoopクラスタ8台
43.
Hadoop vs サーバー1台
分析したいデータ量が100GBだとすると・・・ Hadoopクラスタ8台 © KSK Analytics Inc., Revolution Analytics Japan Partner < サーバー1台(8コア) 概ね、サーバー1台の方が8倍〜10倍の速度で早いです。 (※データ量が1TB以上だとHadoopをオススメします)
44.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
45.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html 商用ソフト(緑色)としても人気が高い 特にRユーザーからの移行が多く、
利用者は急速に拡大中 © KSK Analytics Inc., RapidMiner Japan Partner
46.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
47.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html © KSK
Analytics Inc., RapidMiner Japan Partner
48.
http://www.kdnuggets.com/2014/06/kdnuggets-annual-software-poll-rapidminer-continues-lead.html しかも、ソフト単体の利用者は、 RapidMiner(35.1%)に次いで
2番目に高い(13.3%) © KSK Analytics Inc., RapidMiner Japan Partner
49.
でも、お高いんでしょう? © KSK
Analytics Inc., Revolution Analytics Japan Partner
50.
でも、お高いんでしょう? いえ、アカデミックは・・・ ©
KSK Analytics Inc., Revolution Analytics Japan Partner
51.
© KSK Analytics
Inc., Revolution Analytics Japan Partner
52.
© KSK Analytics
Inc., Revolution Analytics Japan Partner
53.
無料です! © KSK
Analytics Inc., Revolution Analytics Japan Partner
54.
http://i無nfo.re料volutioでnanalすytics.c!om/free -academic.html
55.
http://i無nfo.re料volutioでnanalすytics.c!om/free -academic.html 株式会社KSKアナリティクスはビジネスにおけるサポートを事業
にしており、アカデミックにおけるサポートは取り扱っておりません。 アカデミック利用に関してご不明な点があれば、恐れ入りますが 上記サイトよりRevolution Analytics社へ直接問い合わせ下さい。
56.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V © KSK Analytics Inc., NYSOL Partner
57.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V 前処理 © KSK Analytics Inc., NYSOL Partner
58.
http://www.slideshare.net/SatoshiKitajima2/m1-38513054 © KSK
Analytics Inc., NYSOL Partner デーサイエンティスト必見 M-1グランプリ 漫才前処理の頂点は誰だ!? Maeshori より詳細はこちらをご覧ください
59.
M-1グランプリ出場者のご紹介 1. 2.
3. 4. パッケージを使わずに勝負します! (R_baseと表記) 最強と名高い”dplyr”と”data.table” パッケージを使います! (R_pkgと表記) データベースを代表して 出場します! 「にそる」と読みます。日本で誕生した オープンソースで、無料で使えます! © KSK Analytics Inc., NYSOL Partner
60.
前処理は5つ 列選択行選択列計算並び替え複合 データは6つ
1 2 3 4 5 6 データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB 約10MB 約100MB 約1GB 約10GB © KSK Analytics Inc., NYSOL Partner
61.
データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB
約10MB 約100MB 約1GB 約10GB 0.5秒 1 2 3 4 5 6 R_base R_pkg PostgreSQL NYSOL
62.
データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB
約10MB 約100MB 約1GB 約10GB 1秒 1 2 3 4 5 6 R_base R_pkg PostgreSQL NYSOL
63.
データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB
約10MB 約100MB 約1GB 約10GB 5秒 1秒 1 2 3 4 5 6 R_base R_pkg PostgreSQL NYSOL
64.
データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB
約10MB 約100MB 約1GB 約10GB 45秒 5秒 1 2 3 4 5 6 R_base R_pkg PostgreSQL NYSOL
65.
データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB
約10MB 約100MB 約1GB 約10GB 5分 1分 1 2 3 4 5 6 R_base R_pkg PostgreSQL NYSOL
66.
1 2 3
4 5 6 データ件数千件一万件十万件百万件一千万件一億件 データ量約100KB 約1MB 約10MB 約100MB 約1GB 約10GB R_base R_pkg PostgreSQL NYSOL 1時間 30分 10分 Rは一部の前処理が メモリエラーで計測不可
67.
(R_pkg) 結果発表!
68.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V 前処理 © KSK Analytics Inc., NYSOL Partner
69.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V 前処理 © KSK Analytics Inc., NYSOL Partner の「Mコマンド」
70.
仕組みはシンプル Mコマンド ・UNIXコマンド
・約70種類 ・CSVデータ 組み合わせは無限大 ・各コマンドを 「パイプ」で接続 © KSK Analytics Inc., NYSOL Partner
71.
© KSK Analytics
Inc., NYSOL Partner
72.
© KSK Analytics
Inc., NYSOL Partner 約70種類
73.
Mコマンドの他にも「頻出パターンマイニング」や「データマイニ ング・機械学習」「テキストマイニング」「可視化」などさまざま
74.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V 前処理 © KSK Analytics Inc., NYSOL Partner の「Mコマンド」
75.
データ分析のプロセス 実は8割以上は前処理(データ加工) 様々なデータ形式
膨大なデータ量 複雑なデータ構造 社外データ EXCE L 業務システム 分析用 データ クラス 分類 回帰 分析 パターン 解析 クラスタ リング 繰り返しの データ加工 CS V 前処理 © KSK Analytics Inc., NYSOL Partner の「Mコマンド」
76.
パズルに似た新しい知的感覚 NYSOLはコマンドが主役。一つのコマンドの役 割は、入力したCSVデータに対して、一つの処
理をし、CSVデータを出力するだけ。このシンプ ルなコマンドをパズルのように組み合わせるだ けで広い分野でのデータ活用を可能にします。 移植性の高いCSVデータ NYSOLはCSVデータの扱いに特化しています。 ExcelやDBからCSVデータを出力すれば、簡単 にNYSOLで扱うことができます。さらにNYSOL から出力されるCSVデータは、RやRapidMiner、 DBなど外部ソフトとの連携も移植性が高く柔軟 に機能します。 © KSK Analytics Inc., NYSOL Partner
77.
一台でも大規模データ NYSOLで扱えるデータはメモリ量ではなくHDD に依存します。一般的にHadoopなどで分散処
理が必要とされる数百GB〜数TB(数千万件〜 数億件程度)の大規模なデータでも一台のサー バーで処理することも可能です。 驚きの高速処理 これまで商用版のデータベースで20時間以上か かっていた7億件のデータ処理が、ノートPCで1 時間以内に終了したケースもあります。NYSOL は主にC++言語で開発され、各コマンドは一つ の機能を高速に処理するよう設計されています。 © KSK Analytics Inc., NYSOL Partner
78.
最先端アルゴリズム NYSOLは大学や研究機関などの学術界で生み 出された最新・最高峰のデータ解析/データマ
イニングのコマンドおよびアルゴリズムを採用し ています。洗練されたアルゴリズムはビジネス現 場でも広く活躍しています。 フリーソフトウェア NYSOLは大学などの研究成果を広く産業界に 還元する目的で設立されました。そのため、 NYSOLが提供するソフトウェアは無料でご利用 頂くことができます。また、ご希望の企業様には、 NYSOLのビジネスサポートも提供しています。 © KSK Analytics Inc., NYSOL Partner
79.
安心のビジネスサポート ビジネスとしてデータを活用するには、ソフトウェ アのサポートや分析支援などが必要になる場合
があります。また社内に分析人材を育成したい ニーズも高まってきました。詳しくはKSKアナリ ティクスまで問い合わせ下さい。 © KSK Analytics Inc., NYSOL Partner
80.
© KSK Analytics
Inc., NYSOL Partner
81.
© KSK Analytics
Inc., NYSOL Partner
82.
http://www.nysol.jp/ © KSK
Analytics Inc., NYSOL Partner
83.
NYSOLのトレーニング 商品名NYSOLによるデータマイニングトレーニング (データ加工編:1日コース)
対象者ビジネスユーザー、データサイエンスチーム 形式お客さま指定日(1日間) こんな方に オススメ データ加工が必要なデータがたくさんある さまざまなデータ加工が必要 SQLスクリプトを得意としている人材が少ない データベースでは速度のパフォーマンスが出ない データベースでは大規模データを扱えない 価格基本料金15万円+ 受講者数× 5万円 定員1名~5名程度 ※オンサイト(講師派遣)コース ※Windowsユーザーにもオススメです ※NYSOLソフトウェアの商用サポートもご提供しております。 © KSK Analytics Inc., NYSOL Partner
84.
KSKアナリティクスのデータ分析サービス 使用ソフトウェアは主にオープンソース 初期トレーニング&
スキルトランスファーで早期成果 必要であればビジネスサポート 20XX年 1月2月3月4月5月6月7月以降 データ加工、データ分析 トレーニング データ分析 スタートダッシュサービス お客さま内 データ分析 データ分析 サポートサービス お客様 弊社 © KSK Analytics Inc.
85.
東京大学経済学研究棟1F受付右側でブース出展しています。 ご不明な点がございましたらお気軽にお越しください。 出展期間:2014年9月14日〜16日
9:00〜18:00 (最終日は15:00まで) このポスターが目印です
86.
3製品を使った無料ハンズオンセミナーも開催中 http://www.rapidminer.jp/service/seminar/#sei2
87.
株式会社KSKアナリティクス セールス& マーケティング本部
www.ksk-anl.com sales@ksk-anl.com お気軽に問い合わせ下さい
Editor's Notes
#29
1ゼタバイトは10億テラバイト
#35
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#36
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#37
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#38
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#39
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#40
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
#41
GLMはGeneralised Linear Model(一般化線形モデル)の略。General Linear Modelの場合もある。 ここで、glm、rxGlmというファンクション名が違うこと、R利用者であれば、同じ文法/仕様でRREを使えることを説明しておく
Download