SlideShare a Scribd company logo
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
“Dark matter searches” with a focus on new
techniques (Mono-X)
WIN2013: Natal, Brazil
James D Pearce,
On behalf of the ATLAS and CMS collaborations
Sept 16, 2013
1 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
OUTLINE
1. Dark Matter Background
Evidence for Dark Matter
The “WIMP Miracle”
2. Effective Field Theories
3. Detection Methods
4. Mono-X Analyses
Monojet (ATLAS)
Monophoton (CMS)
Mono-W/Z (ATLAS + CMS)
Mono-b
5. Summary
6. Auxiliary Material
2 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
EVIDENCE FOR DARK MATTER (I)
Galactic Rotation Curves Strong Gravitational Lensing
Galactic rotation curves show
stars orbit at the same speeds
This implies mass density of
galaxies is uniform.
Image of Abell 1689 cluster as
observed by the hubble
telescope
The mass of galaxies is not
enough to account for the
strong gravitational lensing.
3 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
EVIDENCE FOR DARK MATTER (II)
Weak Gravitational Lensing Cosmic Microwave Background
Two galaxy clusters colliding.
The pink shows the x-ray
emissions.
Blue shows unseen mass as
measured with weak
gravitational lensing
techniques.
Anisotropies in the CMB are
due to acoustic oscillations in
the early universe.
Angular scales of the
oscillations reveal the different
effects of baryonic matter and
DM. 4 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
RELIC ABUNDANCE AND THE “WIMP MIRACLE”
1. DM and SM particles are in
thermal (chemical) equilibrium.
2. Universe expands and cools;
DM production drops
exponentially (∼ e−mχ/T).
3. Energy drops below DM
production threshold; DM
abundance remains constant
(“Freeze out”).
We are left with a relic abundance of
DM:
Ωχ ∝ 1
σv ∼
m2
χ
gχ4
5 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WHAT WE KNOW ABOUT DARK MATTER
1. It’s neutral under electric charge, since it does not produce photons,
2. It’s stable, or at least has a lifetime on cosmological scales,
3. It’s non-baryonic, to preserve the success of ΛCDM,
4. It has a relic abundance consistent with weak scale mass and
interactions.
These seem to all point us to some sort of weakly interacting massive
particle (WIMP). We can use an EFT to model what we know about DM,
without resorting to any one specific UV complete theory (eg. SUSY,
LED, etc.)
6 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
FROM UV COMPLETE TO EFT (I)
UV complete Theory Effective Theory
By Taylor expanding the SM-DM propagator around the momentum
transfer and only keeping the leading order we get an effective coupling
constant:
1
Q2
tr−M2 = − 1
M2 1 +
Q2
tr
M2 + O
Q4
tr
M4 ≈ − 1
M2
This approximation is only valid if Q2
tr M2 otherwise all other terms in
the expansion (UV complete theory) must be considered.
7 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
FROM UV COMPLETE TO EFT (II)
Once the mediator has been “integrated out” we no longer talk about the
parameter M, instead we replace it with M∗, which parameterizes the
energy scale of the EFT. M∗ is the most important parameter of the
theory, it’s related to the mediator mass and couplings, and tells us
where the EFT approach breaks down:
M∗ = M/
√
gχgq, where gχ and gq are the couplings of the mediator
to the DM and quark fields.
4-momentum conservation requires mχ < M/2
Perturbation theory requires gχgq < (4π)2
Therefore our EFT is valid for mχ < 2πM∗
This EFT language allows us to relate different experimental signatures
in a model-independent way. As we’ll see the relic abundance, direct
detection signal, and collider predictions depend only on M∗.
8 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
FROM UV COMPLETE TO EFT (III)
Name Operator Coefficient
D1 ¯χχ¯qq mq/M3
∗
D2 ¯χγ5χ¯qq imq/M3
∗
D3 ¯χχ¯qγ5q imq/M3
∗
D4 ¯χγ5χ¯qγ5q mq/M3
∗
D5 ¯χγµχ¯qγµq 1/M2
∗
D6 ¯χγµγ5χ¯qγµq 1/M2
∗
D7 ¯χγµχ¯qγµγ5q 1/M2
∗
D8 ¯χγµγ5χ¯qγµγ5q 1/M2
∗
D9 ¯χσµνχ¯qσµνq 1/M2
∗
D10 ¯χσµνγ5χ¯qσαβq i/M2
∗
D11 ¯χχGµνGµν αs/4M3
∗
D12 ¯χγ5χGµνGµν iαs/4M3
∗
D13 ¯χχGµν
˜Gµν iαs/4M3
∗
D14 ¯χγ5χGµν
˜Gµν αs/4M3
∗
arXiv:1008.1783
The theory is then
characterized by an effective
Lagrangian Leff :
Leff = ciOi
Where ci ∼ 1
M∗
d−4 and Oi is an
effective operator which is
some Lorentz invariant
combination of the SM and
DM (χ) fields.
Place limits on a
representative set: D1 (scalar),
D5 (vector), D8 (axial-vector),
D9 (tensor) and D11 (couples
to gluons)
9 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
DETECTION METHODS
Collider Direct detection Indirect detection
Experiments:
ATLAS
CMS
D0
CDF
Experiments:
XENON100
CDMS
SIMPLE
CoGent
IceCube
Picasso
COUPP
Experiments:
Fermi-LAT
PAMELA
AMS-02
WMAP
Planck
...and many more
10 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONOJET ANALYSIS (ATLAS/CMS)
Main Backgrounds:
Z(→ νν)+ jet(s) (50-70%)
W(→ linvν) + jet(s) (46-29%)
Z(→ linvlinv) + jet(s) (4-0%)
EW background estimate (ATLAS):
Nest
SR = (NData
CR −N
bkg
CR )×(1−FEW)×TF
where 1 − FEW =
NMC
CR
All EW
NMC
CR
and TF =
NMC
SR
NMC
CR
MC EW background estimate (CMS):
Z+ jets, W+ jets, t¯t and single top:
MadGraph → Phythia6: Z2Star tune
with CTEQ6L1 pdf
CMS-PAS-EXO-12-048 ATLAS-CONF-2012-147
11 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONOJET ANALYSIS (CMS)
[GeV]T
miss
E
200 300 400 500 600 700 800 900 1000
Events/25GeV
1
10
2
10
3
10
4
10
5
10
6
10
7
10 νν→Z
νl→W
tt
t
QCD
-
l
+
l→Z
= 3δ= 2 TeV,D
ADD M
= 1 GeVχ
= 892 GeV, MΛDM
= 2 TeVU
Λ=1.7,
U
Unparticles d
Data
CMS Preliminary
= 8 TeVs
-1
L dt = 19.5 fb∫
[GeV]T
miss
E
200 300 400 500 600 700 800 900 1000
Data/MC
0
0.5
1
1.5
2
Selection
Trigger: Emiss
T > 80 GeV
Lead jet: pT > 110 GeV,
|η| < 2.4
lepton veto: e, µ, τ
∆φ(jet1, jet2) < 2.5
jet veto: Njet ≤ 2
Scan in Emiss
T
Blue dashed line indicates
hypothetical DM signal
12 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
ENERGY SCALE LIMITS
[GeV]WIMP mass m
2
10
3
10
[GeV]
*
SuppressionscaleM
100
150
200
250
300
350
400
450
500 , SR3, 90%CLOperator D11
)exp
2±1±Expected limit (
)theory
1±Observed limit (
Thermal relic
PreliminaryATLAS
=8 TeVs
-1
Ldt = 10.5 fb
not valid
effective theory
]2
[GeV/cχM
1 10
2
10
3
10
[GeV]Λ
300
1000
CMS 2012 Vector
CMS 2011 Vector
CMS Preliminary
= 8 TeVs
-1
L dt = 19.5 fb∫
Green line indicates the M∗ values at which WIMPs of a given mass
would result in the required relic abundance.
M∗ limits above the thermal relic line means exclusion or negative
interference or additional annihilation (e.g. to leptons)
The light-grey region indicates where the EFT breaks down.
13 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP-NUCLEON SCATTERING LIMITS
]2
[GeV/cχM
1 10
2
10
3
10
]2
-NucleonCrossSection[cmχ
-46
10
-45
10
-44
10
-43
10
-42
10
-41
10
-40
10
-39
10
-38
10
-37
10
-36
10
-1
= 8 TeV, 19.5 fbsCMS,
-1
= 7 TeV, 5.1 fbsCMS,
XENON100
COUPP 2012
SIMPLE 2012
CoGeNT 2011
CDMS II
CMS Preliminary
2
Λ
q)µ
γq)(χµ
γχ(
Spin Independent, Vector Operator
]2
[GeV/cχM
1 10
2
10
3
10
]2
-NucleonCrossSection[cmχ
-46
10
-45
10
-44
10
-43
10
-42
10
-41
10
-40
10
-39
10
-38
10
-37
10
-36
10
-1
= 8 TeV, 19.5 fbsCMS,
-1
= 7 TeV, 5.1 fbsCMS,
COUPP 2012
-
W+
IceCube W
SIMPLE 2012
-
W+
Super-K W
CMS Preliminary
2
Λ
q)
5
γµ
γq)(χ
5
γµ
γχ(
Spin Dependent, Axial-vector operator
Cross sections above observed are excluded.
Assumption is that DM interacts with SM particles solely by a given
operator: SI = D5, SD = D8
Yellow contours show candidate events from CDMS: arXiv:1304.4279
14 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP ANNIHILATION LIMITS
[ GeV ]WIMP mass m
1 10 2
10 3
10
/s]3
qq[cmv>forAnnihilationrate<
-29
10
-28
10
-27
10
-26
10
-25
10
-24
10
-23
10
-22
10
-21
10
-20
10
-19
10
Thermal relic value
)bb
Majorana
)( Fermi-LAT dSphs (×2
Dirac
)(qD5: q
Dirac
)(qD8: q
theory
-1
ATLAS , 95%CL-1
= 7 TeV, 4.7 fbs
Comparison with FERMI-LAT
is possible through our EFT
The results can also be
interpreted in terms of limits
on WIMPs annihilating to
light quarks
All limits shown here assume
100% branching fractions of
WIMPs annihilating to quarks
Below 10 GeV for D5 and 70
GeV for D8 the ATLAS limits
are below the values needed
for WIMPs to make up the
DM relic abundance
15 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONOPHOTON ANALYSIS (CMS)
Main Backgrounds:
Zγ → νν + γ (60%)
Wγ → linvν + γ, di-γ and
γ+ jet (5%)
Fake photons (20%)
Background Estimates
All backgrounds estimated with
MC
Z/γ(NLO), di-γ and γ+ jet ←
Pythia6 with CTEQ6L1
Wγ(NLO) ← MadGraph5
CMS-EXO-11-096 CERN-PH-EP-2012-209 16 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONOPHOTON ANALYSIS
[GeV]TE
200 300 400 500 600 700
Events/GeV
-4
10
-3
10
-2
10
-1
10
1
10
[GeV]TE
200 300 400 500 600 700
Events/GeV
-4
10
-3
10
-2
10
-1
10
1
10
= 7 TeVsCMS,
-1
5.0 fb
DATA
Total uncertainty on Bkg
γνν→γZ
νe→W
(QCD)γMisID-
γ+jets, Wγ
Beam Halo
=1 TeV, n=3)D
SM+ADD(M
Selection:
Trigger: Single photon
Photon: pT > 145 GeV,
|η| < 1.44 (barrel region)
Energy ratio: HCAL/ECAL
< 0.05 within ∆R < 0.15
Lepton veto and hadronic
activity veto
Isolated photons
jet veto: Njet ≤ 2
SR: Emiss
T > 130 GeV, |η| < 4.5
17 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP-NUCLEON SCATTERING LIMITS
[GeV]χM
1 10
2
10 3
10
]2
-NucleonCrossSection[cmχ
-45
10
-43
10
-41
10
-39
10
-37
10
-35
10
Spin Independent
CMS (90%CL)
CDF
XENON100
CDMS II 2011
CDMS II 2010
CoGeNT 2011
= 7 TeVsCMS,
-1
5.0 fb
(a)
[GeV]χM
1 10
2
10 3
10
]2
-NucleonCrossSection[cmχ
-45
10
-43
10
-41
10
-39
10
-37
10
-35
10
Spin Dependent
CMS (90%CL)
CDF
SIMPLE 2010
COUPP 2011
)
-
W+
W→χχIceCube (
)-
W+
W→χχSuper-K I+II+III (
= 7 TeVsCMS,
-1
5.0 fb
(b)
Cross sections above observed are excluded.
Spin-dependent/independent limits correspond to D8 and D5
operators.
Not sensitive to D11 (gluon) operator.
18 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONO-W/Z ANALYSES (ATLAS/CMS)
Two possible diagrams lead to
interference:
1. ξ = −1: signal enhanced
leads to stronger signal
than monojet!
2. ξ = +1: signal suppressed
Two different strategies:
1. ATLAS: look for a single fat-jet
with internal structure
(mono-W/Z)
Same backgrounds as monojet
analysis
Similar data-driven
background estimate
2. CMS: look for single lepton
(mono-W)
W → lν, t¯t, single top,
Drell-Yan, diboson
Background estimated from
MC
CMS-EXO-12-060 ATLAS-CONF-2013-073
19 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONO-W/Z A.K.A. MONO-FATJET (ATLAS)
[GeV]jetm
50 60 70 80 90 100 110 120
Events/10GeV
0
5
10
15
20
25
30
35
40
45
Data
)+jetννZ(
)+jetτ/µW/Z(e/
Top
Diboson
uncertainty
D5(u=d) x20
D5(u=-d) x0.2
ATLAS Preliminary
= 8 TeVs
-1
L dt = 20.3 fb∫
> 500 GeV
miss
TSR: E
Selection:
Trigger: Emiss
T > 80 GeV
Fat jet: Cambridge-Aachen
algorithm, R = 1.2, first two
sub-jets balanced (
√
y > 0.4),
pT > 250 GeV, |η| < 1.2,
mjet = 50 − 120 GeV
Veto leptons (e, µ) and photons
t¯t supression: veto if
>= 2 AntiKt4 jets with
∆R(jetFat, jetAntiKt4) > 0.9 OR
∆φ(Emiss
T , jet) < 0.4 for any
AntiKt4 jets.
SR: Emiss
T > {350, 500} GeV
20 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONO-W A.K.A. MONO-LEPTON (CMS)
(GeV)TM
500 1000 1500 2000 2500
Events/1GeV
-4
10
-3
10
-2
10
-1
10
1
10
2
10
3
10
4
10
5
10
6
10 Spin Independent
= 200 GeVΛ= 300 GeVχM νl→W +single toptt
DY QCD
Diboson data
syst uncer.
= +1ξDM
= -1ξDM
= 0ξDM
CMS Preliminary -1
L dt = 20 fb∫
miss
T
+ Eµ = 8 TeVs
Selection:
Trigger: single muon (pT > 40
GeV) or electron (pT > 80 GeV)
triggers
Muons: pT > 45 (offline) GeV,
|η| < 2.1, isolated
Electrons: pT > 100 (offline)
GeV, |η| < 1.442 or
1.566 < |η| < 2.5, isolated
Back-to-back kinematics:
0.4 < pT/Emiss
T < 1.5 AND
∆φ(Emiss
T , l) > 0.8π
SR: mT > {1, 1.5, 2} TeV
21 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP-NUCLEON SCATTERING LIMITS
[GeV]χm
1 10 2
10 3
10
]2
-Ncross-section[cmχ
-46
10
-44
10
-42
10
-40
10
-38
10
-36
10
D5(u=-d):obs D5(u=d):obs
CoGeNT 2010 CDMS low-energy
XENON100 2012 )χχD5:ATLAS 7TeV j(
ATLAS Preliminary = 8 TeVs
-1
L dt = 20.3 fb∫
90% CL
spin independent
(GeV)χM
1 10 2
10 3
10
)2
(cmσ-protonχ
-41
10
-40
10
-39
10
-38
10
-37
10
-36
10
-35
10
=-1ξExpected limit for
=0ξExpected limit for
=+1ξExpected limit for
=-1ξObserved limit for
=0ξObserved limit for
=+1ξObserved limit for
= 8 TeVs-1
CMS Preliminary 2012 20 fb
Spin Independent
Cross sections above observed are excluded.
Assuming constructive interference gives better limits then ATLAS
monojet and monophoton combined!
Not sensitive to D11 (gluon) operator.
22 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONO-b
b
g b
X
X
Motivation:
D1 is proportional to the initial
quark mass (D1 ∼
mq
M3
∗
)
By approximate QCD flavour
symmetry the outgoing quark
will be a b
Analysis for 2012 data is
currently underway (ATLAS)
Despite the kinematic and PDF
suppression for producing third
generation quarks
improvement on limits is up to
3 orders of magnitude!
100
101
102
103
mX [GeV]
10−46
10−45
10−44
10−43
10−42
10−41
10−40
10−39
10−38
10−37
10−36
10−35
σn[cm2
]
ATLAS 7 TeV, 4.7 fb−1
XENON 100
Limits from mono-b search
14 TeV, 300 fb−1
, pileup 50
14 TeV, 3000 fb−1
, pileup 140
33 TeV, 3000 fb−1
, pileup 140
arXiv:1307.7834
23 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
SUMMARY
WIMPs are well motivated by what we know about Dark Matter and
the observed relic abundance.
EFT’s allow us to search for WIMPs in a model-independent way as
well as compare results from different experiments and signatures.
Mono-X searches at the LHC are competitive and complementary to
direct and indirect detection experiments.
24 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
Auxiliary slides
25 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
MONOJET ANALYSIS(ATLAS)
[Events/GeV]T
miss
dN/dE
-1
10
1
10
2
10
3
10
4
10
5
10 data 2012
Total BG
) + jetsZ (
) + jetslW (
Multi-jet
Non-collision BG
ll ) + jetsZ (
Dibosons
+ single toptt
=3 TeV (x5)D
ADD n=2, M
=670GeV (x5)*
D5 M=80GeV, M
eV (x5)
-4
=10
G
~=1TeV, M
g~/q~, Mg~/q~+G
~
-1
Ldt=10.5fb
= 8 TeVs
ATLAS Preliminary
[Events/GeV]T
miss
dN/dE
-1
10
1
10
2
10
3
10
4
10
5
10
[GeV]T
miss
E
200 400 600 800 1000 1200
Data/BG
0.5
1
1.5
Orange dashed line indicates
hypothetical DM signal (×5)
Selection:
Trigger: Emiss
T > 80 GeV
At least one primary vetex
Lead jet: pT > 120 GeV, |η| < 2
lepton veto: e, µ
Multijet suppression:
∆φ(Emiss
T , jet2) > 0.5
jet veto: Njet ≤ 2
SR:
Emiss
T > {120, 220, 350, 500} GeV
jet pT > {120, 220, 350, 500} GeV
26 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP-NUCLEON SCATTERING LIMITS
[ GeV ]χWIMP mass m
1 10 2
10
3
10
]2
WIMP-Nucleoncrosssection[cm
-45
10
-43
10
-41
10
-39
10
-37
10
-35
10
-33
10
-31
10
-29
10
ATLAS , 90%CL-1
= 7 TeV, 4.7 fbs
Spin-independent
XENON100 2012
CDMSII low-energy
CoGeNT 2010
Dirac
)χχj(→qD5: CDF q
Dirac
)χχj(→qD1: q
Dirac
)χχj(→qD5: q
Dirac
)χχj(→D11: gg
theoryσ-1
[ GeV ]χWIMP mass m
1 10 2
10
3
10
]2
WIMP-nucleoncrosssection[cm
-41
10
-40
10
-39
10
-38
10
-37
10
-36
10
-35
10
ATLAS , 90%CL-1
= 7 TeV, 4.7 fbs
Spin-dependent
SIMPLE 2011
Picasso 2012
Dirac
)χχj(→qD8: CDF q
Dirac
)χχj(→qD8: CMS q
Dirac
)χχj(→qD8: q
Dirac
)χχj(→qD9: q
theory
σ-1
Cross sections above observed are excluded.
Assumption is that DM interacts with SM particles solely by a given
operator
arXiv:1210.4491
27 / 28
INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY
WIMP-NUCLEON SCATTERING LIMITS
]2
[GeV/cχM
1 10
2
10
3
10
]2
-NucleonCrossSection[cmχ
-46
10
-44
10
-42
10
-40
10
-38
10
-36
10
-34
10
-32
10
-30
10
-28
10
-27
10
CMS 2012 Vector
CMS 2011 Vector
CDF 2012
XENON100 2012
COUPP 2012
SIMPLE 2012
CoGeNT 2011
CDMSII 2011
CDMSII 2010
CMS Preliminary
= 8 TeVs
Spin Independent
-1
L dt = 19.5 fb∫
2
Λ
q)
µ
γq)(χ
µ
γχ(
]2
Mediator Mass M [TeV/c
-1
10 1 10
[GeV]Λ90%CLlimiton
0
500
1000
1500
2000
2500
3000
=M/3Γ,2
=500 GeV/cχm
=M/10Γ,2
=500 GeV/cχm
π=M/8Γ,2
=500 GeV/cχm
=M/3Γ,2
=50 GeV/cχm
=M/10Γ,2
=50 GeV/cχm
π=M/8Γ,2
=50 GeV/cχm
CMS Preliminary
= 8 TeVs
-1
L dt = 19.5 fb∫
2
Λ
q)µ
γq)(χµ
γχ(
CMS (2012) limits for D5 (vector) operator
Light mediator model is studied to see how limits change with
mediator mass, WIMP mass and decay width.
CMS-PAS-EXO-12-048
28 / 28

More Related Content

What's hot

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6Vin Voro
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7Vin Voro
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97
Prateek Omer
 
Tele4653 l2
Tele4653 l2Tele4653 l2
Tele4653 l2Vin Voro
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tueVin Voro
 
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
IJCNCJournal
 
Tele3113 wk3wed
Tele3113 wk3wedTele3113 wk3wed
Tele3113 wk3wedVin Voro
 
Optimization of Packet Length for MIMO systems
Optimization of Packet Length for MIMO systemsOptimization of Packet Length for MIMO systems
Optimization of Packet Length for MIMO systems
IJCNCJournal
 
F04924352
F04924352F04924352
F04924352
IOSR-JEN
 
EEP306: Quadrature amplitude modulation
EEP306: Quadrature amplitude modulation EEP306: Quadrature amplitude modulation
EEP306: Quadrature amplitude modulation
Umang Gupta
 
Algorithm to remove spectral leakage
Algorithm to remove spectral leakageAlgorithm to remove spectral leakage
Algorithm to remove spectral leakage
FangXuIEEE
 
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
IOSR Journals
 
Awg waveform compensation by maximum entropy method
Awg waveform compensation by maximum entropy methodAwg waveform compensation by maximum entropy method
Awg waveform compensation by maximum entropy method
FangXuIEEE
 
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
 Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr... Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
ijwmn
 
Numerical Problems on Ampitude Modulation
Numerical Problems on Ampitude ModulationNumerical Problems on Ampitude Modulation
Numerical Problems on Ampitude Modulation
Renji K
 
Pore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsPore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsAlexander Sagidullin
 
Second Order Perturbations - National Astronomy Meeting 2011
Second Order Perturbations - National Astronomy Meeting 2011Second Order Perturbations - National Astronomy Meeting 2011
Second Order Perturbations - National Astronomy Meeting 2011
Ian Huston
 
Frequency deviation
Frequency deviation Frequency deviation
Frequency deviation
The Hoa Nguyen
 
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdfEE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
Loren Schwappach
 

What's hot (20)

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7
 
Ch5 angle modulation pg 97
Ch5 angle modulation pg 97Ch5 angle modulation pg 97
Ch5 angle modulation pg 97
 
Tele4653 l2
Tele4653 l2Tele4653 l2
Tele4653 l2
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tue
 
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
A JOINT TIMING OFFSET AND CHANNEL ESTIMATION USING FRACTIONAL FOURIER TRANSFO...
 
Tele3113 wk3wed
Tele3113 wk3wedTele3113 wk3wed
Tele3113 wk3wed
 
Optimization of Packet Length for MIMO systems
Optimization of Packet Length for MIMO systemsOptimization of Packet Length for MIMO systems
Optimization of Packet Length for MIMO systems
 
F04924352
F04924352F04924352
F04924352
 
EEP306: Quadrature amplitude modulation
EEP306: Quadrature amplitude modulation EEP306: Quadrature amplitude modulation
EEP306: Quadrature amplitude modulation
 
Algorithm to remove spectral leakage
Algorithm to remove spectral leakageAlgorithm to remove spectral leakage
Algorithm to remove spectral leakage
 
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
 
Awg waveform compensation by maximum entropy method
Awg waveform compensation by maximum entropy methodAwg waveform compensation by maximum entropy method
Awg waveform compensation by maximum entropy method
 
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
 Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr... Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
Analyse Performance of Fractional Fourier Transform on Timing and Carrier Fr...
 
Numerical Problems on Ampitude Modulation
Numerical Problems on Ampitude ModulationNumerical Problems on Ampitude Modulation
Numerical Problems on Ampitude Modulation
 
Pore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic FieldsPore Geometry from the Internal Magnetic Fields
Pore Geometry from the Internal Magnetic Fields
 
Second Order Perturbations - National Astronomy Meeting 2011
Second Order Perturbations - National Astronomy Meeting 2011Second Order Perturbations - National Astronomy Meeting 2011
Second Order Perturbations - National Astronomy Meeting 2011
 
Frequency deviation
Frequency deviation Frequency deviation
Frequency deviation
 
vicTheoryWorkshop
vicTheoryWorkshopvicTheoryWorkshop
vicTheoryWorkshop
 
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdfEE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
 

Similar to JamesDPearce_MonoX

International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
ETRAN.word.eng_Nesic_etal_EKI1.4
ETRAN.word.eng_Nesic_etal_EKI1.4ETRAN.word.eng_Nesic_etal_EKI1.4
ETRAN.word.eng_Nesic_etal_EKI1.4Stefan Ivanovic
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
Alexander Litvinenko
 
Mazurov ferrara2014
Mazurov ferrara2014Mazurov ferrara2014
Mazurov ferrara2014
Alexander Mazurov
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
VictorKang12
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
Toshihiro FUJII
 
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
optljjournal
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
Alexander Litvinenko
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
Amairullah Khan Lodhi
 
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...John Paul
 
Design Method of Directional GenLOT with Trend Vanishing Moments
Design Method of Directional GenLOT with Trend Vanishing MomentsDesign Method of Directional GenLOT with Trend Vanishing Moments
Design Method of Directional GenLOT with Trend Vanishing Moments
Shogo Muramatsu
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
Amairullah Khan Lodhi
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
IJNSA Journal
 
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
optljjournal
 
Anritsu
Anritsu Anritsu
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reductionEnsemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
IOSR Journals
 
Empirical mode decomposition and normal shrink tresholding for speech denoising
Empirical mode decomposition and normal shrink tresholding for speech denoisingEmpirical mode decomposition and normal shrink tresholding for speech denoising
Empirical mode decomposition and normal shrink tresholding for speech denoising
ijitjournal
 

Similar to JamesDPearce_MonoX (20)

Takumi-Matsuzawa1
Takumi-Matsuzawa1Takumi-Matsuzawa1
Takumi-Matsuzawa1
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
ztautau
ztautauztautau
ztautau
 
ETRAN.word.eng_Nesic_etal_EKI1.4
ETRAN.word.eng_Nesic_etal_EKI1.4ETRAN.word.eng_Nesic_etal_EKI1.4
ETRAN.word.eng_Nesic_etal_EKI1.4
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Mazurov ferrara2014
Mazurov ferrara2014Mazurov ferrara2014
Mazurov ferrara2014
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
 
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...
TIME-DOMAIN SIMULATION OF ELECTROMAGNETIC WAVE PROPAGATION IN A MAGNETIZED PL...
 
Design Method of Directional GenLOT with Trend Vanishing Moments
Design Method of Directional GenLOT with Trend Vanishing MomentsDesign Method of Directional GenLOT with Trend Vanishing Moments
Design Method of Directional GenLOT with Trend Vanishing Moments
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
 
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
ANALYTICAL PERFORMANCE EVALUATION OF A MIMO FSO COMMUNICATION SYSTEM WITH DIR...
 
Anritsu
Anritsu Anritsu
Anritsu
 
20130707_ICRC_Couturier
20130707_ICRC_Couturier20130707_ICRC_Couturier
20130707_ICRC_Couturier
 
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reductionEnsemble Empirical Mode Decomposition: An adaptive method for noise reduction
Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction
 
Empirical mode decomposition and normal shrink tresholding for speech denoising
Empirical mode decomposition and normal shrink tresholding for speech denoisingEmpirical mode decomposition and normal shrink tresholding for speech denoising
Empirical mode decomposition and normal shrink tresholding for speech denoising
 

JamesDPearce_MonoX

  • 1. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY “Dark matter searches” with a focus on new techniques (Mono-X) WIN2013: Natal, Brazil James D Pearce, On behalf of the ATLAS and CMS collaborations Sept 16, 2013 1 / 28
  • 2. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY OUTLINE 1. Dark Matter Background Evidence for Dark Matter The “WIMP Miracle” 2. Effective Field Theories 3. Detection Methods 4. Mono-X Analyses Monojet (ATLAS) Monophoton (CMS) Mono-W/Z (ATLAS + CMS) Mono-b 5. Summary 6. Auxiliary Material 2 / 28
  • 3. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY EVIDENCE FOR DARK MATTER (I) Galactic Rotation Curves Strong Gravitational Lensing Galactic rotation curves show stars orbit at the same speeds This implies mass density of galaxies is uniform. Image of Abell 1689 cluster as observed by the hubble telescope The mass of galaxies is not enough to account for the strong gravitational lensing. 3 / 28
  • 4. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY EVIDENCE FOR DARK MATTER (II) Weak Gravitational Lensing Cosmic Microwave Background Two galaxy clusters colliding. The pink shows the x-ray emissions. Blue shows unseen mass as measured with weak gravitational lensing techniques. Anisotropies in the CMB are due to acoustic oscillations in the early universe. Angular scales of the oscillations reveal the different effects of baryonic matter and DM. 4 / 28
  • 5. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY RELIC ABUNDANCE AND THE “WIMP MIRACLE” 1. DM and SM particles are in thermal (chemical) equilibrium. 2. Universe expands and cools; DM production drops exponentially (∼ e−mχ/T). 3. Energy drops below DM production threshold; DM abundance remains constant (“Freeze out”). We are left with a relic abundance of DM: Ωχ ∝ 1 σv ∼ m2 χ gχ4 5 / 28
  • 6. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WHAT WE KNOW ABOUT DARK MATTER 1. It’s neutral under electric charge, since it does not produce photons, 2. It’s stable, or at least has a lifetime on cosmological scales, 3. It’s non-baryonic, to preserve the success of ΛCDM, 4. It has a relic abundance consistent with weak scale mass and interactions. These seem to all point us to some sort of weakly interacting massive particle (WIMP). We can use an EFT to model what we know about DM, without resorting to any one specific UV complete theory (eg. SUSY, LED, etc.) 6 / 28
  • 7. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY FROM UV COMPLETE TO EFT (I) UV complete Theory Effective Theory By Taylor expanding the SM-DM propagator around the momentum transfer and only keeping the leading order we get an effective coupling constant: 1 Q2 tr−M2 = − 1 M2 1 + Q2 tr M2 + O Q4 tr M4 ≈ − 1 M2 This approximation is only valid if Q2 tr M2 otherwise all other terms in the expansion (UV complete theory) must be considered. 7 / 28
  • 8. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY FROM UV COMPLETE TO EFT (II) Once the mediator has been “integrated out” we no longer talk about the parameter M, instead we replace it with M∗, which parameterizes the energy scale of the EFT. M∗ is the most important parameter of the theory, it’s related to the mediator mass and couplings, and tells us where the EFT approach breaks down: M∗ = M/ √ gχgq, where gχ and gq are the couplings of the mediator to the DM and quark fields. 4-momentum conservation requires mχ < M/2 Perturbation theory requires gχgq < (4π)2 Therefore our EFT is valid for mχ < 2πM∗ This EFT language allows us to relate different experimental signatures in a model-independent way. As we’ll see the relic abundance, direct detection signal, and collider predictions depend only on M∗. 8 / 28
  • 9. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY FROM UV COMPLETE TO EFT (III) Name Operator Coefficient D1 ¯χχ¯qq mq/M3 ∗ D2 ¯χγ5χ¯qq imq/M3 ∗ D3 ¯χχ¯qγ5q imq/M3 ∗ D4 ¯χγ5χ¯qγ5q mq/M3 ∗ D5 ¯χγµχ¯qγµq 1/M2 ∗ D6 ¯χγµγ5χ¯qγµq 1/M2 ∗ D7 ¯χγµχ¯qγµγ5q 1/M2 ∗ D8 ¯χγµγ5χ¯qγµγ5q 1/M2 ∗ D9 ¯χσµνχ¯qσµνq 1/M2 ∗ D10 ¯χσµνγ5χ¯qσαβq i/M2 ∗ D11 ¯χχGµνGµν αs/4M3 ∗ D12 ¯χγ5χGµνGµν iαs/4M3 ∗ D13 ¯χχGµν ˜Gµν iαs/4M3 ∗ D14 ¯χγ5χGµν ˜Gµν αs/4M3 ∗ arXiv:1008.1783 The theory is then characterized by an effective Lagrangian Leff : Leff = ciOi Where ci ∼ 1 M∗ d−4 and Oi is an effective operator which is some Lorentz invariant combination of the SM and DM (χ) fields. Place limits on a representative set: D1 (scalar), D5 (vector), D8 (axial-vector), D9 (tensor) and D11 (couples to gluons) 9 / 28
  • 10. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY DETECTION METHODS Collider Direct detection Indirect detection Experiments: ATLAS CMS D0 CDF Experiments: XENON100 CDMS SIMPLE CoGent IceCube Picasso COUPP Experiments: Fermi-LAT PAMELA AMS-02 WMAP Planck ...and many more 10 / 28
  • 11. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONOJET ANALYSIS (ATLAS/CMS) Main Backgrounds: Z(→ νν)+ jet(s) (50-70%) W(→ linvν) + jet(s) (46-29%) Z(→ linvlinv) + jet(s) (4-0%) EW background estimate (ATLAS): Nest SR = (NData CR −N bkg CR )×(1−FEW)×TF where 1 − FEW = NMC CR All EW NMC CR and TF = NMC SR NMC CR MC EW background estimate (CMS): Z+ jets, W+ jets, t¯t and single top: MadGraph → Phythia6: Z2Star tune with CTEQ6L1 pdf CMS-PAS-EXO-12-048 ATLAS-CONF-2012-147 11 / 28
  • 12. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONOJET ANALYSIS (CMS) [GeV]T miss E 200 300 400 500 600 700 800 900 1000 Events/25GeV 1 10 2 10 3 10 4 10 5 10 6 10 7 10 νν→Z νl→W tt t QCD - l + l→Z = 3δ= 2 TeV,D ADD M = 1 GeVχ = 892 GeV, MΛDM = 2 TeVU Λ=1.7, U Unparticles d Data CMS Preliminary = 8 TeVs -1 L dt = 19.5 fb∫ [GeV]T miss E 200 300 400 500 600 700 800 900 1000 Data/MC 0 0.5 1 1.5 2 Selection Trigger: Emiss T > 80 GeV Lead jet: pT > 110 GeV, |η| < 2.4 lepton veto: e, µ, τ ∆φ(jet1, jet2) < 2.5 jet veto: Njet ≤ 2 Scan in Emiss T Blue dashed line indicates hypothetical DM signal 12 / 28
  • 13. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY ENERGY SCALE LIMITS [GeV]WIMP mass m 2 10 3 10 [GeV] * SuppressionscaleM 100 150 200 250 300 350 400 450 500 , SR3, 90%CLOperator D11 )exp 2±1±Expected limit ( )theory 1±Observed limit ( Thermal relic PreliminaryATLAS =8 TeVs -1 Ldt = 10.5 fb not valid effective theory ]2 [GeV/cχM 1 10 2 10 3 10 [GeV]Λ 300 1000 CMS 2012 Vector CMS 2011 Vector CMS Preliminary = 8 TeVs -1 L dt = 19.5 fb∫ Green line indicates the M∗ values at which WIMPs of a given mass would result in the required relic abundance. M∗ limits above the thermal relic line means exclusion or negative interference or additional annihilation (e.g. to leptons) The light-grey region indicates where the EFT breaks down. 13 / 28
  • 14. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP-NUCLEON SCATTERING LIMITS ]2 [GeV/cχM 1 10 2 10 3 10 ]2 -NucleonCrossSection[cmχ -46 10 -45 10 -44 10 -43 10 -42 10 -41 10 -40 10 -39 10 -38 10 -37 10 -36 10 -1 = 8 TeV, 19.5 fbsCMS, -1 = 7 TeV, 5.1 fbsCMS, XENON100 COUPP 2012 SIMPLE 2012 CoGeNT 2011 CDMS II CMS Preliminary 2 Λ q)µ γq)(χµ γχ( Spin Independent, Vector Operator ]2 [GeV/cχM 1 10 2 10 3 10 ]2 -NucleonCrossSection[cmχ -46 10 -45 10 -44 10 -43 10 -42 10 -41 10 -40 10 -39 10 -38 10 -37 10 -36 10 -1 = 8 TeV, 19.5 fbsCMS, -1 = 7 TeV, 5.1 fbsCMS, COUPP 2012 - W+ IceCube W SIMPLE 2012 - W+ Super-K W CMS Preliminary 2 Λ q) 5 γµ γq)(χ 5 γµ γχ( Spin Dependent, Axial-vector operator Cross sections above observed are excluded. Assumption is that DM interacts with SM particles solely by a given operator: SI = D5, SD = D8 Yellow contours show candidate events from CDMS: arXiv:1304.4279 14 / 28
  • 15. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP ANNIHILATION LIMITS [ GeV ]WIMP mass m 1 10 2 10 3 10 /s]3 qq[cmv>forAnnihilationrate< -29 10 -28 10 -27 10 -26 10 -25 10 -24 10 -23 10 -22 10 -21 10 -20 10 -19 10 Thermal relic value )bb Majorana )( Fermi-LAT dSphs (×2 Dirac )(qD5: q Dirac )(qD8: q theory -1 ATLAS , 95%CL-1 = 7 TeV, 4.7 fbs Comparison with FERMI-LAT is possible through our EFT The results can also be interpreted in terms of limits on WIMPs annihilating to light quarks All limits shown here assume 100% branching fractions of WIMPs annihilating to quarks Below 10 GeV for D5 and 70 GeV for D8 the ATLAS limits are below the values needed for WIMPs to make up the DM relic abundance 15 / 28
  • 16. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONOPHOTON ANALYSIS (CMS) Main Backgrounds: Zγ → νν + γ (60%) Wγ → linvν + γ, di-γ and γ+ jet (5%) Fake photons (20%) Background Estimates All backgrounds estimated with MC Z/γ(NLO), di-γ and γ+ jet ← Pythia6 with CTEQ6L1 Wγ(NLO) ← MadGraph5 CMS-EXO-11-096 CERN-PH-EP-2012-209 16 / 28
  • 17. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONOPHOTON ANALYSIS [GeV]TE 200 300 400 500 600 700 Events/GeV -4 10 -3 10 -2 10 -1 10 1 10 [GeV]TE 200 300 400 500 600 700 Events/GeV -4 10 -3 10 -2 10 -1 10 1 10 = 7 TeVsCMS, -1 5.0 fb DATA Total uncertainty on Bkg γνν→γZ νe→W (QCD)γMisID- γ+jets, Wγ Beam Halo =1 TeV, n=3)D SM+ADD(M Selection: Trigger: Single photon Photon: pT > 145 GeV, |η| < 1.44 (barrel region) Energy ratio: HCAL/ECAL < 0.05 within ∆R < 0.15 Lepton veto and hadronic activity veto Isolated photons jet veto: Njet ≤ 2 SR: Emiss T > 130 GeV, |η| < 4.5 17 / 28
  • 18. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP-NUCLEON SCATTERING LIMITS [GeV]χM 1 10 2 10 3 10 ]2 -NucleonCrossSection[cmχ -45 10 -43 10 -41 10 -39 10 -37 10 -35 10 Spin Independent CMS (90%CL) CDF XENON100 CDMS II 2011 CDMS II 2010 CoGeNT 2011 = 7 TeVsCMS, -1 5.0 fb (a) [GeV]χM 1 10 2 10 3 10 ]2 -NucleonCrossSection[cmχ -45 10 -43 10 -41 10 -39 10 -37 10 -35 10 Spin Dependent CMS (90%CL) CDF SIMPLE 2010 COUPP 2011 ) - W+ W→χχIceCube ( )- W+ W→χχSuper-K I+II+III ( = 7 TeVsCMS, -1 5.0 fb (b) Cross sections above observed are excluded. Spin-dependent/independent limits correspond to D8 and D5 operators. Not sensitive to D11 (gluon) operator. 18 / 28
  • 19. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONO-W/Z ANALYSES (ATLAS/CMS) Two possible diagrams lead to interference: 1. ξ = −1: signal enhanced leads to stronger signal than monojet! 2. ξ = +1: signal suppressed Two different strategies: 1. ATLAS: look for a single fat-jet with internal structure (mono-W/Z) Same backgrounds as monojet analysis Similar data-driven background estimate 2. CMS: look for single lepton (mono-W) W → lν, t¯t, single top, Drell-Yan, diboson Background estimated from MC CMS-EXO-12-060 ATLAS-CONF-2013-073 19 / 28
  • 20. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONO-W/Z A.K.A. MONO-FATJET (ATLAS) [GeV]jetm 50 60 70 80 90 100 110 120 Events/10GeV 0 5 10 15 20 25 30 35 40 45 Data )+jetννZ( )+jetτ/µW/Z(e/ Top Diboson uncertainty D5(u=d) x20 D5(u=-d) x0.2 ATLAS Preliminary = 8 TeVs -1 L dt = 20.3 fb∫ > 500 GeV miss TSR: E Selection: Trigger: Emiss T > 80 GeV Fat jet: Cambridge-Aachen algorithm, R = 1.2, first two sub-jets balanced ( √ y > 0.4), pT > 250 GeV, |η| < 1.2, mjet = 50 − 120 GeV Veto leptons (e, µ) and photons t¯t supression: veto if >= 2 AntiKt4 jets with ∆R(jetFat, jetAntiKt4) > 0.9 OR ∆φ(Emiss T , jet) < 0.4 for any AntiKt4 jets. SR: Emiss T > {350, 500} GeV 20 / 28
  • 21. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONO-W A.K.A. MONO-LEPTON (CMS) (GeV)TM 500 1000 1500 2000 2500 Events/1GeV -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 5 10 6 10 Spin Independent = 200 GeVΛ= 300 GeVχM νl→W +single toptt DY QCD Diboson data syst uncer. = +1ξDM = -1ξDM = 0ξDM CMS Preliminary -1 L dt = 20 fb∫ miss T + Eµ = 8 TeVs Selection: Trigger: single muon (pT > 40 GeV) or electron (pT > 80 GeV) triggers Muons: pT > 45 (offline) GeV, |η| < 2.1, isolated Electrons: pT > 100 (offline) GeV, |η| < 1.442 or 1.566 < |η| < 2.5, isolated Back-to-back kinematics: 0.4 < pT/Emiss T < 1.5 AND ∆φ(Emiss T , l) > 0.8π SR: mT > {1, 1.5, 2} TeV 21 / 28
  • 22. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP-NUCLEON SCATTERING LIMITS [GeV]χm 1 10 2 10 3 10 ]2 -Ncross-section[cmχ -46 10 -44 10 -42 10 -40 10 -38 10 -36 10 D5(u=-d):obs D5(u=d):obs CoGeNT 2010 CDMS low-energy XENON100 2012 )χχD5:ATLAS 7TeV j( ATLAS Preliminary = 8 TeVs -1 L dt = 20.3 fb∫ 90% CL spin independent (GeV)χM 1 10 2 10 3 10 )2 (cmσ-protonχ -41 10 -40 10 -39 10 -38 10 -37 10 -36 10 -35 10 =-1ξExpected limit for =0ξExpected limit for =+1ξExpected limit for =-1ξObserved limit for =0ξObserved limit for =+1ξObserved limit for = 8 TeVs-1 CMS Preliminary 2012 20 fb Spin Independent Cross sections above observed are excluded. Assuming constructive interference gives better limits then ATLAS monojet and monophoton combined! Not sensitive to D11 (gluon) operator. 22 / 28
  • 23. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONO-b b g b X X Motivation: D1 is proportional to the initial quark mass (D1 ∼ mq M3 ∗ ) By approximate QCD flavour symmetry the outgoing quark will be a b Analysis for 2012 data is currently underway (ATLAS) Despite the kinematic and PDF suppression for producing third generation quarks improvement on limits is up to 3 orders of magnitude! 100 101 102 103 mX [GeV] 10−46 10−45 10−44 10−43 10−42 10−41 10−40 10−39 10−38 10−37 10−36 10−35 σn[cm2 ] ATLAS 7 TeV, 4.7 fb−1 XENON 100 Limits from mono-b search 14 TeV, 300 fb−1 , pileup 50 14 TeV, 3000 fb−1 , pileup 140 33 TeV, 3000 fb−1 , pileup 140 arXiv:1307.7834 23 / 28
  • 24. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY SUMMARY WIMPs are well motivated by what we know about Dark Matter and the observed relic abundance. EFT’s allow us to search for WIMPs in a model-independent way as well as compare results from different experiments and signatures. Mono-X searches at the LHC are competitive and complementary to direct and indirect detection experiments. 24 / 28
  • 25. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY Auxiliary slides 25 / 28
  • 26. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY MONOJET ANALYSIS(ATLAS) [Events/GeV]T miss dN/dE -1 10 1 10 2 10 3 10 4 10 5 10 data 2012 Total BG ) + jetsZ ( ) + jetslW ( Multi-jet Non-collision BG ll ) + jetsZ ( Dibosons + single toptt =3 TeV (x5)D ADD n=2, M =670GeV (x5)* D5 M=80GeV, M eV (x5) -4 =10 G ~=1TeV, M g~/q~, Mg~/q~+G ~ -1 Ldt=10.5fb = 8 TeVs ATLAS Preliminary [Events/GeV]T miss dN/dE -1 10 1 10 2 10 3 10 4 10 5 10 [GeV]T miss E 200 400 600 800 1000 1200 Data/BG 0.5 1 1.5 Orange dashed line indicates hypothetical DM signal (×5) Selection: Trigger: Emiss T > 80 GeV At least one primary vetex Lead jet: pT > 120 GeV, |η| < 2 lepton veto: e, µ Multijet suppression: ∆φ(Emiss T , jet2) > 0.5 jet veto: Njet ≤ 2 SR: Emiss T > {120, 220, 350, 500} GeV jet pT > {120, 220, 350, 500} GeV 26 / 28
  • 27. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP-NUCLEON SCATTERING LIMITS [ GeV ]χWIMP mass m 1 10 2 10 3 10 ]2 WIMP-Nucleoncrosssection[cm -45 10 -43 10 -41 10 -39 10 -37 10 -35 10 -33 10 -31 10 -29 10 ATLAS , 90%CL-1 = 7 TeV, 4.7 fbs Spin-independent XENON100 2012 CDMSII low-energy CoGeNT 2010 Dirac )χχj(→qD5: CDF q Dirac )χχj(→qD1: q Dirac )χχj(→qD5: q Dirac )χχj(→D11: gg theoryσ-1 [ GeV ]χWIMP mass m 1 10 2 10 3 10 ]2 WIMP-nucleoncrosssection[cm -41 10 -40 10 -39 10 -38 10 -37 10 -36 10 -35 10 ATLAS , 90%CL-1 = 7 TeV, 4.7 fbs Spin-dependent SIMPLE 2011 Picasso 2012 Dirac )χχj(→qD8: CDF q Dirac )χχj(→qD8: CMS q Dirac )χχj(→qD8: q Dirac )χχj(→qD9: q theory σ-1 Cross sections above observed are excluded. Assumption is that DM interacts with SM particles solely by a given operator arXiv:1210.4491 27 / 28
  • 28. INTRO BACKGROUND EFT’S DETECTION MONOJET MONOPHOTON MONO-W/Z MONO-b SUMMARY WIMP-NUCLEON SCATTERING LIMITS ]2 [GeV/cχM 1 10 2 10 3 10 ]2 -NucleonCrossSection[cmχ -46 10 -44 10 -42 10 -40 10 -38 10 -36 10 -34 10 -32 10 -30 10 -28 10 -27 10 CMS 2012 Vector CMS 2011 Vector CDF 2012 XENON100 2012 COUPP 2012 SIMPLE 2012 CoGeNT 2011 CDMSII 2011 CDMSII 2010 CMS Preliminary = 8 TeVs Spin Independent -1 L dt = 19.5 fb∫ 2 Λ q) µ γq)(χ µ γχ( ]2 Mediator Mass M [TeV/c -1 10 1 10 [GeV]Λ90%CLlimiton 0 500 1000 1500 2000 2500 3000 =M/3Γ,2 =500 GeV/cχm =M/10Γ,2 =500 GeV/cχm π=M/8Γ,2 =500 GeV/cχm =M/3Γ,2 =50 GeV/cχm =M/10Γ,2 =50 GeV/cχm π=M/8Γ,2 =50 GeV/cχm CMS Preliminary = 8 TeVs -1 L dt = 19.5 fb∫ 2 Λ q)µ γq)(χµ γχ( CMS (2012) limits for D5 (vector) operator Light mediator model is studied to see how limits change with mediator mass, WIMP mass and decay width. CMS-PAS-EXO-12-048 28 / 28