Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
AAnn IIPP AAddddrreessss AAnnoonnyymmiizzaattiioonn 
SScchheemmee BBaasseedd oonn PPrriivvaaccyy LLeevveellss 
Wongyos Keardsri 
Department of Computer Engineering 
Faculty of Engineering, Chulalongkorn University 
Bangkok, Thailand 
E-mail: wongyos@gmail.com
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
OOuuttlliinnee 
• Introduction 
• Literature Reviews 
• Anonymization Scheme 
• Privacy Levels 
• Anonymization Factors 
• Privacy Tree Structures 
• Network Analysis Functions 
• Computer Law 
• Rule-Based Combination 
• Results and Discussions 
• Conclusion 
2 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
IInnttrroodduuccttiioonn 
• Network Traffic Analysis  Packet Sniffer 
IP: 161.200.92.41 
IP: 161.200.92.30 
IP: 161.200.92.45 
IP: 161.200.92.62 
IP: 161.200.92.59 
CCaappttuurree ppaacckkeettss 
AAnnoonnyymmiizzee ppaacckkeettss 
AAnnaallyyzzee ppaacckkeettss 
3 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
IInnttrroodduuccttiioonn ((CCoonntt)) 
• IP Address Anonymization 
To reform the original IP address to the anonymized IP address 
OOrriiggiinnaall IIPP AAddddrreessss 
AAnnoonnyymmiizzaattiioonn PPrroocceessss 
AAnnoonnyymmiizzeedd IIPP AAddddrreessss 
116611..220000..9933..337 
AAnnoonnyymmiizzaattiioonn PPrroocceessss 
744..997..112200..9966 
4 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
LLiitteerraattuurree RReevviieewwss 
• Proposed Anonymization Methods 
11999900--11999955 OOnnee--ttoo--oonnee mmaappppiinngg aallggoorriitthhmmss ((HHaasshh FFuunnccttioionn, , MMDD55)) 
11999966 Greg Minshall TCPdpriv method 
22000022 Jun Xu Crypto-PAn method 
22000066 Qianli Zhang MAL method 
2200007 R. Ramaswamy TSA method 
5 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
LLiitteerraattuurree RReevviieewwss ((CCoonntt)) 
• Review of the previous works 
 Anonymize all 32 bits of IP address unnecessarily 
 Unsuitable for network analysis functions 
 Uncover with computer law 
 We can anonymize some appropriate bit or parts of IP 
address 
6 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
AAnnoonnyymmiizzaattiioonn SScchheemmee 
• Our Anonymization Scheme 
Original IP Address 
Anonymization Factors 
(1) Privacy Tree Structures 
(2) Network Analysis Functions 
(3) Computer Law 
Anonymized IP Address 
Privacy 
Levels 
Rule-Based 
Combination 
7 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
PPrriivvaaccyy LLeevveellss 
• This research proposes a new IP address anonymization 
scheme by considering and using privacy levels 
• To consider the IP address structure 
255 .255 .0 .0 
11111111.11111111.00000000.00000000 
Subnet Mask Address 
161 .200 .93 .1 
IP Address 10100001.11001000.01011101.00000001 
Network Part 116611..220000..00..00 Host Part xx..xx..9933..11 
Left bits Right bits 
NNeettwwoorrkk PPaarrtt HHoosstt PPaarrtt 
8 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
PPrriivvaaccyy LLeevveellss ((CCoonntt)) 
• We anonymize the necessary bits or parts of IP address 
with the different privacy levels 
• We define the privacy levels into 5 levels 
• Privacy Levels 
 Non-anonymization 
 n-Left anonymization 
 n-Right anonymization 
 Full anonymization 
 Randomly full anonymization 
Left bits Right bits 
XXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXX 
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX 
RRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRR 
9 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Anonymization Factors 
• There are 3 reasons to consider the anonymization 
factors 
 Do you know about the data which are used to analyze? Much 
or little? 
 What do you need to use the data for which functions? 
 How about the computer law or computer crime act defines 
and describes? 
• There are 3 anonymization factors 
 IP address structures 
 Network analysis functions 
 Computer law / computer crime act 
10 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure 
• Privacy Tree Structure 
 A path from root node to each node is network part of IP address 
 A path under that node is host part of IP address 
Root Node 
A 
Reference Node 
 Given edges are parts of IP address 
 Given nodes are connections of parts 
Network Part 
Host Part 
11 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure (Cont) 
• Independent subtree 
Root Node 
Reference Node A 
B 
A B 
A is referenced IP address of organization which analyzes B 
B is referenced IP address of organization which is analyzed by A 
• Non-anonymization 
12 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure (Cont) 
• Intersection subtree 
Root Node 
Reference Node 
Anonymization part 
A B 
A B 
• n-Left anonymization XXXX 
13 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure (Cont) 
• Proper subtree (A in B) 
Root Node 
A 
Reference Node 
B 
B 
A 
Anonymization 
part 
• n-Right anonymization XXXX 
14 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure (Cont) 
• Proper subtree (B in A) 
Root Node 
Reference Node A 
B 
A 
B 
Anonymization 
part 
• n-Right anonymization XXXX 
15 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Privacy Tree Structure (Cont) 
• Equivalent subtree 
Root Node A = B 
Reference Node A = B 
• Full anonymization 
Anonymization 
part 
XXXX XXXX 
16 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Network Analysis Functions 
• A Survey of Popular Network Analysis Functions from 6 
Selected Tools 
 NTOP, http://www.ntop.org/documentation.html 
 Nagios, http://www.nagios.org/docs/ 
 Tcpdump, http://www.tcpdump.org/ 
 Ethereal, http://www.ethereal.com/docs/ 
 MRTG, http://oss.oetiker.ch/mrtg/ 
 OpenNMS, http://www.opennms.org/index.php/Documentation 
17 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Network Analysis Functions (Cont) 
• Network Analysis Functions Details 
Group of Functions Functions Privacy Levels 
Resource and 
Capacity Usages 
System performances Non-anonymization 
Network bandwidth usages 
Capacity planning 
Multicast traffic analysis 
Proxy management 
CPU usages n-Right anonymization 
Memory usages 
Disk usages 
Accounting usage; printer, 
quota usages 
18 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Network Analysis Functions (Cont) 
• Network Analysis Functions Details (Cont) 
Group of Functions Functions Privacy Levels 
Service Statistics HTTP (1) Non-anonymization 
(Network Summary) 
(2) n-Right anonymization 
(Device Summary) 
SNMP 
TELNET 
POP3 
NNTP 
ARP / ICMP 
FTP 
SSH 
VoIP 
19 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Network Analysis Functions (Cont) 
• Network Analysis Functions Details (Cont) 
Group of Functions Functions Privacy Levels 
Service Statistics 
(Cont) 
P2P (1) Non-anonymization 
TCP Session History (2) n-Right anonymization 
DNS Full anonymization 
System Diagnosis and 
Anomaly Detection 
Intrusion detection Full anonymization 
Fault detection 
Log analysis 
Social network analysis 
Behavior analysis 
20 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Network Analysis Functions (Cont) 
• Network Analysis Functions Details (Cont) 
Group of Functions Functions Privacy Levels 
System Report and 
Display 
Network traffic map Full anonymization 
Web application report (1) Full anonymization 
(2) Randomly full 
anonymization 
21 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Computer Law 
• Thailand Computer Crimes Act B.E. 2550 
Section Privacy Levels 
18(2) (1) n-Right Anonymization 
(Related with network part) 
(2) Full Anonymization 
(Related with person, network and host parts) 
18(3) Follow by Privacy Tree Structure 
18(4) Follow by Privacy Tree Structure and Network Analysis 
Function 
18(5) Full Anonymization 
18(6) Full Anonymization 
26-1 Non-anonymization 
26-2 n-Right Anonymization 
22 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Rule-Based Combination 
• Rule-Based Method 
 Represent the conditions of 3 factors into the rules 
 Consider and combine each rule to select final privacy levels 
• Example of Rule-Based Method 
23 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions 
• Example of the Results of IP Address Anonymization 
Based on Privacy Levels with 3 Factors 
• Scenarios: CU Network administrators are a competent 
official to request packet data from CU-Engineering for 
analyzing the web site (HTTP) usages 
24 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
=================================================================== 
A is referenced IP address of organization which analyzes B 
B is referenced IP address of organization which is analyzed by A 
=================================================================== 
Enter Network Address A : 161.200.0.0 
Enter Mask Address A : 255.255.0.0 
Enter Network Address B : 161.200.93.0 
Enter Mask Address B : 255.255.254.0 
Enter Network Function (NF) : 10 
Enter Network Function (NF) : 0 
Enter Law Section : 1 
Enter Law Section : 0 
Network Bit of A : 10100001110010000000000000000000 
Mask Bit of A : 11111111111111110000000000000000 
Network Bit of B : 10100001110010000101110100000000 
Mask Bit of B : 11111111111111111111111000000000 
Privacy Tree Structure (PTS) : (4) Proper Subtree (B in A) 
Privacy Levels of PTS : (3) n-Right Anonymization 
Privacy Levels of NF : (1) Non-anonymization 
Privacy Levels of LAW : (3) n-Right Anonymization 
=================================================================== 
Privacy Levels of 3 Factors : (3) n-Right Anonymization 
=================================================================== 
25 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Example of Results 
 Given subnet mask is 
255.255.0.0 11111111.11111111.00000000.00000000 
 Given key is 11101010010011010010110110010010 
• Using Non-anonymization 
161.200.92.35 10100001.11001000.01011100.00100011 
161.200.92.62 10100001.11001000.01011100.00111110 
161.200.92.76 10100001.11001000.01011100.01001100 
161.200.92.88 10100001.11001000.01011100.01011000 
161.200.92.193 10100001.11001000.01011100.11000001 
161.200.91.174 10100001.11001000.01011011.10101110 
161.200.91.2 10100001.11001000.01011011.00000010 
26 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Using n-Left Anonymization 
94.55.92.35 01011110.00110111.01011100.00100011 
94.55.92.62 01011110.00110111.01011100.00111110 
94.55.92.76 01011110.00110111.01011100.01001100 
94.55.92.88 01011110.00110111.01011100.01011000 
94.55.92.193 01011110.00110111.01011100.11000001 
94.55.91.174 01011110.00110111.01011011.10101110 
94.55.91.2 01011110.00110111.01011011.00000010 
27 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Using n-Right Anonymization 
161.200.163.220 10100001.11001000.10100011.11011100 
161.200.163.193 10100001.11001000.10100011.11000001 
161.200.163.179 10100001.11001000.10100011.10110011 
161.200.163.167 10100001.11001000.10100011.10100111 
161.200.163.62 10100001.11001000.10100011.00111110 
161.200.164.81 10100001.11001000.10100100.01010001 
161.200.164.253 10100001.11001000.10100100.11111101 
28 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Using Full Anonymization 
94.55.163.220 01011110.00110111.10100011.11011100 
94.55.163.193 01011110.00110111.10100011.11000001 
94.55.163.179 01011110.00110111.10100011.10110011 
94.55.163.167 01011110.00110111.10100011.10100111 
94.55.163.62 01011110.00110111.10100011.00111110 
94.55.164.81 01011110.00110111.10100100.01010001 
94.55.164.253 01011110.00110111.10100100.11111101 
29 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Using Randomly Full Anonymization 
24.89.192.204 00011000.01011001.11000000.11001100 
128.121.188.160 10000000.01111001.10111100.10100000 
105.166.62.205 01101001.10100110.00111110.11001101 
191.174.6.210 10111111.10101110.00000110.11010010 
72.236.28.89 01001000.11101100.00011100.01011001 
111.3.171.1 01101111.00000011.10101011.00000001 
138.224.26.220 10001010.11100000.00011010.11011100 
30 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
Results and Discussions (Cont) 
• Advantage of Our Anonymization Scheme 
• Applicable to an administrator who analyzes packet data in 
different functions 
• Benefits any organizations in exchanging network data 
• Appropriates for heavy packet tracers and sniffers 
31 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
CCoonncclluussiioonn 
• This research proposes 5 privacy levels 
 Non-anonymization 
 n-Left anonymization 
 n-Right anonymization 
 Full anonymization 
 Randomly full anonymization 
• This research applies these privacy levels to prefix-preserving 
IP address anonymization, specifically to Crypto- 
PAn 
32 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
CCoonncclluussiioonn ((CCoonntt)) 
• Presenting 3 anonymization factors which are used to 
consider and select appropriate privacy level 
 Privacy tree structure 
 Network analysis functions 
 Computer law 
• Combining the anonymization factors by using rule-based 
method 
33 Wongyos Keardsri
Chulalongkorn 
University 
Ph.D. Seminar, August 5, 2011 
QQuueessttiioonnss aanndd AAnnsswweerrss 
Q? ... 
... A! 
E-mail : wongyos@gmail.com 
Facebook : http://www.facebook.com/wongyos/ 
34 Wongyos Keardsri

IP address anonymization

  • 1.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 AAnn IIPP AAddddrreessss AAnnoonnyymmiizzaattiioonn SScchheemmee BBaasseedd oonn PPrriivvaaccyy LLeevveellss Wongyos Keardsri Department of Computer Engineering Faculty of Engineering, Chulalongkorn University Bangkok, Thailand E-mail: wongyos@gmail.com
  • 2.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 OOuuttlliinnee • Introduction • Literature Reviews • Anonymization Scheme • Privacy Levels • Anonymization Factors • Privacy Tree Structures • Network Analysis Functions • Computer Law • Rule-Based Combination • Results and Discussions • Conclusion 2 Wongyos Keardsri
  • 3.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 IInnttrroodduuccttiioonn • Network Traffic Analysis  Packet Sniffer IP: 161.200.92.41 IP: 161.200.92.30 IP: 161.200.92.45 IP: 161.200.92.62 IP: 161.200.92.59 CCaappttuurree ppaacckkeettss AAnnoonnyymmiizzee ppaacckkeettss AAnnaallyyzzee ppaacckkeettss 3 Wongyos Keardsri
  • 4.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 IInnttrroodduuccttiioonn ((CCoonntt)) • IP Address Anonymization To reform the original IP address to the anonymized IP address OOrriiggiinnaall IIPP AAddddrreessss AAnnoonnyymmiizzaattiioonn PPrroocceessss AAnnoonnyymmiizzeedd IIPP AAddddrreessss 116611..220000..9933..337 AAnnoonnyymmiizzaattiioonn PPrroocceessss 744..997..112200..9966 4 Wongyos Keardsri
  • 5.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 LLiitteerraattuurree RReevviieewwss • Proposed Anonymization Methods 11999900--11999955 OOnnee--ttoo--oonnee mmaappppiinngg aallggoorriitthhmmss ((HHaasshh FFuunnccttioionn, , MMDD55)) 11999966 Greg Minshall TCPdpriv method 22000022 Jun Xu Crypto-PAn method 22000066 Qianli Zhang MAL method 2200007 R. Ramaswamy TSA method 5 Wongyos Keardsri
  • 6.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 LLiitteerraattuurree RReevviieewwss ((CCoonntt)) • Review of the previous works  Anonymize all 32 bits of IP address unnecessarily  Unsuitable for network analysis functions  Uncover with computer law  We can anonymize some appropriate bit or parts of IP address 6 Wongyos Keardsri
  • 7.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 AAnnoonnyymmiizzaattiioonn SScchheemmee • Our Anonymization Scheme Original IP Address Anonymization Factors (1) Privacy Tree Structures (2) Network Analysis Functions (3) Computer Law Anonymized IP Address Privacy Levels Rule-Based Combination 7 Wongyos Keardsri
  • 8.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 PPrriivvaaccyy LLeevveellss • This research proposes a new IP address anonymization scheme by considering and using privacy levels • To consider the IP address structure 255 .255 .0 .0 11111111.11111111.00000000.00000000 Subnet Mask Address 161 .200 .93 .1 IP Address 10100001.11001000.01011101.00000001 Network Part 116611..220000..00..00 Host Part xx..xx..9933..11 Left bits Right bits NNeettwwoorrkk PPaarrtt HHoosstt PPaarrtt 8 Wongyos Keardsri
  • 9.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 PPrriivvaaccyy LLeevveellss ((CCoonntt)) • We anonymize the necessary bits or parts of IP address with the different privacy levels • We define the privacy levels into 5 levels • Privacy Levels  Non-anonymization  n-Left anonymization  n-Right anonymization  Full anonymization  Randomly full anonymization Left bits Right bits XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX RRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRR 9 Wongyos Keardsri
  • 10.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Anonymization Factors • There are 3 reasons to consider the anonymization factors  Do you know about the data which are used to analyze? Much or little?  What do you need to use the data for which functions?  How about the computer law or computer crime act defines and describes? • There are 3 anonymization factors  IP address structures  Network analysis functions  Computer law / computer crime act 10 Wongyos Keardsri
  • 11.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure • Privacy Tree Structure  A path from root node to each node is network part of IP address  A path under that node is host part of IP address Root Node A Reference Node  Given edges are parts of IP address  Given nodes are connections of parts Network Part Host Part 11 Wongyos Keardsri
  • 12.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure (Cont) • Independent subtree Root Node Reference Node A B A B A is referenced IP address of organization which analyzes B B is referenced IP address of organization which is analyzed by A • Non-anonymization 12 Wongyos Keardsri
  • 13.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure (Cont) • Intersection subtree Root Node Reference Node Anonymization part A B A B • n-Left anonymization XXXX 13 Wongyos Keardsri
  • 14.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure (Cont) • Proper subtree (A in B) Root Node A Reference Node B B A Anonymization part • n-Right anonymization XXXX 14 Wongyos Keardsri
  • 15.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure (Cont) • Proper subtree (B in A) Root Node Reference Node A B A B Anonymization part • n-Right anonymization XXXX 15 Wongyos Keardsri
  • 16.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Privacy Tree Structure (Cont) • Equivalent subtree Root Node A = B Reference Node A = B • Full anonymization Anonymization part XXXX XXXX 16 Wongyos Keardsri
  • 17.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Network Analysis Functions • A Survey of Popular Network Analysis Functions from 6 Selected Tools  NTOP, http://www.ntop.org/documentation.html  Nagios, http://www.nagios.org/docs/  Tcpdump, http://www.tcpdump.org/  Ethereal, http://www.ethereal.com/docs/  MRTG, http://oss.oetiker.ch/mrtg/  OpenNMS, http://www.opennms.org/index.php/Documentation 17 Wongyos Keardsri
  • 18.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Network Analysis Functions (Cont) • Network Analysis Functions Details Group of Functions Functions Privacy Levels Resource and Capacity Usages System performances Non-anonymization Network bandwidth usages Capacity planning Multicast traffic analysis Proxy management CPU usages n-Right anonymization Memory usages Disk usages Accounting usage; printer, quota usages 18 Wongyos Keardsri
  • 19.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Network Analysis Functions (Cont) • Network Analysis Functions Details (Cont) Group of Functions Functions Privacy Levels Service Statistics HTTP (1) Non-anonymization (Network Summary) (2) n-Right anonymization (Device Summary) SNMP TELNET POP3 NNTP ARP / ICMP FTP SSH VoIP 19 Wongyos Keardsri
  • 20.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Network Analysis Functions (Cont) • Network Analysis Functions Details (Cont) Group of Functions Functions Privacy Levels Service Statistics (Cont) P2P (1) Non-anonymization TCP Session History (2) n-Right anonymization DNS Full anonymization System Diagnosis and Anomaly Detection Intrusion detection Full anonymization Fault detection Log analysis Social network analysis Behavior analysis 20 Wongyos Keardsri
  • 21.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Network Analysis Functions (Cont) • Network Analysis Functions Details (Cont) Group of Functions Functions Privacy Levels System Report and Display Network traffic map Full anonymization Web application report (1) Full anonymization (2) Randomly full anonymization 21 Wongyos Keardsri
  • 22.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Computer Law • Thailand Computer Crimes Act B.E. 2550 Section Privacy Levels 18(2) (1) n-Right Anonymization (Related with network part) (2) Full Anonymization (Related with person, network and host parts) 18(3) Follow by Privacy Tree Structure 18(4) Follow by Privacy Tree Structure and Network Analysis Function 18(5) Full Anonymization 18(6) Full Anonymization 26-1 Non-anonymization 26-2 n-Right Anonymization 22 Wongyos Keardsri
  • 23.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Rule-Based Combination • Rule-Based Method  Represent the conditions of 3 factors into the rules  Consider and combine each rule to select final privacy levels • Example of Rule-Based Method 23 Wongyos Keardsri
  • 24.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions • Example of the Results of IP Address Anonymization Based on Privacy Levels with 3 Factors • Scenarios: CU Network administrators are a competent official to request packet data from CU-Engineering for analyzing the web site (HTTP) usages 24 Wongyos Keardsri
  • 25.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) =================================================================== A is referenced IP address of organization which analyzes B B is referenced IP address of organization which is analyzed by A =================================================================== Enter Network Address A : 161.200.0.0 Enter Mask Address A : 255.255.0.0 Enter Network Address B : 161.200.93.0 Enter Mask Address B : 255.255.254.0 Enter Network Function (NF) : 10 Enter Network Function (NF) : 0 Enter Law Section : 1 Enter Law Section : 0 Network Bit of A : 10100001110010000000000000000000 Mask Bit of A : 11111111111111110000000000000000 Network Bit of B : 10100001110010000101110100000000 Mask Bit of B : 11111111111111111111111000000000 Privacy Tree Structure (PTS) : (4) Proper Subtree (B in A) Privacy Levels of PTS : (3) n-Right Anonymization Privacy Levels of NF : (1) Non-anonymization Privacy Levels of LAW : (3) n-Right Anonymization =================================================================== Privacy Levels of 3 Factors : (3) n-Right Anonymization =================================================================== 25 Wongyos Keardsri
  • 26.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Example of Results  Given subnet mask is 255.255.0.0 11111111.11111111.00000000.00000000  Given key is 11101010010011010010110110010010 • Using Non-anonymization 161.200.92.35 10100001.11001000.01011100.00100011 161.200.92.62 10100001.11001000.01011100.00111110 161.200.92.76 10100001.11001000.01011100.01001100 161.200.92.88 10100001.11001000.01011100.01011000 161.200.92.193 10100001.11001000.01011100.11000001 161.200.91.174 10100001.11001000.01011011.10101110 161.200.91.2 10100001.11001000.01011011.00000010 26 Wongyos Keardsri
  • 27.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Using n-Left Anonymization 94.55.92.35 01011110.00110111.01011100.00100011 94.55.92.62 01011110.00110111.01011100.00111110 94.55.92.76 01011110.00110111.01011100.01001100 94.55.92.88 01011110.00110111.01011100.01011000 94.55.92.193 01011110.00110111.01011100.11000001 94.55.91.174 01011110.00110111.01011011.10101110 94.55.91.2 01011110.00110111.01011011.00000010 27 Wongyos Keardsri
  • 28.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Using n-Right Anonymization 161.200.163.220 10100001.11001000.10100011.11011100 161.200.163.193 10100001.11001000.10100011.11000001 161.200.163.179 10100001.11001000.10100011.10110011 161.200.163.167 10100001.11001000.10100011.10100111 161.200.163.62 10100001.11001000.10100011.00111110 161.200.164.81 10100001.11001000.10100100.01010001 161.200.164.253 10100001.11001000.10100100.11111101 28 Wongyos Keardsri
  • 29.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Using Full Anonymization 94.55.163.220 01011110.00110111.10100011.11011100 94.55.163.193 01011110.00110111.10100011.11000001 94.55.163.179 01011110.00110111.10100011.10110011 94.55.163.167 01011110.00110111.10100011.10100111 94.55.163.62 01011110.00110111.10100011.00111110 94.55.164.81 01011110.00110111.10100100.01010001 94.55.164.253 01011110.00110111.10100100.11111101 29 Wongyos Keardsri
  • 30.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Using Randomly Full Anonymization 24.89.192.204 00011000.01011001.11000000.11001100 128.121.188.160 10000000.01111001.10111100.10100000 105.166.62.205 01101001.10100110.00111110.11001101 191.174.6.210 10111111.10101110.00000110.11010010 72.236.28.89 01001000.11101100.00011100.01011001 111.3.171.1 01101111.00000011.10101011.00000001 138.224.26.220 10001010.11100000.00011010.11011100 30 Wongyos Keardsri
  • 31.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 Results and Discussions (Cont) • Advantage of Our Anonymization Scheme • Applicable to an administrator who analyzes packet data in different functions • Benefits any organizations in exchanging network data • Appropriates for heavy packet tracers and sniffers 31 Wongyos Keardsri
  • 32.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 CCoonncclluussiioonn • This research proposes 5 privacy levels  Non-anonymization  n-Left anonymization  n-Right anonymization  Full anonymization  Randomly full anonymization • This research applies these privacy levels to prefix-preserving IP address anonymization, specifically to Crypto- PAn 32 Wongyos Keardsri
  • 33.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 CCoonncclluussiioonn ((CCoonntt)) • Presenting 3 anonymization factors which are used to consider and select appropriate privacy level  Privacy tree structure  Network analysis functions  Computer law • Combining the anonymization factors by using rule-based method 33 Wongyos Keardsri
  • 34.
    Chulalongkorn University Ph.D.Seminar, August 5, 2011 QQuueessttiioonnss aanndd AAnnsswweerrss Q? ... ... A! E-mail : wongyos@gmail.com Facebook : http://www.facebook.com/wongyos/ 34 Wongyos Keardsri