Inverse Function
defined with table of
values and graph.
BNHS-SHS (GENERAL MATHEMATICS)
Find the inverse of the given function.
𝑓 𝑥 = 𝑥 + 2
REVIE
W
𝑓 𝑥 = 𝑥 + 2
𝑦 = 𝑥 + 2
𝑥 = 𝑦 + 2
𝑥 − 2 = 𝑦
𝑦 = 𝑥 − 2
𝑓−1
(𝑥) = 𝑥 − 2
Find the inverse of the given function.
𝑓 𝑥 = 12𝑥 − 1
REVIE
W
𝑓 𝑥 = 12𝑥 − 1
𝑦 = 12𝑥 − 1
𝑥 = 12𝑦 − 1
𝑥 + 1 = 12𝑦
12𝑦 = 𝑥 + 1
12𝑦
12
=
𝑥 + 1
12
𝑓−1
(𝑥) =
𝑥 + 1
12
Find the inverse of the given function.
𝑓 𝑥 =
2𝑥 + 3
3𝑥 − 2
REVIE
W
𝑓 𝑥 =
2𝑥 + 5
3𝑥 − 2
𝑦 =
2𝑥 + 5
3𝑥 − 2
𝑥 =
2𝑦 + 5
3𝑦 − 2
𝑥 3𝑦 − 2 = 2𝑦 + 5
3𝑥𝑦 −2𝑥 = 2𝑦 + 5
3𝑥𝑦 =
−2𝑦 2𝑥 +5
𝑦(3𝑥 − 2) = 2𝑥 + 5
REVIE
𝑦 3𝑥 − 2 = 2𝑥 + 5
𝑦 3𝑥 − 2
3𝑥 − 2
=
2𝑥 + 5
3𝑥 − 2
𝑓−1
(𝑥) =
2𝑥 + 5
3𝑥 − 2
Table of Values of Inverse
Function
𝑓 𝑥 = 2𝑥 + 1
𝒙
f(𝑥)
−2 −1 0 1 2
−3 −1 1 3 5
Table of Values of Inverse
Function
𝑓 𝑥 = 2𝑥 + 1
𝑦 = 2𝑥 + 1
𝑥 − 1 = 2𝑦
𝑥 = 2𝑦 + 1
2𝑦 = 𝑥 − 1
2𝑦
2
=
𝑥 − 1
2
𝑓−1
(𝑥) =
𝑥 − 1
2
𝑓 𝑥 = 2𝑥 + 1
𝒙
𝑦
−2 −1 0 1 2
−3 −1 1 3 5
𝑓−1
𝑥 =
𝑥 − 1
2
𝒙
−𝟑−𝟏 𝟏 𝟑 𝟓
𝑦
−2−1 0 1 2
𝑓 𝑥 = 2𝑥 + 1
−2 −1 0 1 2
−3 −1 1 3 5 𝑓−1 𝑥 =
𝑥 − 1
2
Group Activity
𝑓 𝑥 = 3𝑥 − 4 𝑓−1 𝑥 =
𝑥 + 4
3
𝑓 𝑥 = 3𝑥 − 4 𝑓−1 𝑥 =
𝑥 + 4
3
𝑓 𝑥 = 5𝑥 + 3 𝑓−1
𝑥 =
𝑥 − 3
5
𝑓 𝑥 = 3𝑥 − 4 𝑓−1 𝑥 =
𝑥 + 4
3

Inverse Function defined with table of values and.pptx

  • 1.
    Inverse Function defined withtable of values and graph. BNHS-SHS (GENERAL MATHEMATICS)
  • 2.
    Find the inverseof the given function. 𝑓 𝑥 = 𝑥 + 2
  • 3.
    REVIE W 𝑓 𝑥 =𝑥 + 2 𝑦 = 𝑥 + 2 𝑥 = 𝑦 + 2 𝑥 − 2 = 𝑦 𝑦 = 𝑥 − 2 𝑓−1 (𝑥) = 𝑥 − 2
  • 4.
    Find the inverseof the given function. 𝑓 𝑥 = 12𝑥 − 1
  • 5.
    REVIE W 𝑓 𝑥 =12𝑥 − 1 𝑦 = 12𝑥 − 1 𝑥 = 12𝑦 − 1 𝑥 + 1 = 12𝑦 12𝑦 = 𝑥 + 1 12𝑦 12 = 𝑥 + 1 12 𝑓−1 (𝑥) = 𝑥 + 1 12
  • 6.
    Find the inverseof the given function. 𝑓 𝑥 = 2𝑥 + 3 3𝑥 − 2
  • 7.
    REVIE W 𝑓 𝑥 = 2𝑥+ 5 3𝑥 − 2 𝑦 = 2𝑥 + 5 3𝑥 − 2 𝑥 = 2𝑦 + 5 3𝑦 − 2 𝑥 3𝑦 − 2 = 2𝑦 + 5 3𝑥𝑦 −2𝑥 = 2𝑦 + 5 3𝑥𝑦 = −2𝑦 2𝑥 +5 𝑦(3𝑥 − 2) = 2𝑥 + 5
  • 8.
    REVIE 𝑦 3𝑥 −2 = 2𝑥 + 5 𝑦 3𝑥 − 2 3𝑥 − 2 = 2𝑥 + 5 3𝑥 − 2 𝑓−1 (𝑥) = 2𝑥 + 5 3𝑥 − 2
  • 9.
    Table of Valuesof Inverse Function 𝑓 𝑥 = 2𝑥 + 1 𝒙 f(𝑥) −2 −1 0 1 2 −3 −1 1 3 5
  • 10.
    Table of Valuesof Inverse Function 𝑓 𝑥 = 2𝑥 + 1 𝑦 = 2𝑥 + 1 𝑥 − 1 = 2𝑦 𝑥 = 2𝑦 + 1 2𝑦 = 𝑥 − 1 2𝑦 2 = 𝑥 − 1 2 𝑓−1 (𝑥) = 𝑥 − 1 2
  • 11.
    𝑓 𝑥 =2𝑥 + 1 𝒙 𝑦 −2 −1 0 1 2 −3 −1 1 3 5 𝑓−1 𝑥 = 𝑥 − 1 2 𝒙 −𝟑−𝟏 𝟏 𝟑 𝟓 𝑦 −2−1 0 1 2
  • 12.
    𝑓 𝑥 =2𝑥 + 1 −2 −1 0 1 2 −3 −1 1 3 5 𝑓−1 𝑥 = 𝑥 − 1 2
  • 13.
  • 14.
    𝑓 𝑥 =3𝑥 − 4 𝑓−1 𝑥 = 𝑥 + 4 3
  • 15.
    𝑓 𝑥 =3𝑥 − 4 𝑓−1 𝑥 = 𝑥 + 4 3
  • 16.
    𝑓 𝑥 =5𝑥 + 3 𝑓−1 𝑥 = 𝑥 − 3 5
  • 17.
    𝑓 𝑥 =3𝑥 − 4 𝑓−1 𝑥 = 𝑥 + 4 3