SlideShare a Scribd company logo
1 of 30
Modeling Impression Discounting In
Large-scale Recommender Systems
KDD 2014, presented by Mitul Tiwari
1
Pei Lee, Laks V.S. Lakshmanan
University of British Columbia
Vancouver, BC, Canada
Mitul Tiwari, Sam Shah
LinkedIn
Mountain View, CA, USA
2015/3/12
2
LinkedIn By The Numbers
300M members 2 new members/sec
Large-scale Recommender Systems
at LinkedIn3
 People You May Know  Skills Endorsements
Recommender Systems at LinkedIn
4
What is Impression Discounting?
5
 Examples
 People You May Know
 Skills Endorsement
 Problem Definition
5 days ago:
Recommended, but
not invited
Today:
If we recommend
again, would you
invite or not?
If you are not likely to invite, we better discount this recommendation.
1 day ago:
Recommended
again, but not invited
Example: People You May Know
Example: Skills Endorsement
 If you are likely to endorse, we will show a skills
suggestion again;
 Otherwise, we should leave this space for other skills
suggestions
Recommended Recommended Again
Problem Definition
 Impressions: recommendations shown to user
 Conversion: positive action - invite, endorse, etc.
 In natural language:
 We already impressed an item several times with no
conversion. How much should we discount that
item?
 More formally:
 For an user u and item i, given an impression history
(T1, T2 , …, Tn) between u and i, can we predict the
conversion rate for u on i?
Impression Discounting Framework
9
Outline
10
 Define an impression
 User, Item, Conversion Rate
 Features
 How many times the user saw this item?
 When is the last time the user saw this item? …
 Data analysis: impression features and conversion
relationship
 Impression discounting model fitting
 Experimental evaluation
Define an Impression
11
Features on Impressed Items
12
 ImpCount (frequency):
 the number of historical impressions before the current
impression, associated with the same (user, item)
 LastSeen (recency):
 the day difference between the last impression and the
current impression, associated with the same (user, item)
 Position:
 the offset of item in the recommendation list of user
 UserFreq:
 the interaction frequency of user in a recommender system
Data Analysis: PYMK Dataset
 Data: 1.09 B impression tuples
 Training dataset: 80% of data
 0.55 billion unique impressions
 0.87 billion total impressions
 20 millions invitations
 Testing dataset: 20% of data
 0.14 billion unique impressions (3.7%)
 0.22 billion total impressions (2.4%)
 5.2 millions invitations
Skills Endorsement Dataset
14
 Total dataset size: 190 million impression tuples
 Training dataset: 80% of data
 Testing dataset: 20% of data
Tencent SearchAds Dataset
15
 Publicly available for KDD Cup 2012 by the
Tencent search engine
 Total Size: 150 million impression sequences
 CTR of the Ad at the 1st, 2nd and 3rd
position: 4.8%, 2.7%, and 1.4%
Data Analysis: Conversion Rate
Changes with Impression Count
16
If we show an item to a
user repeatedly, the
conversion rate
decreases
17
 The conversion rate
decreases with both
ImpCount and
LastSeen
PYMK Invitation Rate Changes with
Impression Count and Last Seen
18
 Similar observation:
The conversion rate
also decreases with
both ImpCount and
LastSeen
Endorsement Rate Changes with
Impression Count and Last Seen
Impression Discounting Model Fitting
20
 Workflow:
 Model fitting process:
 Fundamental discounting functions
 Aggregation Model
 Offline and online
Conversion Rate with
ImpCount21
Discounting Functions
22
Conversion Rate with LastSeen
23
Aggregation Models
24
 Linear Aggregation
 Multiplicative Aggregation
f(Xi) is one of
discounting function
given earlier
Anti-Noise Regression Model
26
 The sparsity of observations increases variance in the
conversion rate.
 Typically happens when the number of observations are
relatively low.
Density Weighted Regression
27
 Add a weight with square error
 Original RMSE:
 Density weighted RMSE:
vi is assessed by the number of observations in a small
neighborhood of (Xi, yi)
Impression Discounting Framework
28
Offline Evaluation: Precision @k
29
 Precision at top k
 Precision improvement for different behavior sets:
More features yield
higher precision
Online Evaluation: Bucket Test on PYMK
30
 Use behavior set (LastSeen, ImpCount)
 On LinkedIn PYMK online system
Conclusion
31
 Impression Discounting
Model
 Learnt a discounting function
to capture ignored
impressions
 Linear or multiplicative
aggregation model
 Anti-noise regression model
 Offline and Online
evaluation (Bucket testing)
Questions?
32
 Related work in the paper
 Want to know more contact:
mtiwari@linkedin.com

More Related Content

What's hot

Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized HomepageJustin Basilico
 
추천시스템 이제는 돈이 되어야 한다.
추천시스템 이제는 돈이 되어야 한다.추천시스템 이제는 돈이 되어야 한다.
추천시스템 이제는 돈이 되어야 한다.choi kyumin
 
Interactive Recommender Systems
Interactive Recommender SystemsInteractive Recommender Systems
Interactive Recommender SystemsRoelof van Zwol
 
Recommender system algorithm and architecture
Recommender system algorithm and architectureRecommender system algorithm and architecture
Recommender system algorithm and architectureLiang Xiang
 
Tutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsTutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsYONG ZHENG
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsJustin Basilico
 
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Sujit Pal
 
Time, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsYves Raimond
 
Deep Learning - Convolutional Neural Networks - Architectural Zoo
Deep Learning - Convolutional Neural Networks - Architectural ZooDeep Learning - Convolutional Neural Networks - Architectural Zoo
Deep Learning - Convolutional Neural Networks - Architectural ZooChristian Perone
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixJaya Kawale
 
Recommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at NetflixRecommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at NetflixJiangwei Pan
 
Few shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learningFew shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learningﺁﺻﻒ ﻋﻠﯽ ﻣﯿﺮ
 
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoConvolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoSeongwon Hwang
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systemsinovex GmbH
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
Deep Learning for Personalized Search and Recommender Systems
Deep Learning for Personalized Search and Recommender SystemsDeep Learning for Personalized Search and Recommender Systems
Deep Learning for Personalized Search and Recommender SystemsBenjamin Le
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixJustin Basilico
 
AlexNet, VGG, GoogleNet, Resnet
AlexNet, VGG, GoogleNet, ResnetAlexNet, VGG, GoogleNet, Resnet
AlexNet, VGG, GoogleNet, ResnetJungwon Kim
 
Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow Rajiv Shah
 

What's hot (20)

Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
 
추천시스템 이제는 돈이 되어야 한다.
추천시스템 이제는 돈이 되어야 한다.추천시스템 이제는 돈이 되어야 한다.
추천시스템 이제는 돈이 되어야 한다.
 
Interactive Recommender Systems
Interactive Recommender SystemsInteractive Recommender Systems
Interactive Recommender Systems
 
Recommender system algorithm and architecture
Recommender system algorithm and architectureRecommender system algorithm and architecture
Recommender system algorithm and architecture
 
Tutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsTutorial: Context In Recommender Systems
Tutorial: Context In Recommender Systems
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing Recommendations
 
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
 
Time, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender Systems
 
Deep Learning - Convolutional Neural Networks - Architectural Zoo
Deep Learning - Convolutional Neural Networks - Architectural ZooDeep Learning - Convolutional Neural Networks - Architectural Zoo
Deep Learning - Convolutional Neural Networks - Architectural Zoo
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
 
変革の遷移経路
変革の遷移経路変革の遷移経路
変革の遷移経路
 
Recommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at NetflixRecommendation Modeling with Impression Data at Netflix
Recommendation Modeling with Impression Data at Netflix
 
Few shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learningFew shot learning/ one shot learning/ machine learning
Few shot learning/ one shot learning/ machine learning
 
Convolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in TheanoConvolutional Neural Network (CNN) presentation from theory to code in Theano
Convolutional Neural Network (CNN) presentation from theory to code in Theano
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Deep Learning for Personalized Search and Recommender Systems
Deep Learning for Personalized Search and Recommender SystemsDeep Learning for Personalized Search and Recommender Systems
Deep Learning for Personalized Search and Recommender Systems
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
 
AlexNet, VGG, GoogleNet, Resnet
AlexNet, VGG, GoogleNet, ResnetAlexNet, VGG, GoogleNet, Resnet
AlexNet, VGG, GoogleNet, Resnet
 
Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow Image Classification Done Simply using Keras and TensorFlow
Image Classification Done Simply using Keras and TensorFlow
 

Similar to Modeling Impression discounting in large-scale recommender systems

Towards Complex User Feedback and Presentation Context in Recommender Systems
Towards Complex User Feedback and Presentation Context in Recommender SystemsTowards Complex User Feedback and Presentation Context in Recommender Systems
Towards Complex User Feedback and Presentation Context in Recommender SystemsLadislav Peska
 
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...Michelle Zhou
 
Deductive, inductive, and abductive reasoning and their application in trans...
Deductive, inductive, and abductive reasoning and their application in  trans...Deductive, inductive, and abductive reasoning and their application in  trans...
Deductive, inductive, and abductive reasoning and their application in trans...Pragmatic Cohesion Consulting, LLC
 
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsDeveloping Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsKun Liu
 
Marketing Analytics with R Lifting Campaign Success Rates
Marketing Analytics with R Lifting Campaign Success RatesMarketing Analytics with R Lifting Campaign Success Rates
Marketing Analytics with R Lifting Campaign Success RatesRevolution Analytics
 
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014ColomboCampsCommunity
 
Introduction to recommendation system
Introduction to recommendation systemIntroduction to recommendation system
Introduction to recommendation systemAravindharamanan S
 
Digital analytics lecture4
Digital analytics lecture4Digital analytics lecture4
Digital analytics lecture4Joni Salminen
 
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.Kajal Mukhopadhyay, PhD
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxJadna Almeida
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxJadna Almeida
 
Digital Business Models 101
Digital Business Models 101Digital Business Models 101
Digital Business Models 101Willy Braun
 
Building Analytics for Growth
Building Analytics for GrowthBuilding Analytics for Growth
Building Analytics for GrowthKareem Azees
 
Lean Startup Metrics & Analytics
Lean Startup Metrics & AnalyticsLean Startup Metrics & Analytics
Lean Startup Metrics & AnalyticsNicola Junior Vitto
 
Cross channel attribution overview feb 2010
Cross channel attribution overview feb 2010Cross channel attribution overview feb 2010
Cross channel attribution overview feb 2010xplusone
 
Lean launch pad itp 3.9.2015
Lean launch pad itp 3.9.2015Lean launch pad itp 3.9.2015
Lean launch pad itp 3.9.2015Jen van der Meer
 
Artificial Intelligence at LinkedIn
Artificial Intelligence at LinkedInArtificial Intelligence at LinkedIn
Artificial Intelligence at LinkedInBill Liu
 

Similar to Modeling Impression discounting in large-scale recommender systems (20)

Towards Complex User Feedback and Presentation Context in Recommender Systems
Towards Complex User Feedback and Presentation Context in Recommender SystemsTowards Complex User Feedback and Presentation Context in Recommender Systems
Towards Complex User Feedback and Presentation Context in Recommender Systems
 
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...
“Big Picture”: Mixed-Initiative Visual Analytics of Big Data (VINCI 2013 Keyn...
 
Deductive, inductive, and abductive reasoning and their application in trans...
Deductive, inductive, and abductive reasoning and their application in  trans...Deductive, inductive, and abductive reasoning and their application in  trans...
Deductive, inductive, and abductive reasoning and their application in trans...
 
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to NutsDeveloping Web-scale Machine Learning at LinkedIn - From Soup to Nuts
Developing Web-scale Machine Learning at LinkedIn - From Soup to Nuts
 
Marketing Analytics with R Lifting Campaign Success Rates
Marketing Analytics with R Lifting Campaign Success RatesMarketing Analytics with R Lifting Campaign Success Rates
Marketing Analytics with R Lifting Campaign Success Rates
 
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014
'Metrics That Matter': Gabrielle Benefield @ Colombo Agile Con 2014
 
Introduction to recommendation system
Introduction to recommendation systemIntroduction to recommendation system
Introduction to recommendation system
 
GT_feed
GT_feedGT_feed
GT_feed
 
Digital analytics lecture4
Digital analytics lecture4Digital analytics lecture4
Digital analytics lecture4
 
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.
DMA MAC Presentation: Kajal Mukhopadhyay, Ph.D.
 
Linking Evaluation and Cost-Benefit Analysis in Criminal Justice: A Practical...
Linking Evaluation and Cost-Benefit Analysis in Criminal Justice: A Practical...Linking Evaluation and Cost-Benefit Analysis in Criminal Justice: A Practical...
Linking Evaluation and Cost-Benefit Analysis in Criminal Justice: A Practical...
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptx
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptx
 
Digital Business Models 101
Digital Business Models 101Digital Business Models 101
Digital Business Models 101
 
Building Analytics for Growth
Building Analytics for GrowthBuilding Analytics for Growth
Building Analytics for Growth
 
Conversion Rate Optimisation Master Class - Khalid Saleh, Invesp
Conversion Rate Optimisation Master Class - Khalid Saleh, InvespConversion Rate Optimisation Master Class - Khalid Saleh, Invesp
Conversion Rate Optimisation Master Class - Khalid Saleh, Invesp
 
Lean Startup Metrics & Analytics
Lean Startup Metrics & AnalyticsLean Startup Metrics & Analytics
Lean Startup Metrics & Analytics
 
Cross channel attribution overview feb 2010
Cross channel attribution overview feb 2010Cross channel attribution overview feb 2010
Cross channel attribution overview feb 2010
 
Lean launch pad itp 3.9.2015
Lean launch pad itp 3.9.2015Lean launch pad itp 3.9.2015
Lean launch pad itp 3.9.2015
 
Artificial Intelligence at LinkedIn
Artificial Intelligence at LinkedInArtificial Intelligence at LinkedIn
Artificial Intelligence at LinkedIn
 

More from Mitul Tiwari

Large scale social recommender systems at LinkedIn
Large scale social recommender systems at LinkedInLarge scale social recommender systems at LinkedIn
Large scale social recommender systems at LinkedInMitul Tiwari
 
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...Mitul Tiwari
 
Large scale social recommender systems and their evaluation
Large scale social recommender systems and their evaluationLarge scale social recommender systems and their evaluation
Large scale social recommender systems and their evaluationMitul Tiwari
 
Metaphor: A system for related searches recommendations
Metaphor: A system for related searches recommendationsMetaphor: A system for related searches recommendations
Metaphor: A system for related searches recommendationsMitul Tiwari
 
Related searches at LinkedIn
Related searches at LinkedInRelated searches at LinkedIn
Related searches at LinkedInMitul Tiwari
 
Structural Diversity in Social Recommender Systems
Structural Diversity in Social Recommender SystemsStructural Diversity in Social Recommender Systems
Structural Diversity in Social Recommender SystemsMitul Tiwari
 
Organizational Overlap on Social Networks and its Applications
Organizational Overlap on Social Networks and its ApplicationsOrganizational Overlap on Social Networks and its Applications
Organizational Overlap on Social Networks and its ApplicationsMitul Tiwari
 
Large-scale Social Recommendation Systems: Challenges and Opportunity
Large-scale Social Recommendation Systems: Challenges and OpportunityLarge-scale Social Recommendation Systems: Challenges and Opportunity
Large-scale Social Recommendation Systems: Challenges and OpportunityMitul Tiwari
 
Building Data Driven Products at Linkedin
Building Data Driven Products at LinkedinBuilding Data Driven Products at Linkedin
Building Data Driven Products at LinkedinMitul Tiwari
 
Social Network Analysis at LinkedIn
Social Network Analysis at LinkedInSocial Network Analysis at LinkedIn
Social Network Analysis at LinkedInMitul Tiwari
 

More from Mitul Tiwari (10)

Large scale social recommender systems at LinkedIn
Large scale social recommender systems at LinkedInLarge scale social recommender systems at LinkedIn
Large scale social recommender systems at LinkedIn
 
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...
Big Data Ecosystem at LinkedIn. Keynote talk at Big Data Innovators Gathering...
 
Large scale social recommender systems and their evaluation
Large scale social recommender systems and their evaluationLarge scale social recommender systems and their evaluation
Large scale social recommender systems and their evaluation
 
Metaphor: A system for related searches recommendations
Metaphor: A system for related searches recommendationsMetaphor: A system for related searches recommendations
Metaphor: A system for related searches recommendations
 
Related searches at LinkedIn
Related searches at LinkedInRelated searches at LinkedIn
Related searches at LinkedIn
 
Structural Diversity in Social Recommender Systems
Structural Diversity in Social Recommender SystemsStructural Diversity in Social Recommender Systems
Structural Diversity in Social Recommender Systems
 
Organizational Overlap on Social Networks and its Applications
Organizational Overlap on Social Networks and its ApplicationsOrganizational Overlap on Social Networks and its Applications
Organizational Overlap on Social Networks and its Applications
 
Large-scale Social Recommendation Systems: Challenges and Opportunity
Large-scale Social Recommendation Systems: Challenges and OpportunityLarge-scale Social Recommendation Systems: Challenges and Opportunity
Large-scale Social Recommendation Systems: Challenges and Opportunity
 
Building Data Driven Products at Linkedin
Building Data Driven Products at LinkedinBuilding Data Driven Products at Linkedin
Building Data Driven Products at Linkedin
 
Social Network Analysis at LinkedIn
Social Network Analysis at LinkedInSocial Network Analysis at LinkedIn
Social Network Analysis at LinkedIn
 

Recently uploaded

VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...Suhani Kapoor
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxStephen266013
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...soniya singh
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts ServiceSapana Sha
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiSuhani Kapoor
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSAishani27
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改atducpo
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...Suhani Kapoor
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptSonatrach
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
Digi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxDigi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxTanveerAhmed817946
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 

Recently uploaded (20)

VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
VIP High Class Call Girls Bikaner Anushka 8250192130 Independent Escort Servi...
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls CP 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
B2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docxB2 Creative Industry Response Evaluation.docx
B2 Creative Industry Response Evaluation.docx
 
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
High Class Call Girls Noida Sector 39 Aarushi 🔝8264348440🔝 Independent Escort...
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts Service
 
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service AmravatiVIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
VIP Call Girls in Amravati Aarohi 8250192130 Independent Escort Service Amravati
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICS
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
Digi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptxDigi Khata Problem along complete plan.pptx
Digi Khata Problem along complete plan.pptx
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
Decoding Loan Approval: Predictive Modeling in Action
Decoding Loan Approval: Predictive Modeling in ActionDecoding Loan Approval: Predictive Modeling in Action
Decoding Loan Approval: Predictive Modeling in Action
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 

Modeling Impression discounting in large-scale recommender systems

  • 1. Modeling Impression Discounting In Large-scale Recommender Systems KDD 2014, presented by Mitul Tiwari 1 Pei Lee, Laks V.S. Lakshmanan University of British Columbia Vancouver, BC, Canada Mitul Tiwari, Sam Shah LinkedIn Mountain View, CA, USA 2015/3/12
  • 2. 2 LinkedIn By The Numbers 300M members 2 new members/sec
  • 3. Large-scale Recommender Systems at LinkedIn3  People You May Know  Skills Endorsements
  • 5. What is Impression Discounting? 5  Examples  People You May Know  Skills Endorsement  Problem Definition
  • 6. 5 days ago: Recommended, but not invited Today: If we recommend again, would you invite or not? If you are not likely to invite, we better discount this recommendation. 1 day ago: Recommended again, but not invited Example: People You May Know
  • 7. Example: Skills Endorsement  If you are likely to endorse, we will show a skills suggestion again;  Otherwise, we should leave this space for other skills suggestions Recommended Recommended Again
  • 8. Problem Definition  Impressions: recommendations shown to user  Conversion: positive action - invite, endorse, etc.  In natural language:  We already impressed an item several times with no conversion. How much should we discount that item?  More formally:  For an user u and item i, given an impression history (T1, T2 , …, Tn) between u and i, can we predict the conversion rate for u on i?
  • 10. Outline 10  Define an impression  User, Item, Conversion Rate  Features  How many times the user saw this item?  When is the last time the user saw this item? …  Data analysis: impression features and conversion relationship  Impression discounting model fitting  Experimental evaluation
  • 12. Features on Impressed Items 12  ImpCount (frequency):  the number of historical impressions before the current impression, associated with the same (user, item)  LastSeen (recency):  the day difference between the last impression and the current impression, associated with the same (user, item)  Position:  the offset of item in the recommendation list of user  UserFreq:  the interaction frequency of user in a recommender system
  • 13. Data Analysis: PYMK Dataset  Data: 1.09 B impression tuples  Training dataset: 80% of data  0.55 billion unique impressions  0.87 billion total impressions  20 millions invitations  Testing dataset: 20% of data  0.14 billion unique impressions (3.7%)  0.22 billion total impressions (2.4%)  5.2 millions invitations
  • 14. Skills Endorsement Dataset 14  Total dataset size: 190 million impression tuples  Training dataset: 80% of data  Testing dataset: 20% of data
  • 15. Tencent SearchAds Dataset 15  Publicly available for KDD Cup 2012 by the Tencent search engine  Total Size: 150 million impression sequences  CTR of the Ad at the 1st, 2nd and 3rd position: 4.8%, 2.7%, and 1.4%
  • 16. Data Analysis: Conversion Rate Changes with Impression Count 16 If we show an item to a user repeatedly, the conversion rate decreases
  • 17. 17  The conversion rate decreases with both ImpCount and LastSeen PYMK Invitation Rate Changes with Impression Count and Last Seen
  • 18. 18  Similar observation: The conversion rate also decreases with both ImpCount and LastSeen Endorsement Rate Changes with Impression Count and Last Seen
  • 19. Impression Discounting Model Fitting 20  Workflow:  Model fitting process:  Fundamental discounting functions  Aggregation Model  Offline and online
  • 22. Conversion Rate with LastSeen 23
  • 23. Aggregation Models 24  Linear Aggregation  Multiplicative Aggregation f(Xi) is one of discounting function given earlier
  • 24. Anti-Noise Regression Model 26  The sparsity of observations increases variance in the conversion rate.  Typically happens when the number of observations are relatively low.
  • 25. Density Weighted Regression 27  Add a weight with square error  Original RMSE:  Density weighted RMSE: vi is assessed by the number of observations in a small neighborhood of (Xi, yi)
  • 27. Offline Evaluation: Precision @k 29  Precision at top k  Precision improvement for different behavior sets: More features yield higher precision
  • 28. Online Evaluation: Bucket Test on PYMK 30  Use behavior set (LastSeen, ImpCount)  On LinkedIn PYMK online system
  • 29. Conclusion 31  Impression Discounting Model  Learnt a discounting function to capture ignored impressions  Linear or multiplicative aggregation model  Anti-noise regression model  Offline and Online evaluation (Bucket testing)
  • 30. Questions? 32  Related work in the paper  Want to know more contact: mtiwari@linkedin.com

Editor's Notes

  1. Good afternoon! I am Mitul Tiwari. Today I am going to talk about Modeling Impression Discounting in Large-scale Recommender Systems. This is joint work with Pei Lee, Laks, and Sam Shah. Most of the work was done when Pei Lee was interning at LinkedIn last summer.
  2. Let me start with giving some context. LinkedIn is the largest professional network with more than 300M members, and its growing very fast with more than 2 members joining LinkedIn per second.
  3. Here are a couple of examples of large scale recommender systems at LinkedIn. People You May Know: recommending other people to connect with. Daily we process 100s of tera-bytes of data and 100s of billions of edges to recommend connections for each of 300M members. Suggested skills endorsements: is another example where we recommend a member and skill combination for endorsements.
  4. There are many such large scale recommender systems at LinkedIn. For example, Jobs recommendations, news articles suggestions, companies to follow, groups to join, similar profile, related search query etc.
  5. Let me describe what we mean by impression discounting using a couple of examples and formulate the problem.
  6. Let me start with the case of People You May Know or PYMK. Let’s say 5 days ago a Deepak was recommended to me to invite and connect on LinkedIn, and I ignored that recommendation. And Deepak is recommended to me again in PYMK 1 day ago. Now today PYMK systems needs to figure out whether to recommend Deepak again to me or not. Basically, if I am not likely to invite Deepak to connect then better discount this recommendation from my PYMK recommendations. Note that this is just an example since I am already connected to Deepak and I work very closely with him 
  7. Here is another example of skills endorsement suggestions. We have very small real-estate on the website to display endorsement suggestions. If we recommended certain skills in the past for some of your connections and you did not take any action on those suggestion. If you are not likely to endorse with those skills then it’s better if we suggest some other skills to endorse.
  8. Let me define certain terms. Impressions are recommendation that are seen by users. Conversion is a positive action taken on a recommendation. For example, in case of PYMK, invitation to connect. Or in case of Skills Endorsements, endorsing a connection for a skill. In Impression discounting problem, we have given a history of impressions or recommendations seen by users, and we would like to discount or remove the items from the recommendation set if it’s not likely to lead to conversion.
  9. Our goal is to build an impression discounting framework that can be used as a feature in the recommendation engine model or a plugin that can be applied on top of the existing recommendation engine. Our proposed impression discounting model only relies on the historical impression records, and can be treated as a plugin for existing recommendation engines. We use the dotted rectangle to circle the newly built recommender system with impression discounting, which produces discounted impressions with a higher overall conversion rate.
  10. Here is the outline of the rest of my talk. Let me define impression more in detail in terms of user, item, conversion, and behavior features. Then I will describe the exploratory data analysis work to find out the correlation between impression features and conversion rate Then will describe the impression discounting model fitting And finally will conclude with offline and online experimental evaluations
  11. An impression can be seen as a tuple with multiple fields such as User; (2) Item; (3) Conversion; (4) Features such as how many times this item was shown to the user; when was the last time this item was shown to the user, etc (5) Timestamp; (6) Recommendation score of the item to the use
  12. We can derive various features from impressions such as: (1) Impression count: the number of times the item was seen by the user; (2) Last seen: when was the last time the item was seen; (3) at what position the item was seen; (4) how frequently user
  13. Here are some data analysis results that shows that conversation rate drops as the number of the same item shown to the user increase The decrease in conversion rate is much more steep in case of endorsements Also note that in case of PYMK the decrease is more gradual. That mean, a recommendation in PYMK still has chance of acceptance even after multiple impressions
  14. Given this data and after doing correlation studies between various behavior features and conversion rate We would like to learn discounting functions that fits this data
  15. In the plot we show various discounting functions that we use to fit the relationship be tween conversion rate and the number of times an item was shown to a user.
  16. These are various discounting functions that we use to fit the data
  17. After fitting the best discounting function for each of the feature, we combined these functions using linear or multiplicative aggregation
  18. Note that in certain cases we didn’t have a lot of data points. For example, a very few items were shown to users more than 40 times and there is a lot of variance because of small number of data points. We developed an anti-noise regression technique to give lower weightage to such data points in the cost functions
  19. We adopted this technique from density based clustering to give lower weight to certain observations in the cost function Throw away information that you don’t need – analogy – denoising auto encoders in deep learning
  20. Our proposed impression discounting model only relies on the historical impression records, and can be treated as a plugin for existing recommendation engines. We use the dotted rectangle to circle the newly built recommender system with impression discounting, which produces discounted impressions with a higher overall conversion rate.
  21. Talked about modeling impression discounting in large scale recommender systems at LinkedIn such as People You May Know and Skills Endorsement Suggestions.