SlideShare a Scribd company logo
  • Upload
  • Home
  • Explore
  • Login
  • Signup
SlideShare a Scribd company logo
  • Home
  • Explore
  • Upload
  • Login
  • Signup

We've updated our privacy policy. Click here to review the details. Tap here to review the details.

×
×
×
×
×
×
choi kyumin

choi kyumin

322 Followers
15 SlideShares 3 Clipboards 322 Followers 119 Followings
  • Unblock User Block User
15 SlideShares 3 Clipboards 322 Followers 119 Followings

Personal Information
Organization / Workplace
Korea Korea, South
Occupation
software engineer at kakao
Website
brunch.co.kr/@goodvc78
About
My identity is RecSys knowledge, Sense for data analysis, Fastest learning curve, Enjoy my jobs The fully experience of Recsys in live service.
Contact Details
Tags
추천시스템 데이터분석 recommender system #music recsys 추천시스템목표 개인화경험 mab t-sne feature visualization r #feature visualization 데이터야놀자 탐색적데이터분석 data analytics eda 컨벤션 네이밍 quantify-self 파이썬분석 자아정량화 recsys word2vec recommendersystem similarity personal analytics 추천아 놀자 k-means kmeans cosine similarity 추천
See more
Presentations (15)
See all
플랫폼데이2013 workflow기반 실시간 스트리밍데이터 수집 및 분석 플랫폼 발표자료
9 years ago • 6631 Views
제1화 추천 시스템 이란.ppt
8 years ago • 13331 Views
추놀 3회 유사도 측정(우리아기는 누구와 더 닮았는가?)
8 years ago • 4052 Views
추놀 4회 영화 분류하기
8 years ago • 2040 Views
추놀 5회 무엇이든 분류해 보기
8 years ago • 5216 Views
Deview2014 Live Broadcasting 추천시스템 발표 자료
8 years ago • 10232 Views
2015 py con word2vec이 추천시스템을 만났을때
7 years ago • 25744 Views
2016 PyCon APAC - 너의 사진은 내가 지난 과거에 한일을 알고 있다.
6 years ago • 2758 Views
Python 오픈소스의 네이밍 특징들-파이콘격월세미나
6 years ago • 5924 Views
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
5 years ago • 50041 Views
눈으로 듣는 음악 추천 시스템-2018 if-kakao
4 years ago • 1629 Views
Song Feature 조금더
4 years ago • 1145 Views
추천시스템 이제는 돈이 되어야 한다.
3 years ago • 15264 Views
Deview2020 유저가 좋은 작품(웹툰)을 만났을때
2 years ago • 730 Views
개인화 추천은 어디로 가고 있는가?
1 year ago • 594 Views
Likes (148)
See all
Engagement, Metrics & Personalisation at Scale
Mounia Lalmas-Roelleke • 2 years ago
LinkedIn talk at Netflix ML Platform meetup Sep 2019
Faisal Siddiqi • 3 years ago
Digital 2020 Global Digital Overview (January 2020) v01
DataReportal • 3 years ago
아이템 추천의 다양성을 높이기 위한 후처리 방법(논문 리뷰)
hyunsung lee • 5 years ago
The difference between lean back and lean forward
Own Company • 9 years ago
Digital Revolution and Consumer Behaviour
Own Company • 9 years ago
Data council SF 2020 Building a Personalized Messaging System at Netflix
Grace T. Huang • 2 years ago
데이터를 얻으려는 노오오력
Youngjae Kim • 5 years ago
Recent Trends in Personalization at Netflix
Justin Basilico • 2 years ago
Lessons learned from building practical deep learning systems
Xavier Amatriain • 3 years ago
SXSW2017 @NewDutchMedia Talk: Exploration is the New Search
Lora Aroyo • 5 years ago
Tutorial on Online User Engagement: Metrics and Optimization
Mounia Lalmas-Roelleke • 3 years ago
RecSys 2020 A Human Perspective on Algorithmic Similarity Schendel 9-2020
Zachary Schendel • 2 years ago
Beyond DAUs and MAUs, 3 Key Levers to Understanding User Engagement For Your Mobile Apps
CleverTap • 3 years ago
Facebook prophet
Minho Lee • 5 years ago
Is Growth Important? Yes. But Retention Is King
TheFamily • 8 years ago
Software-as-a-Service (SaaS) Secrets to Raising Venture Capital
Mamoon Hamid • 7 years ago
The Holy Grail of Traction - Brian Balfour, HubSpot
Traction Conf • 7 years ago
Measuring user engagement: the do, the do not do, and the we do not know
Mounia Lalmas-Roelleke • 8 years ago
Personalizing the listening experience
Mounia Lalmas-Roelleke • 3 years ago
A/B 테스트를 적용하기 어려울 때, 이벤트 효과 추정하기 (2020-01-18 잔디콘)
Minho Lee • 3 years ago
Engagement, metrics and "recommenders"
Mounia Lalmas-Roelleke • 3 years ago
Calibrated Recommendations
Harald Steck • 4 years ago
Search-Based Serving Architecture of Embeddings-Based Recommendations (RecSys 2019)
Sonya Liberman • 3 years ago
Recent Trends in Personalization: A Netflix Perspective
Justin Basilico • 3 years ago
A Multi-Armed Bandit Framework For Recommendations at Netflix
Jaya Kawale • 4 years ago
2019 cvpr paper_overview
LEE HOSEONG • 3 years ago
Word2Vec Network Structure Explained
Subhashis Hazarika • 4 years ago
Visualizing Data Using t-SNE
David Khosid • 7 years ago
Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence
Dawen Liang • 6 years ago
Adaptation and Evaluation of Recommendationsfor Short-term Shopping Goals
LukasLerche • 7 years ago
Steffen Rendle, Research Scientist, Google at MLconf SF
MLconf • 8 years ago
딥러닝 기본 원리의 이해
Hee Won Park • 5 years ago
Notes from Coursera Deep Learning courses by Andrew Ng
Tess Ferrandez • 4 years ago
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Justin Basilico • 5 years ago
Ensemble Contextual Bandits for Personalized Recommendation
Liang Tang • 7 years ago
Wasserstein GAN 수학 이해하기 I
Sungbin Lim • 5 years ago
CF Models for Music Recommendations At Spotify
Vidhya Murali • 7 years ago
Session-Based Recommender Systems
Eötvös Loránd University • 5 years ago
Recent Trends in Deep Learning
Sungjoon Choi • 5 years ago
스타트업 인턴 개발자 3달간의 고군분투기 김은향
Eunhyang Kim • 5 years ago
Growth Hacking with Predictive Analytics
Andrew Ahn • 7 years ago
Jupyter notebook 이해하기
Yong Joon Moon • 6 years ago
Deep learning text NLP and Spark Collaboration . 한글 딥러닝 Text NLP & Spark
hoondong kim • 5 years ago
RecSys 2015 - Unifying the Problem of Search and Recommendations at OpenTable
Jeremy Schiff • 7 years ago
악평생성기 (Bad Comment Generator using RNN) _ 송치성
Chisung Song • 6 years ago
Detection of fashion trends and seasonal cycles using client feedback
Roberto Sanchis Ojeda • 6 years ago
Data Day Texas 2017: Scaling Data Science at Stitch Fix
Stefan Krawczyk • 6 years ago
(Some) pitfalls of distributed learning
Yves Raimond • 6 years ago
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineering Group at Netflix at MLconf SEA - 5/01/15
MLconf • 7 years ago
[214]베이지안토픽모형 강병엽
NAVER D2 • 6 years ago
[216]딥러닝예제로보는개발자를위한통계 최재걸
NAVER D2 • 6 years ago
Generative adversarial networks
남주 김 • 6 years ago
Algorithmic Music Recommendations at Spotify
Chris Johnson • 9 years ago
Recsys 2015: Making Meaningful Restaurant Recommendations at OpenTable
Sudeep Das, Ph.D. • 7 years ago
word2vec-DataPalooza-Seattle
castanan2 • 6 years ago
Meta-Prod2Vec: Simple Product Embeddings with Side-Information
recsysfr • 6 years ago
What is word2vec?
Traian Rebedea • 7 years ago
Latent Semanctic Analysis Auro Tripathy
Auro Tripathy • 10 years ago
It's Not Magic - Explaining classification algorithms
Brian Lange • 6 years ago
data science @NYT ; inaugural Data Science Initiative Lecture
chris wiggins • 7 years ago
Recsys 2016 tutorial: Lessons learned from building real-life recommender systems
Xavier Amatriain • 6 years ago
Past present and future of Recommender Systems: an Industry Perspective
Xavier Amatriain • 6 years ago
Gaussian Ranking by Matrix Factorization, ACM RecSys Conference 2015
Harald Steck • 7 years ago
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
Taehoon Kim • 6 years ago
Drawing word2vec
Kai Sasaki • 8 years ago
Lessons learnt at building recommendation services at industry scale
Domonkos Tikk • 6 years ago
Customer Retention Rate Analysis
RetentionLogix • 10 years ago
2016 kcd 세미나 발표자료. 구글포토로 바라본 인공지능과 머신러닝
JungGeun Lee • 7 years ago
파이썬+주요+용어+정리 20160304
Yong Joon Moon • 6 years ago
Slow date project
Hanyang University • 7 years ago
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody • 7 years ago
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody • 7 years ago
시나브로 배우는 자연어처리 바벨피쉬 송치성
Chisung Song • 7 years ago
Neighbor methods vs matrix factorization - case studies of real-life recommendations (Gravity LSRS2015 RECSYS 2015)
Domonkos Tikk • 7 years ago
Allison Gilmore, Data Scientist, Ayasdi at MLconf SF - 11/13/15
MLconf • 7 years ago
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon University at MLconf SF - 11/13/15
MLconf • 7 years ago
10 more lessons learned from building Machine Learning systems
Xavier Amatriain • 7 years ago
From Idea to Execution: Spotify's Discover Weekly
Chris Johnson • 7 years ago
Music Personalization : Real time Platforms.
Esh Vckay • 7 years ago
Lunch Club_Netflix Recommendations
StartupAlliance • 8 years ago
집필방법론.V.1.2
Sangmin Lee • 11 years ago
Linear models for data science
Brad Klingenberg • 7 years ago
[IGC 2015] 지속가능한 개발팀..이란 꿈을 꾸었습니다
Hwang Sang Hun • 7 years ago
20150306 파이썬기초 IPython을이용한프로그래밍_이태영
Tae Young Lee • 7 years ago
Python Korea 2014년 6월 세미나 - Windows 환경에서 Python 개발환경 세팅하기
Joongi Kim • 8 years ago
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson • 7 years ago
20150307 abcd발표_ux디자이너 실력으로 살아남기
SANGBUM HA • 7 years ago
Interactive Recommender Systems with Netflix and Spotify
Chris Johnson • 7 years ago
[151] 영상 인식을 통한 오프라인 고객분석 솔루션과 딥러닝
NAVER D2 • 7 years ago
QCon Rio - Machine Learning for Everyone
Dhiana Deva • 7 years ago
도도와 파이썬: 좋은 선택과 나쁜 선택
Jc Kim • 7 years ago
[PyConKR 2015] 라이트닝토크 - 어느 여자 개발자의 육아휴직 2년
Joeun Park • 7 years ago
2015 py con word2vec이 추천시스템을 만났을때
choi kyumin • 7 years ago
Machine Learning to Grow the World's Knowledge
Xavier Amatriain • 7 years ago
[SmartNews] Globally Scalable Web Document Classification Using Word2Vec
Kouhei Nakaji • 7 years ago
Word2Vec: Learning of word representations in a vector space - Di Mitri & Hermans
Daniele Di Mitri • 7 years ago
Growing Your Business Through Experimentation
Hiten Shah • 7 years ago
Full Text Search Throwdown
Karwin Software Solutions LLC • 13 years ago
Information retrieval to recommender systems
Data Science Society • 7 years ago
Spotify's Music Recommendations Lambda Architecture
Esh Vckay • 7 years ago
집단지성 프로그래밍 02-추천시스템 만들기
Kwang Woo NAM • 8 years ago
공공데이터 활용을 위한 "Tech 워크숍" 2회 - 공공데이터 수집, 가공하고 활용하기
Cheol Kang • 8 years ago
[20140830, Pycon2014] NetworkX를 이용한 네트워크 분석
Kyunghoon Kim • 8 years ago
elasticsearch_적용 및 활용_정리
Junyi Song • 7 years ago
Mr. Presentation
Ethos3 • 14 years ago
빅데이터, 클라우드, IoT, 머신러닝. 왜 이렇게 많은 것들이 나타날까?
Yongho Ha • 7 years ago
NDC 2015 이은석 - pay-to-skip: 온라인 게임 속 로봇 경제와 내몰리는 인간
Eunseok Yi • 7 years ago
Collaborative filtering getting_started
Vivek Aanand Ganesan • 9 years ago
Machine Learning for Recommender Systems MLSS 2015 Sydney
Alexandros Karatzoglou • 7 years ago
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Alexandros Karatzoglou • 9 years ago
MLConf Seattle 2015 - ML@Quora
Xavier Amatriain • 7 years ago
MLConf - Emmys, Oscars & Machine Learning Algorithms at Netflix
Xavier Amatriain • 9 years ago
Bando de Dados Avançados - Recommender Systems
Gustavo Coutinho • 7 years ago
금융 데이터 이해와 분석 PyCon 2014
Seung-June Lee • 7 years ago
Word2vec algorithm
Andrew Koo • 8 years ago
From A Neural Probalistic Language Model to Word2vec
Jungkyu Lee • 8 years ago
실리콘 밸리 데이터 사이언티스트의 하루
Jaimie Kwon (권재명) • 7 years ago
Scala Data Pipelines for Music Recommendations
Chris Johnson • 8 years ago
10 Lessons Learned from Building Machine Learning Systems
Xavier Amatriain • 8 years ago
Slides for the day-long Lean Analytics workshop at the 2014 Lean Startup conference
Lean Analytics • 8 years ago
Music recommendations @ MLConf 2014
Erik Bernhardsson • 8 years ago
Music Recommendations at Scale with Spark
Chris Johnson • 8 years ago
앙상블 학습 기반의 추천시스템 개발
Jungkyu Lee • 9 years ago
RecSysTEL lecture at advanced SIKS course, NL
Hendrik Drachsler • 10 years ago
Deep Learning through Examples
Sri Ambati • 8 years ago
Machine Learning & Recommender Systems at Netflix Scale
C4Media • 9 years ago
Recsys 2014 Keynote: The Value of Better Recommendations - For Businesses, Consumers, Producers, and Society
Neil Hunt • 8 years ago
[Devsisters] 세계 선도 IT사 및 게임사 벤치마킹 & 인사이트 보고서 (1부) 세계적 IT서비스 회사들의 성공의 본질을 해부하다_Facebook/Netflix/Dropbox/Evernote 벤치마킹 및 인사이트 보고서
Seunghun Lee • 8 years ago
Recsys 2014 Tutorial - The Recommender Problem Revisited
Xavier Amatriain • 8 years ago
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Xavier Amatriain • 8 years ago
How Google Works / 구글은 어떻게 일하는가 (Korean / 한국어 버전)
Mika Eunjin Kang • 8 years ago
Datadesignmeaning
Idan Gazit • 9 years ago
2.네이버 프론트엔드 김지태
NAVER D2 • 8 years ago
손코딩뇌컴파일눈디버깅을 소개합니다.
Kwangsung Ha • 9 years ago
LUMA's The Future of (Digital) TV
LUMA Partners • 8 years ago
Collaborative Filtering with Spark
Chris Johnson • 8 years ago
Hello, Recommender System
Kyuhwan Jung • 9 years ago
스타트업에서 기술책임자로 살아가기
Hyun-woo Park • 8 years ago
KPCB Internet Trends 2013
Kleiner Perkins • 9 years ago
How to Create an Early Stage Pitch Deck
Ryan Spoon • 11 years ago
스타트업은 데이터를 어떻게 바라봐야 할까? (개정판)
Yongho Ha • 8 years ago
svn 능력자를 위한 git 개념 가이드
Insub Lee • 9 years ago
배달의 민족 브랜드 마케팅 이야기 by 우아한형제들 김봉진 대표
VentureSquare • 9 years ago
Facebook, The Perfect Startup
Fabernovel • 10 years ago
26 Time Management Hacks I Wish I'd Known at 20
Étienne Garbugli • 9 years ago
오승준, 사회적 기술이 프로그래머 인생을 바꿔주는 이유, NDC2011
devCAT Studio, NEXON • 11 years ago
플랫폼데이2013 workflow기반 실시간 스트리밍데이터 수집 및 분석 플랫폼 발표자료
choi kyumin • 9 years ago
  • Activity
  • About

Presentations (15)
See all
플랫폼데이2013 workflow기반 실시간 스트리밍데이터 수집 및 분석 플랫폼 발표자료
9 years ago • 6631 Views
제1화 추천 시스템 이란.ppt
8 years ago • 13331 Views
추놀 3회 유사도 측정(우리아기는 누구와 더 닮았는가?)
8 years ago • 4052 Views
추놀 4회 영화 분류하기
8 years ago • 2040 Views
추놀 5회 무엇이든 분류해 보기
8 years ago • 5216 Views
Deview2014 Live Broadcasting 추천시스템 발표 자료
8 years ago • 10232 Views
2015 py con word2vec이 추천시스템을 만났을때
7 years ago • 25744 Views
2016 PyCon APAC - 너의 사진은 내가 지난 과거에 한일을 알고 있다.
6 years ago • 2758 Views
Python 오픈소스의 네이밍 특징들-파이콘격월세미나
6 years ago • 5924 Views
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
5 years ago • 50041 Views
눈으로 듣는 음악 추천 시스템-2018 if-kakao
4 years ago • 1629 Views
Song Feature 조금더
4 years ago • 1145 Views
추천시스템 이제는 돈이 되어야 한다.
3 years ago • 15264 Views
Deview2020 유저가 좋은 작품(웹툰)을 만났을때
2 years ago • 730 Views
개인화 추천은 어디로 가고 있는가?
1 year ago • 594 Views
Likes (148)
See all
Engagement, Metrics & Personalisation at Scale
Mounia Lalmas-Roelleke • 2 years ago
LinkedIn talk at Netflix ML Platform meetup Sep 2019
Faisal Siddiqi • 3 years ago
Digital 2020 Global Digital Overview (January 2020) v01
DataReportal • 3 years ago
아이템 추천의 다양성을 높이기 위한 후처리 방법(논문 리뷰)
hyunsung lee • 5 years ago
The difference between lean back and lean forward
Own Company • 9 years ago
Digital Revolution and Consumer Behaviour
Own Company • 9 years ago
Data council SF 2020 Building a Personalized Messaging System at Netflix
Grace T. Huang • 2 years ago
데이터를 얻으려는 노오오력
Youngjae Kim • 5 years ago
Recent Trends in Personalization at Netflix
Justin Basilico • 2 years ago
Lessons learned from building practical deep learning systems
Xavier Amatriain • 3 years ago
SXSW2017 @NewDutchMedia Talk: Exploration is the New Search
Lora Aroyo • 5 years ago
Tutorial on Online User Engagement: Metrics and Optimization
Mounia Lalmas-Roelleke • 3 years ago
RecSys 2020 A Human Perspective on Algorithmic Similarity Schendel 9-2020
Zachary Schendel • 2 years ago
Beyond DAUs and MAUs, 3 Key Levers to Understanding User Engagement For Your Mobile Apps
CleverTap • 3 years ago
Facebook prophet
Minho Lee • 5 years ago
Is Growth Important? Yes. But Retention Is King
TheFamily • 8 years ago
Software-as-a-Service (SaaS) Secrets to Raising Venture Capital
Mamoon Hamid • 7 years ago
The Holy Grail of Traction - Brian Balfour, HubSpot
Traction Conf • 7 years ago
Measuring user engagement: the do, the do not do, and the we do not know
Mounia Lalmas-Roelleke • 8 years ago
Personalizing the listening experience
Mounia Lalmas-Roelleke • 3 years ago
A/B 테스트를 적용하기 어려울 때, 이벤트 효과 추정하기 (2020-01-18 잔디콘)
Minho Lee • 3 years ago
Engagement, metrics and "recommenders"
Mounia Lalmas-Roelleke • 3 years ago
Calibrated Recommendations
Harald Steck • 4 years ago
Search-Based Serving Architecture of Embeddings-Based Recommendations (RecSys 2019)
Sonya Liberman • 3 years ago
Recent Trends in Personalization: A Netflix Perspective
Justin Basilico • 3 years ago
A Multi-Armed Bandit Framework For Recommendations at Netflix
Jaya Kawale • 4 years ago
2019 cvpr paper_overview
LEE HOSEONG • 3 years ago
Word2Vec Network Structure Explained
Subhashis Hazarika • 4 years ago
Visualizing Data Using t-SNE
David Khosid • 7 years ago
Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence
Dawen Liang • 6 years ago
Adaptation and Evaluation of Recommendationsfor Short-term Shopping Goals
LukasLerche • 7 years ago
Steffen Rendle, Research Scientist, Google at MLconf SF
MLconf • 8 years ago
딥러닝 기본 원리의 이해
Hee Won Park • 5 years ago
Notes from Coursera Deep Learning courses by Andrew Ng
Tess Ferrandez • 4 years ago
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Justin Basilico • 5 years ago
Ensemble Contextual Bandits for Personalized Recommendation
Liang Tang • 7 years ago
Wasserstein GAN 수학 이해하기 I
Sungbin Lim • 5 years ago
CF Models for Music Recommendations At Spotify
Vidhya Murali • 7 years ago
Session-Based Recommender Systems
Eötvös Loránd University • 5 years ago
Recent Trends in Deep Learning
Sungjoon Choi • 5 years ago
스타트업 인턴 개발자 3달간의 고군분투기 김은향
Eunhyang Kim • 5 years ago
Growth Hacking with Predictive Analytics
Andrew Ahn • 7 years ago
Jupyter notebook 이해하기
Yong Joon Moon • 6 years ago
Deep learning text NLP and Spark Collaboration . 한글 딥러닝 Text NLP & Spark
hoondong kim • 5 years ago
RecSys 2015 - Unifying the Problem of Search and Recommendations at OpenTable
Jeremy Schiff • 7 years ago
악평생성기 (Bad Comment Generator using RNN) _ 송치성
Chisung Song • 6 years ago
Detection of fashion trends and seasonal cycles using client feedback
Roberto Sanchis Ojeda • 6 years ago
Data Day Texas 2017: Scaling Data Science at Stitch Fix
Stefan Krawczyk • 6 years ago
(Some) pitfalls of distributed learning
Yves Raimond • 6 years ago
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineering Group at Netflix at MLconf SEA - 5/01/15
MLconf • 7 years ago
[214]베이지안토픽모형 강병엽
NAVER D2 • 6 years ago
[216]딥러닝예제로보는개발자를위한통계 최재걸
NAVER D2 • 6 years ago
Generative adversarial networks
남주 김 • 6 years ago
Algorithmic Music Recommendations at Spotify
Chris Johnson • 9 years ago
Recsys 2015: Making Meaningful Restaurant Recommendations at OpenTable
Sudeep Das, Ph.D. • 7 years ago
word2vec-DataPalooza-Seattle
castanan2 • 6 years ago
Meta-Prod2Vec: Simple Product Embeddings with Side-Information
recsysfr • 6 years ago
What is word2vec?
Traian Rebedea • 7 years ago
Latent Semanctic Analysis Auro Tripathy
Auro Tripathy • 10 years ago
It's Not Magic - Explaining classification algorithms
Brian Lange • 6 years ago
data science @NYT ; inaugural Data Science Initiative Lecture
chris wiggins • 7 years ago
Recsys 2016 tutorial: Lessons learned from building real-life recommender systems
Xavier Amatriain • 6 years ago
Past present and future of Recommender Systems: an Industry Perspective
Xavier Amatriain • 6 years ago
Gaussian Ranking by Matrix Factorization, ACM RecSys Conference 2015
Harald Steck • 7 years ago
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
Taehoon Kim • 6 years ago
Drawing word2vec
Kai Sasaki • 8 years ago
Lessons learnt at building recommendation services at industry scale
Domonkos Tikk • 6 years ago
Customer Retention Rate Analysis
RetentionLogix • 10 years ago
2016 kcd 세미나 발표자료. 구글포토로 바라본 인공지능과 머신러닝
JungGeun Lee • 7 years ago
파이썬+주요+용어+정리 20160304
Yong Joon Moon • 6 years ago
Slow date project
Hanyang University • 7 years ago
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody • 7 years ago
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody • 7 years ago
시나브로 배우는 자연어처리 바벨피쉬 송치성
Chisung Song • 7 years ago
Neighbor methods vs matrix factorization - case studies of real-life recommendations (Gravity LSRS2015 RECSYS 2015)
Domonkos Tikk • 7 years ago
Allison Gilmore, Data Scientist, Ayasdi at MLconf SF - 11/13/15
MLconf • 7 years ago
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon University at MLconf SF - 11/13/15
MLconf • 7 years ago
10 more lessons learned from building Machine Learning systems
Xavier Amatriain • 7 years ago
From Idea to Execution: Spotify's Discover Weekly
Chris Johnson • 7 years ago
Music Personalization : Real time Platforms.
Esh Vckay • 7 years ago
Lunch Club_Netflix Recommendations
StartupAlliance • 8 years ago
집필방법론.V.1.2
Sangmin Lee • 11 years ago
Linear models for data science
Brad Klingenberg • 7 years ago
[IGC 2015] 지속가능한 개발팀..이란 꿈을 꾸었습니다
Hwang Sang Hun • 7 years ago
20150306 파이썬기초 IPython을이용한프로그래밍_이태영
Tae Young Lee • 7 years ago
Python Korea 2014년 6월 세미나 - Windows 환경에서 Python 개발환경 세팅하기
Joongi Kim • 8 years ago
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson • 7 years ago
20150307 abcd발표_ux디자이너 실력으로 살아남기
SANGBUM HA • 7 years ago
Interactive Recommender Systems with Netflix and Spotify
Chris Johnson • 7 years ago
[151] 영상 인식을 통한 오프라인 고객분석 솔루션과 딥러닝
NAVER D2 • 7 years ago
QCon Rio - Machine Learning for Everyone
Dhiana Deva • 7 years ago
도도와 파이썬: 좋은 선택과 나쁜 선택
Jc Kim • 7 years ago
[PyConKR 2015] 라이트닝토크 - 어느 여자 개발자의 육아휴직 2년
Joeun Park • 7 years ago
2015 py con word2vec이 추천시스템을 만났을때
choi kyumin • 7 years ago
Machine Learning to Grow the World's Knowledge
Xavier Amatriain • 7 years ago
[SmartNews] Globally Scalable Web Document Classification Using Word2Vec
Kouhei Nakaji • 7 years ago
Word2Vec: Learning of word representations in a vector space - Di Mitri & Hermans
Daniele Di Mitri • 7 years ago
Growing Your Business Through Experimentation
Hiten Shah • 7 years ago
Full Text Search Throwdown
Karwin Software Solutions LLC • 13 years ago
Information retrieval to recommender systems
Data Science Society • 7 years ago
Spotify's Music Recommendations Lambda Architecture
Esh Vckay • 7 years ago
집단지성 프로그래밍 02-추천시스템 만들기
Kwang Woo NAM • 8 years ago
공공데이터 활용을 위한 "Tech 워크숍" 2회 - 공공데이터 수집, 가공하고 활용하기
Cheol Kang • 8 years ago
[20140830, Pycon2014] NetworkX를 이용한 네트워크 분석
Kyunghoon Kim • 8 years ago
elasticsearch_적용 및 활용_정리
Junyi Song • 7 years ago
Mr. Presentation
Ethos3 • 14 years ago
빅데이터, 클라우드, IoT, 머신러닝. 왜 이렇게 많은 것들이 나타날까?
Yongho Ha • 7 years ago
NDC 2015 이은석 - pay-to-skip: 온라인 게임 속 로봇 경제와 내몰리는 인간
Eunseok Yi • 7 years ago
Collaborative filtering getting_started
Vivek Aanand Ganesan • 9 years ago
Machine Learning for Recommender Systems MLSS 2015 Sydney
Alexandros Karatzoglou • 7 years ago
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Alexandros Karatzoglou • 9 years ago
MLConf Seattle 2015 - ML@Quora
Xavier Amatriain • 7 years ago
MLConf - Emmys, Oscars & Machine Learning Algorithms at Netflix
Xavier Amatriain • 9 years ago
Bando de Dados Avançados - Recommender Systems
Gustavo Coutinho • 7 years ago
금융 데이터 이해와 분석 PyCon 2014
Seung-June Lee • 7 years ago
Word2vec algorithm
Andrew Koo • 8 years ago
From A Neural Probalistic Language Model to Word2vec
Jungkyu Lee • 8 years ago
실리콘 밸리 데이터 사이언티스트의 하루
Jaimie Kwon (권재명) • 7 years ago
Scala Data Pipelines for Music Recommendations
Chris Johnson • 8 years ago
10 Lessons Learned from Building Machine Learning Systems
Xavier Amatriain • 8 years ago
Slides for the day-long Lean Analytics workshop at the 2014 Lean Startup conference
Lean Analytics • 8 years ago
Music recommendations @ MLConf 2014
Erik Bernhardsson • 8 years ago
Music Recommendations at Scale with Spark
Chris Johnson • 8 years ago
앙상블 학습 기반의 추천시스템 개발
Jungkyu Lee • 9 years ago
RecSysTEL lecture at advanced SIKS course, NL
Hendrik Drachsler • 10 years ago
Deep Learning through Examples
Sri Ambati • 8 years ago
Machine Learning & Recommender Systems at Netflix Scale
C4Media • 9 years ago
Recsys 2014 Keynote: The Value of Better Recommendations - For Businesses, Consumers, Producers, and Society
Neil Hunt • 8 years ago
[Devsisters] 세계 선도 IT사 및 게임사 벤치마킹 & 인사이트 보고서 (1부) 세계적 IT서비스 회사들의 성공의 본질을 해부하다_Facebook/Netflix/Dropbox/Evernote 벤치마킹 및 인사이트 보고서
Seunghun Lee • 8 years ago
Recsys 2014 Tutorial - The Recommender Problem Revisited
Xavier Amatriain • 8 years ago
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Xavier Amatriain • 8 years ago
How Google Works / 구글은 어떻게 일하는가 (Korean / 한국어 버전)
Mika Eunjin Kang • 8 years ago
Datadesignmeaning
Idan Gazit • 9 years ago
2.네이버 프론트엔드 김지태
NAVER D2 • 8 years ago
손코딩뇌컴파일눈디버깅을 소개합니다.
Kwangsung Ha • 9 years ago
LUMA's The Future of (Digital) TV
LUMA Partners • 8 years ago
Collaborative Filtering with Spark
Chris Johnson • 8 years ago
Hello, Recommender System
Kyuhwan Jung • 9 years ago
스타트업에서 기술책임자로 살아가기
Hyun-woo Park • 8 years ago
KPCB Internet Trends 2013
Kleiner Perkins • 9 years ago
How to Create an Early Stage Pitch Deck
Ryan Spoon • 11 years ago
스타트업은 데이터를 어떻게 바라봐야 할까? (개정판)
Yongho Ha • 8 years ago
svn 능력자를 위한 git 개념 가이드
Insub Lee • 9 years ago
배달의 민족 브랜드 마케팅 이야기 by 우아한형제들 김봉진 대표
VentureSquare • 9 years ago
Facebook, The Perfect Startup
Fabernovel • 10 years ago
26 Time Management Hacks I Wish I'd Known at 20
Étienne Garbugli • 9 years ago
오승준, 사회적 기술이 프로그래머 인생을 바꿔주는 이유, NDC2011
devCAT Studio, NEXON • 11 years ago
플랫폼데이2013 workflow기반 실시간 스트리밍데이터 수집 및 분석 플랫폼 발표자료
choi kyumin • 9 years ago
Personal Information
Organization / Workplace
Korea Korea, South
Occupation
software engineer at kakao
Website
brunch.co.kr/@goodvc78
About
My identity is RecSys knowledge, Sense for data analysis, Fastest learning curve, Enjoy my jobs The fully experience of Recsys in live service.
Contact Details
Tags
추천시스템 데이터분석 recommender system #music recsys 추천시스템목표 개인화경험 mab t-sne feature visualization r #feature visualization 데이터야놀자 탐색적데이터분석 data analytics eda 컨벤션 네이밍 quantify-self 파이썬분석 자아정량화 recsys word2vec recommendersystem similarity personal analytics 추천아 놀자 k-means kmeans cosine similarity 추천
See more

Modal header

  • About
  • Support
  • Terms
  • Privacy
  • Copyright
  • Cookie Preferences
  • Do not sell or share my personal information
English
Current Language: English
Español
Português
Français
Deutsch

© 2023 SlideShare from Scribd

We've updated our privacy policy.

We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.

You can read the details below. By accepting, you agree to the updated privacy policy.

Thank you!

View updated privacy policy
We've encountered a problem, please try again.