HALF ANGLE AND
DOUBLE ANGLE
IDENTITIES
HALF ANGLE AND
DOUBLE ANGLE
IDENTITIES
VALENTINO T. LABINE
VALENTINO T. LABINE
OBJECTIVES
• Identify double and half angle identities
• Solve problems involving double and half angle
identities
OBJECTIVES
• Identify double and half angle identities
• Solve problems involving double and half angle
identities
Special cases of the sum and difference formulas for sine
and cosine yields what is known as the double-angle
identities and the half-angle identities.
DOUBLE ANGLE IDENTITIES
DOUBLE ANGLE IDENTITIES
Special cases of the sum and difference formulas for sine
and cosine yields what is known as the double-angle
identities and the half-angle identities.
DOUBLE ANGLE IDENTITIES
sin (α + β) = (sin α)(cos β) + (cos α)(sin β)
sin (Θ + Θ) = (sin Θ)(cos Θ) + (cos Θ)(sin Θ)
sin (2Θ) = 2 sin Θ cos Θ
DOUBLE ANGLE IDENTITIES
sin (α + β) = (sin α)(cos β) + (cos α)(sin β)
sin (Θ + Θ) = (sin Θ)(cos Θ) + (cos Θ)(sin Θ)
sin (2Θ) = 2 sin Θ cos Θ
DOUBLE ANGLE IDENTITIES
cos (α + β) = (cos α)(cos β) + (sin α)(sin β)
cos (Θ + Θ) = (cos Θ)(cos Θ) + (sin Θ)(sin Θ)
cos (2Θ) = cos2
Θ – sin2
Θ
DOUBLE ANGLE IDENTITIES
cos (α + β) = (cos α)(cos β) + (sin α)(sin β)
cos (Θ + Θ) = (cos Θ)(cos Θ) + (sin Θ)(sin Θ)
cos (2Θ) = cos2
Θ – sin2
Θ
DOUBLE ANGLE IDENTITIES
tan (α + β) =
tan (Θ + Θ) =
tan (2Θ) =
DOUBLE ANGLE IDENTITIES
tan (α + β) =
tan (Θ + Θ) =
tan (2Θ) =
EXAMPLES
Example 1. sin Θ = 3/5 0 < Θ < π/2
cos Θ = 4/5
tan Θ = 3/4
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
3
5
Θ
4
3
5
Θ
4
Example 1. sin Θ = 3/5 0 < Θ < π/2
cos Θ = 4/5
tan Θ = 3/4
O
X
Y
EXAMPLES
Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4
sin (2Θ) = 2sinΘcosΘ
= 2(3/5)(4/5)
= 24/25
cos(2Θ) = cos2
Θ-sin2
Θ
= (4/5)2
-(3/5)2
= 16/25 – 9/25
= 7/25
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4
sin (2Θ) = 2sinΘcosΘ
= 2(3/5)(4/5)
= 24/25
cos(2Θ) = cos2
Θ-sin2
Θ
= (4/5)2
-(3/5)2
= 16/25 – 9/25
= 7/25
EXAMPLES
Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4
tan(2Θ) = = = = = 24/7
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4
tan(2Θ) = = = = = 24/7
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin Θ = -12/13
tan Θ = -12/5
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
Θ
5
13
-12
Θ
5
13
-12
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin Θ = -12/13
tan Θ = -12/5
O
X
Y
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin (2Θ) = 2sinΘcosΘ
= 2(-12/13)(5/13)
sin (2Θ) = -120/164
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin (2Θ) = 2sinΘcosΘ
= 2(-12/13)(5/13)
sin (2Θ) = -120/164
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin(2Θ) = -120/169
cos(2Θ) = cos2
Θ-sin2
Θ
= (5/13)2
– (-12/13)2
= 25/169 – 144/169
cos(2Θ) = -119/169
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan.
sin(2Θ) = -120/169
cos(2Θ) = cos2
Θ-sin2
Θ
= (5/13)2
– (-12/13)2
= 25/169 – 144/169
cos(2Θ) = -119/169
EXAMPLES
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin (2Θ) and
tan. (2Θ)
sin(2Θ) = -120/169
cos(2Θ) = -119/169
tan(2Θ) = = = = 120/119
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
2tanΘ
1 – tan2
Θ
sin(2Θ)
cos(2Θ)
Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin (2Θ) and
tan. (2Θ)
sin(2Θ) = -120/169
cos(2Θ) = -119/169
tan(2Θ) = = = = 120/119
2tanΘ
1 – tan2
Θ
sin(2Θ)
cos(2Θ)
EXAMPLES
Example 3. Find the value of 2sin(75°)cos(75°)
2sinΘcosΘ = sin (2Θ)
2sin(75°)cos(75°) = sin (2•75)
sin(150) = ½
DOUBLE
ANGLE
IDENTITIES
DOUBLE
ANGLE
IDENTITIES
EXAMPLES
150°
30°
30°
60°
1
2
√2
150°
30°
30°
60°
1
2
√2
Example 3. Find the value of 2sin(75°)cos(75°)
2sinΘcosΘ = sin (2Θ)
2sin(75°)cos(75°) = sin (2•75)
sin(150) = ½
O
X
Y
sin2
(Θ) = 1 – cos(2Θ)
2
sin2
(Θ/2) = 1 – cos (Θ)
2
√sin2
(Θ/2) = √ 1 – cos (Θ)
2
sin (Θ/2) = ± √ 1 – cos (Θ)
2
HALF ANGLE IDENTITIES
HALF ANGLE IDENTITIES
sin2
(Θ) = 1 – cos(2Θ)
2
sin2
(Θ/2) = 1 – cos (Θ)
2
√sin2
(Θ/2) = √ 1 – cos (Θ)
2
sin (Θ/2) = ± √ 1 – cos (Θ)
2
cos2
(Θ) = 1 + cos(2Θ)
2
cos2
(Θ/2) = 1 + cos (Θ)
2
√cos2
(Θ/2) = √ 1 + cos (Θ)
2
cos (Θ/2) = ± √ 1 + cos (Θ)
2
HALF ANGLE IDENTITIES
HALF ANGLE IDENTITIES
cos2
(Θ) = 1 + cos(2Θ)
2
cos2
(Θ/2) = 1 + cos (Θ)
2
√cos2
(Θ/2) = √ 1 + cos (Θ)
2
cos (Θ/2) = ± √ 1 + cos (Θ)
2
tan(Θ/2) = = =
=
=
HALF ANGLE IDENTITIES
HALF ANGLE IDENTITIES
tan(Θ/2) = = =
=
=
tan(Θ/2) =
=
ADDITIONAL HALF ANGLE IDENTITIES
ADDITIONAL HALF ANGLE IDENTITIES
tan(Θ/2) =
=
EXAMPLES
Example 1. Use the half angle formula to evaluate
cos(15°)
15 = Θ/2
30 = Θ
cos (Θ/2) = ± √ 1 + cos (Θ)
2
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 1. Use the half angle formula to evaluate
cos(15°)
15 = Θ/2
30 = Θ
cos (Θ/2) = ± √ 1 + cos (Θ)
2
EXAMPLES
Example 1. Use the half angle formula to evaluate
cos(15°)
cos (15°/2) = ± √ 1 + cos (30)
2
= ±= ± = ±
= ± =
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 1. Use the half angle formula to evaluate
cos(15°)
cos (15°/2) = ± √ 1 + cos (30)
2
= ±= ± = ±
= ± =
EXAMPLES
Example 2. Find sin(15°) using a half-angle formula.
15 = Θ/2
30 = Θ
sin (Θ/2) = ± √ 1 – cos (Θ)
2
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 2. Find sin(15°) using a half-angle formula.
15 = Θ/2
30 = Θ
sin (Θ/2) = ± √ 1 – cos (Θ)
2
EXAMPLES
Example 2. Find sin(15°) using a half-angle formula.
sin (30°/2) = ± √ 1 – cos (30°)
2
= =± =± =√
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 2. Find sin(15°) using a half-angle formula.
sin (30°/2) = ± √ 1 – cos (30°)
2
= =± =± =√
EXAMPLES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Θ
8
15
17
Θ
15
17
8
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
EXAMPLES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
sin Θ/2 = ± = ± = ± = ± = ± = = ± • =
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
sin Θ/2 = ± = ± = ± = ± = ± = = ± • =
EXAMPLES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
cos Θ/2 = ± = ± = ± = ±
= -
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
cos Θ/2 = ± = ± = ± = ±
= -
EXAMPLES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
tan Θ/2 = ± = ± = ± = ±
= ±√16 = -4
HALF ANGLE
IDENTITIES
EXAMPLES
HALF ANGLE
IDENTITIES
Example 3. Given that tan Θ=(8/15) and Θ lies in
quadrant III, find the exact value of the following: sin, cos,
tan.
tan Θ/2 = ± = ± = ± = ±
= ±√16 = -4
TRY THIS!
1) Given that sinΘ = -4/5 and Θ lies in quadrant IV, find
the exact value of cos(Θ/2).
2) Find the exact value of (75°).
Answer:
1) -2/√5
2) 2 + √3
HALF ANGLE
IDENTITIES
HALF ANGLE
IDENTITIES
TRY THIS!
1) Given that sinΘ = -4/5 and Θ lies in quadrant IV, find
the exact value of cos(Θ/2).
2) Find the exact value of (75°).
THANK YOU!
THANK YOU!
SOURCES
https://www.cliffsnotes.com/study-guides/trigonometry/trigonometric-identities/double-angle-and-half-a
ngle-identities
https://math.libretexts.org/Bookshelves/Algebra/Book%3A_Algebra_and_Trigonometry_(OpenStax)/09
%3A_Trigonometric_Identities_and_Equations/9.03%3A_Double-Angle_Half-Angle_and_Reduction_F
ormulas
https://www.youtube.com/watch?v=9YI69okba3c&t=511s

Half angle and double half angle formulas.pptx

  • 1.
    HALF ANGLE AND DOUBLEANGLE IDENTITIES HALF ANGLE AND DOUBLE ANGLE IDENTITIES VALENTINO T. LABINE VALENTINO T. LABINE
  • 2.
    OBJECTIVES • Identify doubleand half angle identities • Solve problems involving double and half angle identities OBJECTIVES • Identify double and half angle identities • Solve problems involving double and half angle identities
  • 3.
    Special cases ofthe sum and difference formulas for sine and cosine yields what is known as the double-angle identities and the half-angle identities. DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES Special cases of the sum and difference formulas for sine and cosine yields what is known as the double-angle identities and the half-angle identities.
  • 4.
    DOUBLE ANGLE IDENTITIES sin(α + β) = (sin α)(cos β) + (cos α)(sin β) sin (Θ + Θ) = (sin Θ)(cos Θ) + (cos Θ)(sin Θ) sin (2Θ) = 2 sin Θ cos Θ DOUBLE ANGLE IDENTITIES sin (α + β) = (sin α)(cos β) + (cos α)(sin β) sin (Θ + Θ) = (sin Θ)(cos Θ) + (cos Θ)(sin Θ) sin (2Θ) = 2 sin Θ cos Θ
  • 5.
    DOUBLE ANGLE IDENTITIES cos(α + β) = (cos α)(cos β) + (sin α)(sin β) cos (Θ + Θ) = (cos Θ)(cos Θ) + (sin Θ)(sin Θ) cos (2Θ) = cos2 Θ – sin2 Θ DOUBLE ANGLE IDENTITIES cos (α + β) = (cos α)(cos β) + (sin α)(sin β) cos (Θ + Θ) = (cos Θ)(cos Θ) + (sin Θ)(sin Θ) cos (2Θ) = cos2 Θ – sin2 Θ
  • 6.
    DOUBLE ANGLE IDENTITIES tan(α + β) = tan (Θ + Θ) = tan (2Θ) = DOUBLE ANGLE IDENTITIES tan (α + β) = tan (Θ + Θ) = tan (2Θ) =
  • 7.
    EXAMPLES Example 1. sinΘ = 3/5 0 < Θ < π/2 cos Θ = 4/5 tan Θ = 3/4 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES 3 5 Θ 4 3 5 Θ 4 Example 1. sin Θ = 3/5 0 < Θ < π/2 cos Θ = 4/5 tan Θ = 3/4 O X Y
  • 8.
    EXAMPLES Example 1. sinΘ = 3/5 cos Θ = 4/5 tan Θ = 3/4 sin (2Θ) = 2sinΘcosΘ = 2(3/5)(4/5) = 24/25 cos(2Θ) = cos2 Θ-sin2 Θ = (4/5)2 -(3/5)2 = 16/25 – 9/25 = 7/25 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4 sin (2Θ) = 2sinΘcosΘ = 2(3/5)(4/5) = 24/25 cos(2Θ) = cos2 Θ-sin2 Θ = (4/5)2 -(3/5)2 = 16/25 – 9/25 = 7/25
  • 9.
    EXAMPLES Example 1. sinΘ = 3/5 cos Θ = 4/5 tan Θ = 3/4 tan(2Θ) = = = = = 24/7 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES Example 1. sin Θ = 3/5 cos Θ = 4/5 tan Θ = 3/4 tan(2Θ) = = = = = 24/7
  • 10.
    EXAMPLES Example 2. cosΘ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin Θ = -12/13 tan Θ = -12/5 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES Θ 5 13 -12 Θ 5 13 -12 Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin Θ = -12/13 tan Θ = -12/5 O X Y
  • 11.
    EXAMPLES Example 2. cosΘ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin (2Θ) = 2sinΘcosΘ = 2(-12/13)(5/13) sin (2Θ) = -120/164 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin (2Θ) = 2sinΘcosΘ = 2(-12/13)(5/13) sin (2Θ) = -120/164
  • 12.
    EXAMPLES Example 2. cosΘ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin(2Θ) = -120/169 cos(2Θ) = cos2 Θ-sin2 Θ = (5/13)2 – (-12/13)2 = 25/169 – 144/169 cos(2Θ) = -119/169 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin and tan. sin(2Θ) = -120/169 cos(2Θ) = cos2 Θ-sin2 Θ = (5/13)2 – (-12/13)2 = 25/169 – 144/169 cos(2Θ) = -119/169
  • 13.
    EXAMPLES Example 2. cosΘ = 5/13, 3π/2 < Θ < 2π. Find sin (2Θ) and tan. (2Θ) sin(2Θ) = -120/169 cos(2Θ) = -119/169 tan(2Θ) = = = = 120/119 DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES 2tanΘ 1 – tan2 Θ sin(2Θ) cos(2Θ) Example 2. cos Θ = 5/13, 3π/2 < Θ < 2π. Find sin (2Θ) and tan. (2Θ) sin(2Θ) = -120/169 cos(2Θ) = -119/169 tan(2Θ) = = = = 120/119 2tanΘ 1 – tan2 Θ sin(2Θ) cos(2Θ)
  • 14.
    EXAMPLES Example 3. Findthe value of 2sin(75°)cos(75°) 2sinΘcosΘ = sin (2Θ) 2sin(75°)cos(75°) = sin (2•75) sin(150) = ½ DOUBLE ANGLE IDENTITIES DOUBLE ANGLE IDENTITIES EXAMPLES 150° 30° 30° 60° 1 2 √2 150° 30° 30° 60° 1 2 √2 Example 3. Find the value of 2sin(75°)cos(75°) 2sinΘcosΘ = sin (2Θ) 2sin(75°)cos(75°) = sin (2•75) sin(150) = ½ O X Y
  • 15.
    sin2 (Θ) = 1– cos(2Θ) 2 sin2 (Θ/2) = 1 – cos (Θ) 2 √sin2 (Θ/2) = √ 1 – cos (Θ) 2 sin (Θ/2) = ± √ 1 – cos (Θ) 2 HALF ANGLE IDENTITIES HALF ANGLE IDENTITIES sin2 (Θ) = 1 – cos(2Θ) 2 sin2 (Θ/2) = 1 – cos (Θ) 2 √sin2 (Θ/2) = √ 1 – cos (Θ) 2 sin (Θ/2) = ± √ 1 – cos (Θ) 2
  • 16.
    cos2 (Θ) = 1+ cos(2Θ) 2 cos2 (Θ/2) = 1 + cos (Θ) 2 √cos2 (Θ/2) = √ 1 + cos (Θ) 2 cos (Θ/2) = ± √ 1 + cos (Θ) 2 HALF ANGLE IDENTITIES HALF ANGLE IDENTITIES cos2 (Θ) = 1 + cos(2Θ) 2 cos2 (Θ/2) = 1 + cos (Θ) 2 √cos2 (Θ/2) = √ 1 + cos (Θ) 2 cos (Θ/2) = ± √ 1 + cos (Θ) 2
  • 17.
    tan(Θ/2) = == = = HALF ANGLE IDENTITIES HALF ANGLE IDENTITIES tan(Θ/2) = = = = =
  • 18.
    tan(Θ/2) = = ADDITIONAL HALFANGLE IDENTITIES ADDITIONAL HALF ANGLE IDENTITIES tan(Θ/2) = =
  • 19.
    EXAMPLES Example 1. Usethe half angle formula to evaluate cos(15°) 15 = Θ/2 30 = Θ cos (Θ/2) = ± √ 1 + cos (Θ) 2 HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 1. Use the half angle formula to evaluate cos(15°) 15 = Θ/2 30 = Θ cos (Θ/2) = ± √ 1 + cos (Θ) 2
  • 20.
    EXAMPLES Example 1. Usethe half angle formula to evaluate cos(15°) cos (15°/2) = ± √ 1 + cos (30) 2 = ±= ± = ± = ± = HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 1. Use the half angle formula to evaluate cos(15°) cos (15°/2) = ± √ 1 + cos (30) 2 = ±= ± = ± = ± =
  • 21.
    EXAMPLES Example 2. Findsin(15°) using a half-angle formula. 15 = Θ/2 30 = Θ sin (Θ/2) = ± √ 1 – cos (Θ) 2 HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 2. Find sin(15°) using a half-angle formula. 15 = Θ/2 30 = Θ sin (Θ/2) = ± √ 1 – cos (Θ) 2
  • 22.
    EXAMPLES Example 2. Findsin(15°) using a half-angle formula. sin (30°/2) = ± √ 1 – cos (30°) 2 = =± =± =√ HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 2. Find sin(15°) using a half-angle formula. sin (30°/2) = ± √ 1 – cos (30°) 2 = =± =± =√
  • 23.
    EXAMPLES Example 3. Giventhat tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Θ 8 15 17 Θ 15 17 8 Example 3. Given that tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan.
  • 24.
    EXAMPLES Example 3. Giventhat tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. sin Θ/2 = ± = ± = ± = ± = ± = = ± • = HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 3. Given that tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. sin Θ/2 = ± = ± = ± = ± = ± = = ± • =
  • 25.
    EXAMPLES Example 3. Giventhat tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. cos Θ/2 = ± = ± = ± = ± = - HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 3. Given that tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. cos Θ/2 = ± = ± = ± = ± = -
  • 26.
    EXAMPLES Example 3. Giventhat tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. tan Θ/2 = ± = ± = ± = ± = ±√16 = -4 HALF ANGLE IDENTITIES EXAMPLES HALF ANGLE IDENTITIES Example 3. Given that tan Θ=(8/15) and Θ lies in quadrant III, find the exact value of the following: sin, cos, tan. tan Θ/2 = ± = ± = ± = ± = ±√16 = -4
  • 27.
    TRY THIS! 1) Giventhat sinΘ = -4/5 and Θ lies in quadrant IV, find the exact value of cos(Θ/2). 2) Find the exact value of (75°). Answer: 1) -2/√5 2) 2 + √3 HALF ANGLE IDENTITIES HALF ANGLE IDENTITIES TRY THIS! 1) Given that sinΘ = -4/5 and Θ lies in quadrant IV, find the exact value of cos(Θ/2). 2) Find the exact value of (75°).
  • 28.
  • 29.

Editor's Notes