SlideShare a Scribd company logo
3508-3510 Nucleic Acids Research, 1994, Vol. 22, No. 17
A comparative database of group I intron structures
Simon H.Damberger and Robin R.Gutell*
MCD Biology, Campus Box 347, University of Colorado, Boulder, CO 80309-0347, USA
ABSTRACT
We have created a database of comparatively derived
group I intron secondary structure diagrams. This
collection currently contains a broad sampling of
phylogenetically and structurally similar and diverse
structures from over 200 publicly available intron
sequences. As more group I introns are sequenced and
added to the database, we anticipate minor refinements
in these secondary structure diagrams. These diagrams
are directly accessible by computer as well as from the
authors.
INTRODUCTION
Group I introns are a family ofRNA molecules that catalyze their
own excision. Since it was discovered that group I introns self-
splice [1], much experimental and comparative research has been
devoted to determining their structure [2]. This work has, in turn,
helped us to understand their function during the splicing reaction.
As the number of group I intron sequences has increased,
comparative sequence analysis has established and refined the
group I intron secondary structure and is now revealing the
beginnirgs of a three dimensional model. [3,4,5,6] To further
refine the structural detail of group I introns, we will need
continued improvements ofour correlation analysis methods. We
will also need an even larger and more diverse collection ofgroup
I intron sequences.
Currently there are over 200 publicly available group I intron
sequences in GenBank [7]. These introns have been found within
two of the three primary phylogenetic domains and within the
Eucarya nucleus, chloroplast, and mitochondrion. With the
current number and expected increase ofgroup I intron sequence
availability, the need for a group I secondary structure database
has become great.
OBJECTIVES
Our current understanding of the patterns of sequence
conservation and variation for the group I intron family of RNA
molecules makes it possible to infer their secondary and tertiary
structure base pairings. The growing number of sequences
presents us with the opportunity to continue to evaluate and refine
these structures as additional comparative evidence becomes
available. These structures will be provided in a new common
format [8] that will allow a larger scientific audience to readily
compare similar and diverse introns. The group I secondary
structure database has several primary objectives:
1. To collect and structure group I intron sequences as they
become available. As more introns are sequenced, we expect
to refine the current structures using comparative analysis.
Although we expect the core structure of all group I introns
to largely remain the same, some minor changes in the
structure are possible. The variable regions, however, will
probably undergo more revision as sequences continue to
become available for comparison. Further comparative
analysis will also be called upon to identify new tertiary
interactions as comparative algorithms improve and the
database grows.
2. To present other information pertaining to group I introns such
as a list of all available group I intron sequences, reference
lists for intron sequences, cellular location ofintrons, and their
phylogenetic position.
3. To provide these structures to the general community via
anonymous ftp (file transfer protocol) and the World Wide
Web [9,10]. (Hard copies will also be available to those who
do not have access to the Internet.) Initially we will offer
representative structures from each of the major subgroups.
With time, we will generate more structures to round out the
phylogenetic diversity of the database. Within this
communication, we also present several examples of introns
including theAnkistrodesmus stipitatus LSU rRNA intron [11]
(fig. 1), Saccharomyces cerevisae mitochondrial LSU rRNA
intron [12] (fig. 2), and the second Podospora anserina
mitochondrial apocytochrome b intron [13] (fig. 3).
DESCRIPTION OF DATABASE
The database currently contains 219 intron sequences, the
majority ofwhich are available from GenBank. The total number
of introns in the different subgroups [as proposed in 6] are listed
in Table 1. These introns vary greatly in their phylogenetic
diversity and are found in two of the three major phylogenetic
domains, Eucarya and (eu)Bacteria [14,15] (this phylogenetic
nomenclature is presented in [16]). Within the Eucarya, introns
have been found in the nucleus and the two major organelles,
the mitochondrion and chloroplast. Group I introns have been
identified in 23 different genes (Table 1).
The secondary structures will be available in a new format that
more accurately represents the current knowledge of the group
I intron three dimensional structure [8]. The secondary structures
will be available through three channels; hard copies, anonymous
ftp, and through the WWW (World Wide Web). The computer
files will only be distributed in the PostScript format, therefore
*To whom correspondence should be addressed
.) 1994 Oxford University Press
Nucleic Acids Research, 1994, Vol. 22, No. 17 3509
AU- AA G-C- >C--
GU-A U-AC- A/ A-U
G-C C-GC- U A-U A* G
G *C G-C u
U U C v -AG
C C A AA 
AAU U A g CU
A A AL:CG-CAA AC-g CGAA I A C-U
AGUO- G CU GU
UAU-A-I G A -I
A-U~~~~~~~~G UU
UA-U A C -UGAA
C-GCCAUGUUGC A
UG C A CA~A
A A
C-~~~~A
U-GGC U-U U G
U-~~~~~~~~~~~-
A UCA
A ucG fU UG
U UGA C G
U A A
UAA U C-G~~~ AU
A ~~~U AU A
c A G~~~-UG
C_G ~~~~U CUAG
G C G ~~CA
G C ~~~C A
AC
(intron in capital letters) intron and flanking exon sequences (lower case letters).
The arrows point to the 5' and 3' splice sites. The thick lines show the continuity
of the strands with the arrowheads within the lines showing 5' to 3' sequence
direction. The boxed nucleotides connected by a thin line represent a base-pairing
interaction involved in the exon-ligation step (second step) of RNA splicing [4].
GenBank accession number is X56100.
a printer or viewer that can read PostScript is required to visualize
these diagrams. Those users with Internet access will be able to
retrieve copies of the structures through ftp or the WWW.
PostScript files of the secondary structure diagrams can be
obtained by anonymous ftp at the following site and directory:
ftp address: pundit. colorado. edu (128.138.212.53)
directory: /pub/RNA/GRPI/
The WWW is a system of software and protocols initiated by
CERN (European Laboratory for Particle Physics) to facilitate
the access of information via the Internet. It uses a hypertext and
multimedia presentation to simplify the accessibility of network
data. In order to use te WWW, one must first retrieve a program
that navigates the WWW like the NCSA (National Center for
Supercomputing Applications) Mosaic WWW browser.
NCSA Mosaic is a user-friendly WWW browser that is
available for Microsoft Windows, Macintoshes, and UNIX
workstations that use the X-Windows interface. NCSA Mosaic
can be retrieved by anonymous ftp from the ftp site
ftp.ncsa.uiuc.edu (141.142.20.50) in the /Mosaic directory.
To obtain PostScript files of the secondary structures through
the WWW, please use the following URL:
A UA
A G
A A
U U
A-UA
U-A
G-C
G-C
A-U
c A
U
A
A
A G
U-A
A-U
A-U
G-C CA
C-G AA
G cA- A
A
A A
G A
C-G
U-A
U-A
A-U
U- A
A-U
A-U
AC - UGA C
C A
U U
U A
U U
C A
A U
U A U G
AUAUAUUGAA- GUAAUUAUUUA
A I I I I I I I I I I I .
uGAUAUAAC AUAGCAUUAAUGuAA
FyAC~~~~~~
WC U U
A
C u
C U c U-A
U-A a U - A
-uJ A.. G G
G *u F#/1IU-a U -A
C-9 / 'C GCC - g
UU-A A G UGC -g Uy-A
U-CU U AGA-U
G A U G A u
A I11IIIIUCUACU A
U C UA A
A r U .GGA GC A U
A AAUAAC
G G-CG-CG-C
U U-A
A -U A |
U-A--C
A-U-A AU
U - A U-AAU-A A - AU
A U- A
 ~~U-A
AAU-A ~ ~~~~U
AU 827 nucs
G-A
A-A-Au
A A
Figure 2. Secondary structure diagram for the LSU rRNA Saccharomyces
cerevisiae mitochondrial intron. GenBank accession number is X00149.
UUUAA
A GA
U
A C
G A
UU - AU
A -U
U -A
U -A
C-G
U-A
A-U UUC
UCUAUUAUUCG AAUCAAUUUAC u
A I I I II*III **II C
U U
AAUAAUAAGU UUGGUUAGGUG G
AU 3'c A -U CAA U
~~~AuA A-UA -U A aU-C
U-A A-U u U-A
U-A UA aU -A
ACUA U U C
AC-g AC
A A C - C
G-CyC ~ ~~~~~ru5' G
G-C AAAGU
A-*UU -
U-A U-
C-U UA A
C~~~~~UAGAGAA A
U-CC UG
F: UCU-CAA
GC
UU~ ~ U-
UU ~~ ~~~~UA
U-CA CGArA C
A A U u U ---G* UU A A
A m
A AI'GA
UAA A
U-A GC
IUU - AAA A U
U-A CUGU-A CUG U
U-A UA
C
C-U AUC A
U U
U-A U -A A AGUA-U A -U C AA
-U U -A U
GA UGI U
A U-AA A-U
U U -A
-A A C-UG
AU U U
978 nucs
Figure 3. Secondary structre diagm for the second apocytochrome b Podospora
anserina mitochondrial intron. GenBank accession number is X55026.
3510 Nucleic Acids Research, 1994, Vol. 22, No. 17
Table 1.
Subgroup Number Genes represented
IAl 28 ATP9; CYTB; LSU rRNA; ND1; OX2; psbA; psbB; psbC
IA2 6 g31; nrdB; nrdD; psbC; td
IA3 7 LSU rRNA; SSU rRNA
IB1 11 CYTB; LSU rRNA; OXI; SSU rRNA
IB2 17 ATP6; LSU rRNA; ND1; ND5; OXI
IB3 13 LSU rRNA; OXI; SSU rRNA
IB4 13 CYTB; LSU rRNA; ND5; OXI; psbA
ICi 46 LSU rRNA; ND1; ND4L; SSU rRNA
IC2 8 ATP6; ND1; ND3; ND4; ND5; OXI; SSU rRNA
IC3 33 LSU rRNA; OXI; tRNA arg; tRNA ile; tRNA leu
ID 13 CYTB; OXI; OX3; ND5
Unknown 24 CYTB; ND1; ND5; OXI; OX2; psbA; SSU rRNA;
Total 219
URL: http://pundit. colorado.edu:8080/RNA/GRPI/introns.html
The WWW database is formatted to make it easy for the user
to find the intron or introns of interest. There are two methods
ofaccessing the secondary structure diagrams. The first method
is through links set up by subgroup and phylogeny where the
user can click on the subgroup of interest and look for introns
through a list classified by phylogeny. For the second method,
the database allows boolean 'and' searches over all introns in
the database by organism name, intron site (gene and cellular
location), and subgroup (see WWW examples). These facilities
will be updated and enhanced as more introns are sequenced and
structured, and as our database expands. We welcome any
suggestions on how to improve the search facilities as well as
the database itself.
WWW examples
1. To find all subgroup IAl introns that occur in Podospora
anserina, enter the following into the search box (all searches
are case insensitive):
Podospora anserina IAl
2. To find all mitochondrial LSU rRNA introns, enter the
following:
LSUrRNA Mitochondrion
This publication should be quoted as a reference for any
secondary structure data obtained either through hard copies from
the authors or from the database. Requests for hard copy printouts
should be referred to RRG. Questions and comments about the
on-line resources should be directed to SHD.
ACKNOWLEDGEMENTS
We would like to thank Tom Cech for encouraging us to pursue
this project. We acknowledge Bryn Wiser and Tom Macke for
access to the programs that facilitate the generation of the
structures (XRNA) and alignments (AE2). We would also like
to thank the W. M. Keck Foundation for their generous support
of RNA science on the Boulder campus and Sun Microsystems
for the donation ofcomputer equipment. This work was supported
by grants from the NIH (GM48207) and the Colorado RNA
Center to R. R. G.
REFERENCES
1. Cech, T. R., Zaug, A. J., and Grabowski, P. J. In vitro splicing of the
ribosomal RNA precursor of Tetrahymena: involvement of a guanosine
nucleotide in the excision of the intervening sequence. Cell 27, 487-496
(1981).
2. Cech, T. R. Self-splicing ofgroup I introns. AnnualReviews ofBiochemistry
59, 543-568 (1990).
3. Michel, F., Jacquier, A., and Dujon, B. Comparison offungal mitochondrial
introns reveals extensive homologies in RNA secondary structure. Biochimie
64, 868-881 (1982).
4. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A., and Scazzocchio,
C. Making ends meet: A model for RNA splicing in fungal mitochondria.
Nature 300, 719-724 (1982).
5. Cech, T. R. Conserved sequences and structures ofgroup I introns: building
an active site for RNA catalysis - a review. Gene 73, 259-271 (1988).
6. Michel, F., and Westhof, E. Modelling ofthe three-dimensional architecture
ofgroup I catalytic introns based on comparative sequence analysis. Journal
ofMolecular Biology 216, 585-610 (1990).
7. Benson, D., Lipman, D. J., and Ostell, J. GenBank. NucleicAcids Research
21, 2963-2965 (1993).
8. Cech, T. R., Damberger, S. H., and Gutell, R. R. Representation of the
secondary and tertiary structure of group I introns. Nature Structural Biology
1, 273-280 (1994).
9. Bemers-Lee, T. J., Cailliau, R., and Groff, J. -F. The World-Wide Web,
Computer Networks and ISDN Systems 25, 454-459 (1992).
10. Krol, E. The Whole Internet Catalog and User's Guide, O'Reilly and
Associates, Inc. pp. 227-242 (1992).
11. Davila-Aponte, J. A., Huss V. A. R., Sogin, M. L., and Cech, T. R. A
self-splicing group I intron in the nuclear pre-rRNA of the green alga,
Ankistrodesmus stipitatus. Nucleic Acids Research 19, 4429-4436 (1991).
12. Jacquier, A., and Dujon, B. The intron ofthe mitochondrial 21S rRNA gene:
Distribution in different yeast species and sequence comparison between
Kluyveromyces thermotolerans and Saccharomyces cerevisiae. Molecular
General Genetics 192, 487-499 (1983).
13. Cummings, D. J., Michel, F., McNally, K. L. DNA sequence analysis of
the apocyochrome b gene of Podospora anserina: a new family of intronic
open reading frame. Current Genetics 16, 407-418 (1989).
14. Xu, M. -Q., Kathe, S. D., Goodrich-Blair, H., Nierzwicki-Bauer, S. A.,
and Shub, D. A. Bacterial origin of a chloroplast intron: conserved self-
splicing group I introns in cyanobacteria. Science 250, 1566-1570 (1990).
15. Kuhsel, M. G., Strickland, R., and Palmer, J. D. An ancient group I intron
shared by eubacteria and chloroplasts. Science 250, 1570-1572 (1990).
16. Woese, C. R., Kandler, O., and Wheelis, M. L. Toward a natural system
of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya.
Proceedings of the National Academy of Sciences USA 87, 4576-4579
(1990).

More Related Content

Similar to Gutell 042.nar.1994.22.03508

Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175
Robin Gutell
 
Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082
Robin Gutell
 
Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319
Robin Gutell
 
Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055
Robin Gutell
 
Gutell 080.bmc.bioinformatics.2002.3.2
Gutell 080.bmc.bioinformatics.2002.3.2Gutell 080.bmc.bioinformatics.2002.3.2
Gutell 080.bmc.bioinformatics.2002.3.2
Robin Gutell
 
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Jonathan Eisen
 
Gutell 030.nar.1993.21.03051
Gutell 030.nar.1993.21.03051Gutell 030.nar.1993.21.03051
Gutell 030.nar.1993.21.03051
Robin Gutell
 
Rna lecture
Rna lectureRna lecture
Rna lecture
nishulpu
 
Protein databases
Protein databasesProtein databases
Protein databases
sarumalay
 
Austin Journal of Computational Biology and Bioinformatics
Austin Journal of Computational Biology and BioinformaticsAustin Journal of Computational Biology and Bioinformatics
Austin Journal of Computational Biology and Bioinformatics
Austin Publishing Group
 
Ribosoma virtual
Ribosoma virtualRibosoma virtual
Apollo Exercises Kansas State University 2015
Apollo Exercises Kansas State University 2015Apollo Exercises Kansas State University 2015
Apollo Exercises Kansas State University 2015
Monica Munoz-Torres
 
Gutell 016.pnas.1989.086.03119
Gutell 016.pnas.1989.086.03119Gutell 016.pnas.1989.086.03119
Gutell 016.pnas.1989.086.03119
Robin Gutell
 
Summer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINALSummer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINAL
Andrew Kocian
 
Gutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.goodGutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.good
Robin Gutell
 
Amino acid interaction network prediction using multi objective optimization
Amino acid interaction network prediction using multi objective optimizationAmino acid interaction network prediction using multi objective optimization
Amino acid interaction network prediction using multi objective optimization
csandit
 
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
Jonathan Eisen
 
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATIONAMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
cscpconf
 
Biochemistry (protein synthesis)
Biochemistry (protein synthesis)Biochemistry (protein synthesis)
Biochemistry (protein synthesis)
Alexander Charles D Bowman
 
Secondary structure of rna and its predicting elements
Secondary structure of rna and its predicting elementsSecondary structure of rna and its predicting elements
Secondary structure of rna and its predicting elements
VinaKhan1
 

Similar to Gutell 042.nar.1994.22.03508 (20)

Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175Gutell 015.nar.1988.16.r175
Gutell 015.nar.1988.16.r175
 
Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082Gutell 076.curr.genetics.2001.40.0082
Gutell 076.curr.genetics.2001.40.0082
 
Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319Gutell 019.nar.1990.18.sup.2319
Gutell 019.nar.1990.18.sup.2319
 
Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055Gutell 029.nar.1993.21.03055
Gutell 029.nar.1993.21.03055
 
Gutell 080.bmc.bioinformatics.2002.3.2
Gutell 080.bmc.bioinformatics.2002.3.2Gutell 080.bmc.bioinformatics.2002.3.2
Gutell 080.bmc.bioinformatics.2002.3.2
 
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
Microbial Phylogenomics (EVE161) Class 7: rRNA PCR and Major Groups
 
Gutell 030.nar.1993.21.03051
Gutell 030.nar.1993.21.03051Gutell 030.nar.1993.21.03051
Gutell 030.nar.1993.21.03051
 
Rna lecture
Rna lectureRna lecture
Rna lecture
 
Protein databases
Protein databasesProtein databases
Protein databases
 
Austin Journal of Computational Biology and Bioinformatics
Austin Journal of Computational Biology and BioinformaticsAustin Journal of Computational Biology and Bioinformatics
Austin Journal of Computational Biology and Bioinformatics
 
Ribosoma virtual
Ribosoma virtualRibosoma virtual
Ribosoma virtual
 
Apollo Exercises Kansas State University 2015
Apollo Exercises Kansas State University 2015Apollo Exercises Kansas State University 2015
Apollo Exercises Kansas State University 2015
 
Gutell 016.pnas.1989.086.03119
Gutell 016.pnas.1989.086.03119Gutell 016.pnas.1989.086.03119
Gutell 016.pnas.1989.086.03119
 
Summer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINALSummer 2015 REU Poster AK_FINAL
Summer 2015 REU Poster AK_FINAL
 
Gutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.goodGutell 101.physica.a.2007.386.0564.good
Gutell 101.physica.a.2007.386.0564.good
 
Amino acid interaction network prediction using multi objective optimization
Amino acid interaction network prediction using multi objective optimizationAmino acid interaction network prediction using multi objective optimization
Amino acid interaction network prediction using multi objective optimization
 
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
Phylogeny-driven approaches to microbial & microbiome studies: talk by Jonath...
 
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATIONAMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
AMINO ACID INTERACTION NETWORK PREDICTION USING MULTI-OBJECTIVE OPTIMIZATION
 
Biochemistry (protein synthesis)
Biochemistry (protein synthesis)Biochemistry (protein synthesis)
Biochemistry (protein synthesis)
 
Secondary structure of rna and its predicting elements
Secondary structure of rna and its predicting elementsSecondary structure of rna and its predicting elements
Secondary structure of rna and its predicting elements
 

More from Robin Gutell

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xi
Robin Gutell
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803
Robin Gutell
 
Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013
Robin Gutell
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676
Robin Gutell
 
Gutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_dataGutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_data
Robin Gutell
 
Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383
Robin Gutell
 
Gutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfigGutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfig
Robin Gutell
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473
Robin Gutell
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22
Robin Gutell
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011
Robin Gutell
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Robin Gutell
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768
Robin Gutell
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497
Robin Gutell
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485
Robin Gutell
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Robin Gutell
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277
Robin Gutell
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769
Robin Gutell
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200
Robin Gutell
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2
Robin Gutell
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043
Robin Gutell
 

More from Robin Gutell (20)

Gutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xiGutell 124.rna 2013-woese-19-vii-xi
Gutell 124.rna 2013-woese-19-vii-xi
 
Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803Gutell 123.app environ micro_2013_79_1803
Gutell 123.app environ micro_2013_79_1803
 
Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013Gutell 122.chapter comparative analy_russell_2013
Gutell 122.chapter comparative analy_russell_2013
 
Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676Gutell 121.bibm12 alignment 06392676
Gutell 121.bibm12 alignment 06392676
 
Gutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_dataGutell 120.plos_one_2012_7_e38320_supplemental_data
Gutell 120.plos_one_2012_7_e38320_supplemental_data
 
Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383Gutell 119.plos_one_2017_7_e39383
Gutell 119.plos_one_2017_7_e39383
 
Gutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfigGutell 118.plos_one_2012.7_e38203.supplementalfig
Gutell 118.plos_one_2012.7_e38203.supplementalfig
 
Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473Gutell 114.jmb.2011.413.0473
Gutell 114.jmb.2011.413.0473
 
Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22Gutell 117.rcad_e_science_stockholm_pp15-22
Gutell 117.rcad_e_science_stockholm_pp15-22
 
Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011Gutell 116.rpass.bibm11.pp618-622.2011
Gutell 116.rpass.bibm11.pp618-622.2011
 
Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011Gutell 115.rna2dmap.bibm11.pp613-617.2011
Gutell 115.rna2dmap.bibm11.pp613-617.2011
 
Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768Gutell 113.ploso.2011.06.e18768
Gutell 113.ploso.2011.06.e18768
 
Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497Gutell 112.j.phys.chem.b.2010.114.13497
Gutell 112.j.phys.chem.b.2010.114.13497
 
Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485Gutell 111.bmc.genomics.2010.11.485
Gutell 111.bmc.genomics.2010.11.485
 
Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195Gutell 110.ant.v.leeuwenhoek.2010.98.195
Gutell 110.ant.v.leeuwenhoek.2010.98.195
 
Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277Gutell 109.ejp.2009.44.277
Gutell 109.ejp.2009.44.277
 
Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769Gutell 108.jmb.2009.391.769
Gutell 108.jmb.2009.391.769
 
Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200Gutell 107.ssdbm.2009.200
Gutell 107.ssdbm.2009.200
 
Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2Gutell 106.j.euk.microbio.2009.56.0142.2
Gutell 106.j.euk.microbio.2009.56.0142.2
 
Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043Gutell 105.zoologica.scripta.2009.38.0043
Gutell 105.zoologica.scripta.2009.38.0043
 

Recently uploaded

Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStrDeep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
saastr
 
AWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptxAWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptx
HarisZaheer8
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
UI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentationUI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentation
Wouter Lemaire
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
Hiroshi SHIBATA
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Jeffrey Haguewood
 
Finale of the Year: Apply for Next One!
Finale of the Year: Apply for Next One!Finale of the Year: Apply for Next One!
Finale of the Year: Apply for Next One!
GDSC PJATK
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
alexjohnson7307
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
saastr
 
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Tatiana Kojar
 
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing InstancesEnergy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Alpen-Adria-Universität
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
SitimaJohn
 
Azure API Management to expose backend services securely
Azure API Management to expose backend services securelyAzure API Management to expose backend services securely
Azure API Management to expose backend services securely
Dinusha Kumarasiri
 
Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
fredae14
 
Trusted Execution Environment for Decentralized Process Mining
Trusted Execution Environment for Decentralized Process MiningTrusted Execution Environment for Decentralized Process Mining
Trusted Execution Environment for Decentralized Process Mining
LucaBarbaro3
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Jeffrey Haguewood
 
Operating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptxOperating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptx
Pravash Chandra Das
 

Recently uploaded (20)

Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStrDeep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
Deep Dive: Getting Funded with Jason Jason Lemkin Founder & CEO @ SaaStr
 
AWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptxAWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptx
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
UI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentationUI5 Controls simplified - UI5con2024 presentation
UI5 Controls simplified - UI5con2024 presentation
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
Letter and Document Automation for Bonterra Impact Management (fka Social Sol...
 
Finale of the Year: Apply for Next One!
Finale of the Year: Apply for Next One!Finale of the Year: Apply for Next One!
Finale of the Year: Apply for Next One!
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
 
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
Skybuffer AI: Advanced Conversational and Generative AI Solution on SAP Busin...
 
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing InstancesEnergy Efficient Video Encoding for Cloud and Edge Computing Instances
Energy Efficient Video Encoding for Cloud and Edge Computing Instances
 
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptxOcean lotus Threat actors project by John Sitima 2024 (1).pptx
Ocean lotus Threat actors project by John Sitima 2024 (1).pptx
 
Azure API Management to expose backend services securely
Azure API Management to expose backend services securelyAzure API Management to expose backend services securely
Azure API Management to expose backend services securely
 
Recommendation System using RAG Architecture
Recommendation System using RAG ArchitectureRecommendation System using RAG Architecture
Recommendation System using RAG Architecture
 
Trusted Execution Environment for Decentralized Process Mining
Trusted Execution Environment for Decentralized Process MiningTrusted Execution Environment for Decentralized Process Mining
Trusted Execution Environment for Decentralized Process Mining
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
 
Operating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptxOperating System Used by Users in day-to-day life.pptx
Operating System Used by Users in day-to-day life.pptx
 

Gutell 042.nar.1994.22.03508

  • 1. 3508-3510 Nucleic Acids Research, 1994, Vol. 22, No. 17 A comparative database of group I intron structures Simon H.Damberger and Robin R.Gutell* MCD Biology, Campus Box 347, University of Colorado, Boulder, CO 80309-0347, USA ABSTRACT We have created a database of comparatively derived group I intron secondary structure diagrams. This collection currently contains a broad sampling of phylogenetically and structurally similar and diverse structures from over 200 publicly available intron sequences. As more group I introns are sequenced and added to the database, we anticipate minor refinements in these secondary structure diagrams. These diagrams are directly accessible by computer as well as from the authors. INTRODUCTION Group I introns are a family ofRNA molecules that catalyze their own excision. Since it was discovered that group I introns self- splice [1], much experimental and comparative research has been devoted to determining their structure [2]. This work has, in turn, helped us to understand their function during the splicing reaction. As the number of group I intron sequences has increased, comparative sequence analysis has established and refined the group I intron secondary structure and is now revealing the beginnirgs of a three dimensional model. [3,4,5,6] To further refine the structural detail of group I introns, we will need continued improvements ofour correlation analysis methods. We will also need an even larger and more diverse collection ofgroup I intron sequences. Currently there are over 200 publicly available group I intron sequences in GenBank [7]. These introns have been found within two of the three primary phylogenetic domains and within the Eucarya nucleus, chloroplast, and mitochondrion. With the current number and expected increase ofgroup I intron sequence availability, the need for a group I secondary structure database has become great. OBJECTIVES Our current understanding of the patterns of sequence conservation and variation for the group I intron family of RNA molecules makes it possible to infer their secondary and tertiary structure base pairings. The growing number of sequences presents us with the opportunity to continue to evaluate and refine these structures as additional comparative evidence becomes available. These structures will be provided in a new common format [8] that will allow a larger scientific audience to readily compare similar and diverse introns. The group I secondary structure database has several primary objectives: 1. To collect and structure group I intron sequences as they become available. As more introns are sequenced, we expect to refine the current structures using comparative analysis. Although we expect the core structure of all group I introns to largely remain the same, some minor changes in the structure are possible. The variable regions, however, will probably undergo more revision as sequences continue to become available for comparison. Further comparative analysis will also be called upon to identify new tertiary interactions as comparative algorithms improve and the database grows. 2. To present other information pertaining to group I introns such as a list of all available group I intron sequences, reference lists for intron sequences, cellular location ofintrons, and their phylogenetic position. 3. To provide these structures to the general community via anonymous ftp (file transfer protocol) and the World Wide Web [9,10]. (Hard copies will also be available to those who do not have access to the Internet.) Initially we will offer representative structures from each of the major subgroups. With time, we will generate more structures to round out the phylogenetic diversity of the database. Within this communication, we also present several examples of introns including theAnkistrodesmus stipitatus LSU rRNA intron [11] (fig. 1), Saccharomyces cerevisae mitochondrial LSU rRNA intron [12] (fig. 2), and the second Podospora anserina mitochondrial apocytochrome b intron [13] (fig. 3). DESCRIPTION OF DATABASE The database currently contains 219 intron sequences, the majority ofwhich are available from GenBank. The total number of introns in the different subgroups [as proposed in 6] are listed in Table 1. These introns vary greatly in their phylogenetic diversity and are found in two of the three major phylogenetic domains, Eucarya and (eu)Bacteria [14,15] (this phylogenetic nomenclature is presented in [16]). Within the Eucarya, introns have been found in the nucleus and the two major organelles, the mitochondrion and chloroplast. Group I introns have been identified in 23 different genes (Table 1). The secondary structures will be available in a new format that more accurately represents the current knowledge of the group I intron three dimensional structure [8]. The secondary structures will be available through three channels; hard copies, anonymous ftp, and through the WWW (World Wide Web). The computer files will only be distributed in the PostScript format, therefore *To whom correspondence should be addressed .) 1994 Oxford University Press
  • 2. Nucleic Acids Research, 1994, Vol. 22, No. 17 3509 AU- AA G-C- >C-- GU-A U-AC- A/ A-U G-C C-GC- U A-U A* G G *C G-C u U U C v -AG C C A AA AAU U A g CU A A AL:CG-CAA AC-g CGAA I A C-U AGUO- G CU GU UAU-A-I G A -I A-U~~~~~~~~G UU UA-U A C -UGAA C-GCCAUGUUGC A UG C A CA~A A A C-~~~~A U-GGC U-U U G U-~~~~~~~~~~~- A UCA A ucG fU UG U UGA C G U A A UAA U C-G~~~ AU A ~~~U AU A c A G~~~-UG C_G ~~~~U CUAG G C G ~~CA G C ~~~C A AC (intron in capital letters) intron and flanking exon sequences (lower case letters). The arrows point to the 5' and 3' splice sites. The thick lines show the continuity of the strands with the arrowheads within the lines showing 5' to 3' sequence direction. The boxed nucleotides connected by a thin line represent a base-pairing interaction involved in the exon-ligation step (second step) of RNA splicing [4]. GenBank accession number is X56100. a printer or viewer that can read PostScript is required to visualize these diagrams. Those users with Internet access will be able to retrieve copies of the structures through ftp or the WWW. PostScript files of the secondary structure diagrams can be obtained by anonymous ftp at the following site and directory: ftp address: pundit. colorado. edu (128.138.212.53) directory: /pub/RNA/GRPI/ The WWW is a system of software and protocols initiated by CERN (European Laboratory for Particle Physics) to facilitate the access of information via the Internet. It uses a hypertext and multimedia presentation to simplify the accessibility of network data. In order to use te WWW, one must first retrieve a program that navigates the WWW like the NCSA (National Center for Supercomputing Applications) Mosaic WWW browser. NCSA Mosaic is a user-friendly WWW browser that is available for Microsoft Windows, Macintoshes, and UNIX workstations that use the X-Windows interface. NCSA Mosaic can be retrieved by anonymous ftp from the ftp site ftp.ncsa.uiuc.edu (141.142.20.50) in the /Mosaic directory. To obtain PostScript files of the secondary structures through the WWW, please use the following URL: A UA A G A A U U A-UA U-A G-C G-C A-U c A U A A A G U-A A-U A-U G-C CA C-G AA G cA- A A A A G A C-G U-A U-A A-U U- A A-U A-U AC - UGA C C A U U U A U U C A A U U A U G AUAUAUUGAA- GUAAUUAUUUA A I I I I I I I I I I I . uGAUAUAAC AUAGCAUUAAUGuAA FyAC~~~~~~ WC U U A C u C U c U-A U-A a U - A -uJ A.. G G G *u F#/1IU-a U -A C-9 / 'C GCC - g UU-A A G UGC -g Uy-A U-CU U AGA-U G A U G A u A I11IIIIUCUACU A U C UA A A r U .GGA GC A U A AAUAAC G G-CG-CG-C U U-A A -U A | U-A--C A-U-A AU U - A U-AAU-A A - AU A U- A ~~U-A AAU-A ~ ~~~~U AU 827 nucs G-A A-A-Au A A Figure 2. Secondary structure diagram for the LSU rRNA Saccharomyces cerevisiae mitochondrial intron. GenBank accession number is X00149. UUUAA A GA U A C G A UU - AU A -U U -A U -A C-G U-A A-U UUC UCUAUUAUUCG AAUCAAUUUAC u A I I I II*III **II C U U AAUAAUAAGU UUGGUUAGGUG G AU 3'c A -U CAA U ~~~AuA A-UA -U A aU-C U-A A-U u U-A U-A UA aU -A ACUA U U C AC-g AC A A C - C G-CyC ~ ~~~~~ru5' G G-C AAAGU A-*UU - U-A U- C-U UA A C~~~~~UAGAGAA A U-CC UG F: UCU-CAA GC UU~ ~ U- UU ~~ ~~~~UA U-CA CGArA C A A U u U ---G* UU A A A m A AI'GA UAA A U-A GC IUU - AAA A U U-A CUGU-A CUG U U-A UA C C-U AUC A U U U-A U -A A AGUA-U A -U C AA -U U -A U GA UGI U A U-AA A-U U U -A -A A C-UG AU U U 978 nucs Figure 3. Secondary structre diagm for the second apocytochrome b Podospora anserina mitochondrial intron. GenBank accession number is X55026.
  • 3. 3510 Nucleic Acids Research, 1994, Vol. 22, No. 17 Table 1. Subgroup Number Genes represented IAl 28 ATP9; CYTB; LSU rRNA; ND1; OX2; psbA; psbB; psbC IA2 6 g31; nrdB; nrdD; psbC; td IA3 7 LSU rRNA; SSU rRNA IB1 11 CYTB; LSU rRNA; OXI; SSU rRNA IB2 17 ATP6; LSU rRNA; ND1; ND5; OXI IB3 13 LSU rRNA; OXI; SSU rRNA IB4 13 CYTB; LSU rRNA; ND5; OXI; psbA ICi 46 LSU rRNA; ND1; ND4L; SSU rRNA IC2 8 ATP6; ND1; ND3; ND4; ND5; OXI; SSU rRNA IC3 33 LSU rRNA; OXI; tRNA arg; tRNA ile; tRNA leu ID 13 CYTB; OXI; OX3; ND5 Unknown 24 CYTB; ND1; ND5; OXI; OX2; psbA; SSU rRNA; Total 219 URL: http://pundit. colorado.edu:8080/RNA/GRPI/introns.html The WWW database is formatted to make it easy for the user to find the intron or introns of interest. There are two methods ofaccessing the secondary structure diagrams. The first method is through links set up by subgroup and phylogeny where the user can click on the subgroup of interest and look for introns through a list classified by phylogeny. For the second method, the database allows boolean 'and' searches over all introns in the database by organism name, intron site (gene and cellular location), and subgroup (see WWW examples). These facilities will be updated and enhanced as more introns are sequenced and structured, and as our database expands. We welcome any suggestions on how to improve the search facilities as well as the database itself. WWW examples 1. To find all subgroup IAl introns that occur in Podospora anserina, enter the following into the search box (all searches are case insensitive): Podospora anserina IAl 2. To find all mitochondrial LSU rRNA introns, enter the following: LSUrRNA Mitochondrion This publication should be quoted as a reference for any secondary structure data obtained either through hard copies from the authors or from the database. Requests for hard copy printouts should be referred to RRG. Questions and comments about the on-line resources should be directed to SHD. ACKNOWLEDGEMENTS We would like to thank Tom Cech for encouraging us to pursue this project. We acknowledge Bryn Wiser and Tom Macke for access to the programs that facilitate the generation of the structures (XRNA) and alignments (AE2). We would also like to thank the W. M. Keck Foundation for their generous support of RNA science on the Boulder campus and Sun Microsystems for the donation ofcomputer equipment. This work was supported by grants from the NIH (GM48207) and the Colorado RNA Center to R. R. G. REFERENCES 1. Cech, T. R., Zaug, A. J., and Grabowski, P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487-496 (1981). 2. Cech, T. R. Self-splicing ofgroup I introns. AnnualReviews ofBiochemistry 59, 543-568 (1990). 3. Michel, F., Jacquier, A., and Dujon, B. Comparison offungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64, 868-881 (1982). 4. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A., and Scazzocchio, C. Making ends meet: A model for RNA splicing in fungal mitochondria. Nature 300, 719-724 (1982). 5. Cech, T. R. Conserved sequences and structures ofgroup I introns: building an active site for RNA catalysis - a review. Gene 73, 259-271 (1988). 6. Michel, F., and Westhof, E. Modelling ofthe three-dimensional architecture ofgroup I catalytic introns based on comparative sequence analysis. Journal ofMolecular Biology 216, 585-610 (1990). 7. Benson, D., Lipman, D. J., and Ostell, J. GenBank. NucleicAcids Research 21, 2963-2965 (1993). 8. Cech, T. R., Damberger, S. H., and Gutell, R. R. Representation of the secondary and tertiary structure of group I introns. Nature Structural Biology 1, 273-280 (1994). 9. Bemers-Lee, T. J., Cailliau, R., and Groff, J. -F. The World-Wide Web, Computer Networks and ISDN Systems 25, 454-459 (1992). 10. Krol, E. The Whole Internet Catalog and User's Guide, O'Reilly and Associates, Inc. pp. 227-242 (1992). 11. Davila-Aponte, J. A., Huss V. A. R., Sogin, M. L., and Cech, T. R. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. Nucleic Acids Research 19, 4429-4436 (1991). 12. Jacquier, A., and Dujon, B. The intron ofthe mitochondrial 21S rRNA gene: Distribution in different yeast species and sequence comparison between Kluyveromyces thermotolerans and Saccharomyces cerevisiae. Molecular General Genetics 192, 487-499 (1983). 13. Cummings, D. J., Michel, F., McNally, K. L. DNA sequence analysis of the apocyochrome b gene of Podospora anserina: a new family of intronic open reading frame. Current Genetics 16, 407-418 (1989). 14. Xu, M. -Q., Kathe, S. D., Goodrich-Blair, H., Nierzwicki-Bauer, S. A., and Shub, D. A. Bacterial origin of a chloroplast intron: conserved self- splicing group I introns in cyanobacteria. Science 250, 1566-1570 (1990). 15. Kuhsel, M. G., Strickland, R., and Palmer, J. D. An ancient group I intron shared by eubacteria and chloroplasts. Science 250, 1570-1572 (1990). 16. Woese, C. R., Kandler, O., and Wheelis, M. L. Toward a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 87, 4576-4579 (1990).