The document describes a system that automatically generates questions and answers from an unstructured document. It involves several steps: (1) simplifying complex sentences, (2) generating initial questions using named entities and semantic role labeling, (3) identifying subtopics using LDA and GMNTM models, (4) measuring syntactic correctness of questions, and (5) extracting answers using pattern matching. The system is expected to produce more accurate results compared to using only LDA for subtopic identification, as GMNTM also considers word order and semantics. Key techniques include semantic role labeling, Extended String Subsequence Kernel for similarity measurement, and syntactic tree kernel for question ranking.